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Since t < 1, we have

u(s, t) :% (1+52+251‘)1/2

which completes the proof of (3.3).

REFERENCES

[1] C. H. Bennett and P. W. Shor, “Quantum information theory,” IEEE
Trans. Inform. Theory, vol. 44, pp. 2724-2742, Oct. 1998.

[2] W. Evans and L. J. Schulman, “Signal propagation, with application to
a lower bound on the depth of noisy formulas,” in Proc. IEEE Symp.
Foundations of Computer Science, vol. 34, 1993, pp. 594-603.

, “Signal propagation and noisy circuits,” [EEE Trans. Inform.
Theory, vol. 45, pp. 2367-2373, Nov. 1999.

[4] A. S. Holevo, “Bounds for the quantity of information transmitted by a
quantum communication channel,” Probl. Inform. Transm., vol. 9, pp.
177-183, 1973.

[5] J. von  Neumann, “Thermodynamik
Gesamtheiten,” Gétt. Nachr., pp. 273-291, 1927.

[6] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379-423, 623-655, 1948.

[3]

quantenmechanischer

Modifications of Patterson—Wiedemann Functions for
Cryptographic Applications

Subhamoy Maitra and Palash Sarkar

Abstract—Three basic properties of Boolean functions to be useful for
cryptographic purposes are balancedness, high algebraic degree, and high
nonlinearity. In addition, strict avalanche criteria and propagation charac-
teristics are required for design of S-boxes. In this correspondence, we in-
troduce methods to modify the Patterson—Wiedemann and bent functions
to achieve the above cryptographic properties. In the process, we are able
to answer some open questions about Boolean functions.

Index Terms—Algebraic degree, balancedness, Boolean function, nonlin-
earity, propagation characteristics, S-box, strict avalanche criteria.

1. INTRODUCTION

Boolean functions are used as primitives in the design of block ci-
phers. Research over the last decade and a half has indicated that a
Boolean function must possess certain properties to be suitable for
block cipher applications. Perhaps the most important of these prop-
erties is nonlinearity, which is the distance of the function from the
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set of affine functions. This is also an important parameter from the
coding theory point of view. It is well known that the maximum pos-
sible nonlinearity of an n-variable function is equal to the covering
radius of first-order Reed—Muller code R(1, n). For even values of n,
the maximum possible nonlinearity is known and functions achieving
this nonlinearity are called bent [12]. For odd values of n, the max-
imum possible nonlinearity is known only for n < 7. However, it is
possible to obtain high nonlinearity by concatenating two bent func-
tions on (n — 1)-variables. In an important paper, Patterson and Wiede-
mann [8] showed that for odd n > 15, it is possible to construct func-
tions whose nonlinearity is greater than that obtained by concatenating
two bent functions. However, for cryptographic purpose it is not suf-
ficient to have only high nonlinearity. Among the other required cri-
teria are balancedness, high algebraic degree, propagation criteria/strict
avalanche characteristics. Here we introduce modifications of the Pat-
terson—Wiedemann (PW) functions to achieve the above criteria while
retaining nonlinearity higher than the bent concatenation value. The
constructed Boolean functions are suited for block cipher applications.
Also our results solve the following open problems.

 Seberry, Zhang, and Zheng [14] showed how to use the 15-vari-
able PW functions to construct balanced functions with nonlin-
earity greater than the bent concatenation value for odd n > 29.
Here we show that the same can be achieved for odd n > 15.
Further, the constructed functions can have maximum algebraic
degree n — 1. The technique that we employ is completely dif-
ferent from that of [14].

* For the first time we show that for odd n > 15, it is possible
to construct PC (1) functions with nonlinearity greater than the
bent concatenation value. Further, this is also true for balanced

functions.

* For k < 5 — 1, we show how to construct balanced SAC (),
n-variable functions with degree n — k — 1. The construction
of these functions were posed as open problems in [6], [11], [10].
Moreover, the functions we construct have the currently best non-
linearities, and they are obtained by modifying bent and PW func-

tions.

II. PRELIMINARIES

In this section, we introduce a few basic concepts and notations. We
denote the addition operator over GF (2) by &. The following notations
will be used later.

* For binary strings 51, S2 of the same length A, we denote by
#(S1 = S2) (respectively, #(S1 # S2)), the number of places
where S; and S> are equal (respectively, unequal).

+ The Hamming distance between S1, S> is denoted by d(S1, S2),
ie., d(S1, S2) = #(S1 # S2).

+ Also we define wd(S1, S2) = #(S51 = S2) — #(51 # S2).
Note that, ll'(l(Sl, 52) =A- 2d(51, Sz)

» The Hamming weight or simply the weight of a binary string S
is the number of ones in S. This is denoted by wt (.5).

* Given a binary string S, by S we denote the string which is the
bitwise complement of S.

By 2, we mean the set of all Boolean functions of n-variables. A
Boolean function f of n-variables maps the elements of {0, 1}" to
{0, 1}. One representation of n-variable Boolean function is by a bi-
nary string of length 2" . Let 09, ..., 02n»_1 be an enumeration of the
elements of {0, 1}", where ; is the n-bit binary representation of i.
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Note that the enumeration of {0, 1}"*' can be described recursively
as follows:

{0,1}":0,1
{0, 1}""": 000, ..., O02n_1, 1o, ..., loan_1. 1)
Since a Boolean function f is amap from {0, 1}" to {0, 1}, it is com-

pletely specified by specifying the values of f for the elements o;.
Thus, f is completely specified by the string

f(a'o), caey f(o'anl).
Conversely, we may consider any binary string of length 2" to uniquely
define a Boolean function with respect to the enumeration of {0, 1}"
given above.
The algebraic degree is an important parameter of a Boolean function
both from cryptographic and coding-theoretic points of view.

Definition 1: An n-variable Boolean function can be written in the
form

F(Xny ooty X1) = a0 ® (@ a,l-Xi) o P XX,
=1 1<i#j<n
DD al'Z-un-X—l-X—Z e 4"{71

where the coefficients ag, @ij, ..., a@12.... € {0, 1}. This representa-
tion of f is called the algebraic normal form (ANF) of f. The number
of variables in a highest order product term with nonzero coefficient is
called the algebraic degree, or simply degree of f.

For the sake of notational convenience, by f we will denote both
the ANF and the string representations of f. The binary string repre-
sentation of Boolean functions is going to be used in our search algo-
rithms. The most frequently used operation will be the concatenation of
two Boolean functions. Hence, we briefly explain this. Let fo, f1 be
two n-variable functions, represented by bit strings of length 2". By
f = fofi we will denote the (n + 1)-variable function f, defined by

f(00i) = fo(o:)

f(lo;) = fi(o:). )
The recursive enumeration in (1) and (2) suggests that the “new” vari-
able X, 41 is “placed to the left” of the earlier variables X, ..., X;.

For this reason, we find it advantageous to our intuition to use the
notation f(X,+1, X,, ..., X1) instead of the more usual notation
f(Xq, ..., X5, Xy41), which is favored by most experts. However,
this is a minor point and really depends on how comfortable one feels
in thinking about Boolean function.

Algebraically, the concatenation operation corresponds to

f(;‘Yn+1~ 4¥719 sy ‘Yl)
=13 Xut1)fo(Xny oo, X))@ X1 i( Xy o ony X1).
For a Boolean function f, the notation wt ( f) denotes the number of
1’s in the string representation of f. For cryptographic applications, it

is usually desirable to use functions whose output column has an equal
number of zeros and ones.

Definition 2: An n-variable function f is said to be balanced if its
output column in the truth table contains equal number of 0’s and 1’s

(e, wt(f) =277,

Functions of degree at most one are called affine functions. An affine
function with the constant term equal to zero is called a linear func-
tion. The set of all n-variable affine (respectively, linear) functions is
denoted by A(n) (respectively, L(n)). The distance of a Boolean func-
tion from the set of affine functions is called its nonlinearity.

Definition 3: The nonlinearity of an n-variable function f is
nl(f) = (d(f. 9))

i.e., the distance of f from the set of all n-variable affine functions.

InlIl
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For even values of 7, the maximum poss1ble nonlinearity achievable
is known and is equal to 2" 7' — 272 “z [12]. Functions achieving this
nonlinearity are called bent. Further, 1f f is an n-variable bent function
and! is any lmear functionin L(n), thend( f, 1) takes one of the values
"1 & 97

We next deﬁne propagation characteristic (PC) and strict avalanche
criteria (SAC) which are important properties of Boolean functions to
be used in S-boxes.

Definition 4: Let X = (X,., ...
tion f € €, is said to satisfy

1) SAC if f(X) @ f(X &
wt (@) = 1;

2) SAC (k) if any function obtained from f by keeping any % input
bits constant satisfies SAC.

3) PC(1) if f(X) @ f(X @ @) is balanced for any @ such that
1 < wt(a@) <l

4) PC (1) of order k if any function obtained from f by keeping any
k input bits constant satisfies PC (7).

SAC was introduced by Webster and Tavares [15] and SAC (k) was
introduced by Forré [4]. PC was introduced by Preneel ef al. [11], [10].
Also Preneel ef al. introduced the notion of extended propagation char-
acteristics which has later been studied by Carlet [2]. In their original
paper, Preneel et al. [11], [10] raised several questions on the construc-
tion of functions satisfying SAC. These were partially answered by
Kurosawa and Satoh [6] who introduced a new construction of Boolean
functions satisfying SAC and PC. This construction was later general-
ized by Carlet [2]. Here we use the original construction of Kurosawa
and Satoh [6] along with new ideas to answer some of the questions
raised in [11], [10] and not answered in [6]. We next state a few simple
results which will be used later.

,Xi)and@ € {0, 1}". A func-

& @) is balanced for any @ such that

Proposition 1: Let f € Q,, and f = fy fo, where f1, fo € Q,—1.
Then the algebraic degree of f is n iff wt ( f) is odd. Moreover, if both
wt (f1) and wt ( f2) are odd then the algebraic degree of f isn — 1.

Proposition 2: Given a balanced function f € 2,, with nl (f) ==,
one can construct balanced f' € €, with nl(f’) > = — 2 and
deg(f') =n — 1.

Proof: Let f = fifo where f1, fo € Q,_1. If wt(f1) and
wt (f2) are both odd, then deg(f) = n — 1 and take f' = f. If both
wt (f1) and wt ( f2) are even, change any one bit of f; from 0 to 1 to
get f1 and any one bit of f2 from 1 to 0 to get f3. Then the function
f' = fifsisin 2, and is balanced. Further, the degree of f' isn — 1
since the weights of both f{ and f; are odd (see Proposition 1). Also,
nl (f') > nl(f) — 2, since the nonlinearity can fall by at most 2 for
changing 2 bits. O

Also, we will need the following result which is available in [7].

Proposition 3: Foroddn > 3, it is possible to construct a balanced
n—1
Boolean function in (2,, with nonlinearity 2" ! — 272 and algebraic
degree (n — 1).

For odd n > 15, we provide a method to obtain higher nonlinearity
than Proposition 3. We will only use Proposition 3 for odd n, such that
3<n <13

Next, we state a standard result on nonlinearity (see, for example,

(8], [13D).

Proposition 4: Let us consider h(X,, ..., X;) € €, and
g(Yi, ..., Y1) € Q,,, with separate sets of input variables. Let
FWmy oo Y1, Xoy oo, X1) = 9(Ym, -0, Y1)BR( X, ..., X0).
Thenul (f) = 2" nl(g) + 2™ nl(h) — 2nl(g)nl (h).
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III. NONLINEARITY OF BALANCED FUNCTIONS

For odd n, one easy way to construct n-variable functions with high
nonlinearity is to concatenate two bent functions of (n — 1)-variables.
The nonlinearity achieved is equal to 2"~ * — 2 % and is sometimes
called the bent concatenation nonlinearity. It is a notoriously difficult
problem to construct n-variable functions with nonlinearity higher than
this value. In an important paper, Patterson and Wiedemann [8], [9]
have shown how to construct 15-variable functions with nonlinearity
16276 . The achieved nonlinearity is higher than the corresponding
bent concatenation nonlinearity of 2'* — 27 = 16256. Also, the con-
structed functions have weight 16492 = 16384 + 108 = 2'* + 108
and hence are not balanced. Patterson and Wiedemann [8] also pointed
out how to use these functions to construct 7€;yai1£iable functions with
nonlinearity equal to 2" " — 272 4+20x 2~ 2 forall odd n > 15.
The importance of their result lies in the fact that these are the only
known direct constructions of functions with nonlinearity greater than
the bent concatenation value.

In later work, Seberry, Zhang, and Zheng [14] used PW functions
to construct balanced functions with nonlinearity greater than 2"~ —
2”7 for odd n > 29. The question of obtaining balanced functions
with nonlinearity greater than the bent concatenation value for odd »
between 15 and 27 was left open. Also, [14] did not consider the degree
of the constructed functions.

In this section, we introduce new ways of modifying the PW func-
tions to achieve balancedness and maximum algebraic degree and still
retain nonlinearity higher than the bent concatenation value for all odd
n > 15.

We start by identifying an important result which is the first step
in the construction of balanced 15-variable function with nonlinearity
greater than 16256.

Proposition 5: Tt is possible to construct f € €215 with nonlinearity
16276 = 2™ — 27 4 20 and weight 16364 = 2* — 20.

Proof: Consider a PW function f; € €215 withnl (f1) = 16276
and wt (f1) = 16492. From [9], we know that there are 3255 linear
functions in L(15) at a distance 16364 from f;. Let ! be one of these
3255 linear functions. Define f = fi & 1. Then f € Q5 andnl (f) =

nl(fi) = 16276 and wt (f) = wt (f1 © 1) = d(f1, 1) = 16364. O

Next, we have the following randomized heuristic for constructing
highly nonlinear balanced functions for odd n > 15.

Algorithm 1: RandBal(n)

1. Let f be a function constructed using Proposition
5. Let n = 2k+15, kK > 0 and let F € (), be defined
as follows.
e If k=0, take F = f.
e If k > 0, take

F=fXy,...., Xi5)®9(Xs6, ...,

where g € 05, is a bent fnuriction.
Note that nl(F)=2""1-2"2 +20x2* (see Proposition
4) and wt(F) =2""1 —20 x 2%,

2. Divide the string F in 2, into 20 X 2¥ equal

with the last substring

‘Xn )

contiguous substrings,
longer than the rest.
3. In each substring choose a position with 0 value
uniformly at random and change that to 1. This
generates a balanced function Fj, € ,, .
4. If nl(F,) > 2n ' — ZE%A, then report. Go to Step 1
and continue.

We have run this experiment a number of times and succeeded in
obtaining plenty of balanced functions with nonlinearities 2'* —27 46,
216 _ 2% 1 18,2'® — 29 4 46 and 2%° — 2'° 4 104, respectively, for
15,17, 19, and 21 variables.
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Remark 1: 1t is possible to distribute the 0’s and 1’s in the func-
tion in a manner (changing Steps 2 and 3 in Algorithm 1) such that the
weights of the upper and lower halves of the function are odd. Using
Proposition 1, this provides balanced functions with maximum alge-
braic degree (n — 1) and the same nonlinearity as before.

Note that, running Algorithm 1 for large n is time-consuming. This
is because we need to check the nonlinearity which takes O(n2" ) time
for an n-variable Boolean function using fast Walsh transform algo-
rithm. However, we can extend the experimental results in a way sim-
ilar to that in [8]. Consider a bent function g(Y7, ..., Y21) € Qo and
f(Xq, ..., Xo1) with nonlinearity 220 _ 210 1 104 as obtained from
Algorithm RandBal(). Let i € Q2;42k suchthat h = g & f. Then, it
follows that

nl (h) = 22042k _ o104k 4 104 x 2F.

These functions can be modified to get algebraic degree (n — 1) as in
Proposition 2. Thus we get the following result.

Theorem 1: One can construct balanced Boolean functions on n. a
1542k (k > 0) variables with nonlinearity greater than 2"~ —2 72
Moreover, such functions can have algebraic degree (n — 1).

Dobbertin [3] provided a recursive procedure for modifying a gen-
eral class of bent functions to obtain highly nonlinear balanced Boolean
functions on an even number of variables. A special case of this proce-
dure which modifies the Maiorana—McFarland class of bent functions
was earlier described in [14]. For even n, it was conjectured in [3] that
the maximum value of nonlinearity of balanced functions, which we
denote by nlbmax( ), satisfies the recurrence

nlbmax(n) = 2" — 2% 4 nlbmax (g) :

We next provide a combined interlinked recursive algorithm to con-
struct highly nonlinear balanced functions for both odd and even n.
Note that for an even number of variables, Algorithm 2 uses a special
case of the recursive construction in [3]. Further, we show how to ob-
tain the maximum algebraic degree. The input to this algorithm is n
and the output is balanced f € €2,, with the currently best known non-
linearity.

Algorithm 2: BalConstruct(n)
1. If n is odd
a) if 3 < n < 13 construct f W}EP algebraic degree
(n—1) and nonlinearity 2" ' —272 (see Proposition
3).
b) if 15 < n < 21 return f to be the best function
constructed by RandBal(n).
c) if n > 23
i. Let hy € Q,_ 5 be bent and ¢g; € {2, be the best
nonlinear function constructed by RandBal(n). Let
f1€Q, be such that fi=h,Dg:.
ii. Let hy = BalConstruct(n — 15) and ¢g» € Q5 as in
Proposition 5. Let f; € ), be such that fo=hs$Hgs.
If nl(fy) >nl(f:) return f; else return fs.
2. If n is even
Let h = BalConstruct(’zl). Let f be the concatenation
of h followed by 2% — 1 distinct nonconstant linear

iii.

n

functions on %-variables. Return f.

To obtain maximum algebraic degree in the above algorithm we need
the following modifications.

» Forodd n < 13, the functions available from Proposition 3 guar-
antee degree (n — 1).

* For odd n, 15 < n < 21, modification of algorithm RandBal()
(see Remark 1) guarantees algebraic degree (n — 1) without drop-
ping nonlinearity.
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* For odd n > 23, using Proposition 2, degree (n — 1) can be
achieved sacrificing nonlinearity by at most 2.

» For even n, recursively ensure that algebraic degree of i (in
Step 2 of BalConstruct()) is 5 —

Letnlb (n) be the nonlinearity of an n-variable balanced Boolean func-
tion constructed by BalConstruct(n). Similarly, let nla (n) be the non-
linearity of an n-variable balanced function with degree n — 1, con-
structed by Algorithm BalConstruct(n ). We have the following perfor-
mance guarantee on nlb (n) and nla (n).

Theorem 2: The Algorithm BalConstruct(n) constructs a balanced
n-variable function having nonlinearity nlb (n), given by

n—1

nlb(n) =2""1 - 272 foroddn,3<n <13 (1)
=015 +6, o174+ 18, 019 + 46, 021 + 104,
forn = 15, 17, 19, 21 (2)
= max(A, B), forodd n > 23 (3)
2~ = 2% 4ub (1),
+ nlb 5)

for even n (4)

n—1

where ¢, = 2" — 272
A=2"""—2"F 88 x 2" + 216 x nlb (k)
B=2"""—2"7 413x2"

and k = "5 For cases (1) and (2), nla (n) = nlb (n). For case

(3),nla(n) > nlb (n) — 2, and for case (4),nla (n) = 2" ' — 2% 4
nla (3).

It should be noted that, from Theorem 2, for even n, the nonlinearity
measures nla () and nlb () satisfy the same recurrence of nlbmax( )
as conjectured by Dobbertin [3]. Algorithm BalConstruct(n) provides
currently best known nonlinear balanced functions for all n. In partic-
ular, we summarize the following points to highlight the performance

of the algorithm.

1) Our method provides balanced functions with nonlinearity
n—1
greater than 2" ~' — 272 for odd n, 15 < n < 27 which were
not known earlier.

2) For even n, the nonlinearity obtained by our method is strictly
greater than that mentioned in [14, Theorem 13] for all n =
2°(2t+1),s > 1,¢t > 7.

3) For odd n, the nonlinearity obtained by our method is strictly
greater than that mentioned in [14] for all n = 2°(2¢t 4+ 1) + 15,
s>1,t>T.

4) Apart from points 2) and 3) above, compared to [14] we also
obtain strictly better nonlinearities for certain other values of n
(for example, n = 29, 31).

In this section we have shown how to heuristically modify the PW
functions to obtain balancedness while retaining nonlinearity higher
than the bent concatenation value. However, the question of mathe-
matically constructing such functions remains open. Also settling the
conjecture in [3] is an important unsolved question.

IV. AUTOCORRELATION FUNCTION
The autocorrelation function C's(@) of a Boolean function f is de-

fined as

C'f(ﬁ) — Z (_l)f(f)%f(féa)_

Xefo, 1}

It is easy to see that the autocorrelation value at 0, i.e., C'(0), is equal
to 2". Hence, in the following, we will only consider the values of the
autocorrelation function at nonzero points. First we present the auto-
correlation values for the 15-variable PW functions. It is interesting to
note that these values are the same for both the functions in [9].

No. of @ | 3255|6727 9765 | 3255 | 3255|6510

160 | 64 0 | —=32|—-64|-96

In [16], two measures were introduced based on the autocorrelation
function and these were called the global avalanche characteristics.
Here, we consider only the absolute indicator A ¢, which is defined
as

Ay = max |Cy(a@)].
¢ = max|Cr(@)|

In[16, Sec. 4], it has been conjectured that for n = 2k + 1, the absolute
ilidicator Ay for any n-variable balanced function f is greater than
ARES

From the preceding table, the absolute indicator for the 15-variable
PW functions is 160. We have also computed the absolute indicator for
the balanced modifications of the PW functions. The minimum value
obtained is 216 and in this case the autocorrelation function takes 54
distinct values, i.e., all the multiples of 8 between —216 and 216. Since
216 is less than 277" = 256, the conjecture of [16] is disproved for
n = 15.

V. PROPAGATION CHARACTERISTICS

Here we use the PW functions for the construction of functions sat-
isfying propagation characteristics.
Theorem 3: For odd n > 15, it is possible to construct n-variable,
n—1 n—135
PC (1) functions with nonlinearity 2" =" — 272 +20x 22 .
Proof: LetX = (X, ..., X1)and@ € {0, 1}". Let

Sy ={a|f(X) @ f(X & @) is balanced}.

The 15-variable PW functions have the property that there are 15 lin-
early independent vectors in Sy. Consider B¢ to be a 15 x 15 non-
singular matrix whose rows are the following 15 linearly independent
vectors. For each of these vectors @, we have C's(@) = 0. The matrix
By is as follows:

ro o o 000000 1 1 0 0 07
00 0O0O0O0OO0OO0OO0OT1TO0O0O0O0O°O®O0
000O0O0OO0OO0OO0OT1TUO0OO0T1O0O0O0
000O0O0OO0OO0OT1O0O0OO0OT1O0O0O0
00 00O0O0O1O0O0O0OTO0OO0OO0O0O°O 0
00 0 00 010 00 0O0O0

000O0O0O1O0O0O0O0OO0O0OO0OO0O0
0o0001O0O0O0O0O0O0O0O0°O0°O0
00 0100O0O0O0O0O0OO0OO0O0T1
00010O0O0O0OT1UO0UO0O0O0O0O®O0
00100O0O0O0OO0OT1TO0O0O0OO0O0
01000O0O0O0OO0OOO0O0OT1TO0F®O0
100 000O0O0OO0OO0OO0OT1TO0TO0O0
00 00O0O0OO0OO0O0OO0OO0O0O0OT1TO0
LOO O OO 0O 000 O0O0O0 1T 0 0d

Define g(X) = f(X By). Then, g has the same nonlinearity as f and
satisfies PC (1). We proceed inductively for odd numbers of input vari-
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ablesn > 15. Let (X, —2, ..
function with nonlinearity 2" % — 257

Xl) be an (n — 2) variable, PC(1)
+ 2

h(_Xn, .an]) = -XnAYn,fl

be a two-variable bent function whose output column is of the form
0001. Define

G(-Xn*, -‘X—nfla —Ynfiln LIS ‘X—l)

o] h()(ns 1Y7171) &3] g(-Yan- ey ‘Xl)-

Thus, G can be seen as a concatenation of the form gggg©. Once
again note that ¢ is the bitwise complement of ¢g. Take any n-length

binary vector @ = (an, an—1, ..., a1) with wt (@) = 1. Also, let
Y e (‘Yna AXvnflw ey ){1)
and
X' = (Xn-2, ..., X1).
Now three cases arise.
Case) @ = (an = 0, an—1 = 0, ¥p—2...,1): Leta’ =
(an—2, ..., ay). Note that wt (E’) = 1. Thus,
wt (GX)p X aw) =wt(9(X) @ g(X @a))
+wt (g(X) & g(X J;a’))
+wt(g(X) s g(X aa))
+wt ("X & g" (X aa))
= 4x 2" (from the induction hypothesis
as g is PC(1))
— 27171
Case2) a = (an =0, ap—1 =1, ..., a1 = 0): In this case
wt (GX) @ G(X d@) =wt(g@® g) +wt(g® g)
+wt(gdg)+wt(g”Dyg)
— 271—1.
Case3) a=(an, =1, ap—1 =0, ..., a1 =0): Again

wt(G(X)PGX @) =wt(gD g
+ wt (g
= 271*1.

g)+wt(gdg)
B g)+wt(g®Dg)

Hence, G is PC(1) and since G = h & g, we get

nl(G) = 2"t — 2%t

O

A similar result can be proved on the nonlinearity of balanced PC(1)
functions.

Theorem 4: For odd n > 15, it is possible to construct n-variable,
balanced PC (1) functions with nonlinearity 2" ~* — 277 +6 X2 noe
Proof: The proof is similar to the proof of Theorem 3. We start
with a balanced 15-variable function with nonlinearity 2'* — 27 46 as
obtained by modifying a PW function using the randomized heuristic.
As in Theorem 3, we obtain a 15 X 15 matrix By such that for each
row « of By, the autocorrelation function at a is 0. The construction
is similar to Theorem 3. O

Our next results are based on a general construction of Boolean func-
tions introduced by Kurosawa and Satoh [6]. The construction is

f()(h ULRY ){.9-, Y’ls LERE ] rt)

=[X1, ..., X.]QM. ... Yi)T @ g(X1, ..., X,)
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where () is an s X t binary matrix and g(Xy, ..., X;) is any func-
tion. Under certain conditions on (), the function f satisfies PC (1) of
order k (see [6]). Moreover, according to the proof of [6, Theorem 16],
nl(f) = 2'nl(g) and deg(f) = deg(g). It is possible to improve the
results of [6] by using functions constructed by the methods of Sec-
tion III.

Theorem 5: For odd s, it is possible to construct PC (/) of order %
function f such that

a) deg(f) =s—1andnl(f) > for3 < s<13;

b) deg(f) = sandnl (f) > 2t~ — for s > 15.

Proof: For3 < s < 13, s odd, we can consider g € €2, as the
function available from Proposition 3 with algebraic degree s — 1 and
2 52 - . For s > 15 one can consider g € €2, with
nonlinearity 2°7! — 2% —1 and algebraic degree s. This
can be obtained by con51der1ng a functlon on s variables with maximum
known nonlinearity and then making wt (¢) odd by complementing
one bit. This will provide the full algebraic degree and decrease the
nonlinearity by at most 1. O

2t+s 1 2t+ 2

ot+egt

nonlinearity 2°~*

For odd s, the corresponding result in [6] is deg(f) = 32
nl(f) > 2trs—1 — 24+ which is clearly improved in Theorem 5.

Further, maximum algebraic degree can be obtained in this construc-
tion at the cost of small drop in nonlinearity. For odd s between 3 and
13, deg(g) can be made s by changing one bit of ¢g. This decreases
nl(g) by one. The corresponding parameters of f are deg(f) = s
and nl (f) > 2751 — 2153 _ 2! For even s, the result in [6] is
deg(f) = 5 andnl(f) > 2'7*~' — 27271 As before, by changing

one bit of ¢ we can ensure deg(f) = s and nl(f) > 2ft°~!
2131 _ 9t

A Boolean function f is said to be resilient if it is balanced and for
any variable X;, the function X; b f is also balanced (see [5] for a more
general definition of resiliency). Resiliency is an important property of
a Boolean function to be used in stream cipher systems. We present an
interesting result combining resiliency and propagation characteristics.

Theorem 6: For even n, it is possible to construct resilient functions
in Q,,, with nonlinearity 2"~ — 22, algebraic degree 5 — 1, and
satisfying PC(5 — 1).

Proof: Let f € €,,_> be a bent function, n even. Then
F(}(lv e Xeo)=(1 '%‘YTl—l)f(fYJa vy Xp2)
%AYH—I(l & f(1Y1 @& (875 PP AYn—‘Z D an—Z))

is balanced and satisfies propagation criterion with respect to

all nonzero vectors except (a1, ..., ap—2, 1). Also nl(F) =
27172

Let
G(Xy,.... X)) =1 X,)F(Xq, ..., Xn21)

Yn(F(1Y1 ﬂf‘ﬁl,

Then G is balanced and satisfies the propagation criterion with respect
to all nonzero vectors except

‘X—n—l P ,‘311—1))'

a= (a1, ..., Ap—2, n—1 =1, ap =0)

and
32(‘31, ceey

cdn—l B ;‘j71, = 1)

and @ & 3. Also G is balanced and nl (G) = 2"~ — 2%,

Choose (a1, a2, ..., an—2) with wt (g, az, ..., ,Qp—2) = %— .
Now consider
5 ooy Op=gs On—1 = 1 oy = 0)

Bne1 =1, B = 1).
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Since wt (@) = % — 1 + 1 and wt (3) = n we get, wt (@ 3) =

Note that G satlsﬁes the propagation criterion with respect to all the

nonzero vectors except @, 3, @@ 3 and hence G satisfies PC (5—1).
Note that since we choose

(61 = 17 ey /377,71 e 1)

G(X1, ..., Xy) is l-resilient [1], [7].
Since f € €2, is bent, it is possible to construct f with algebraic
degree 5 — 1 and deg(G) = deg(f). O

VI. STRICT AVALANCHE CRITERIA

Next we turn to the study of SAC (k) combined with the properties
of balancedness, degree and nonlinearity. In [6], the construction

FUX Ty sne s Koy Yigess Ya)

= [Xy, ..., Xs]Q[YA, ..., ] P g( X, ...y Xs)
has been used for the construction of SAC (k) function by setting
s=n—k—-1t=k+1l,andQ tobethe (n —k —1) x (k+1)
matrix whose elements are all 1. Under these conditions, the function
f takes the form

(X1, ..., Xn)=(Xi® - & X)) Xt b B Xin)

Bg( X, ooy Xk—1).
Moreover, it was shown that f is balanced if
(Xl (¥) =0. X@ =0}| = [{X s (¥) =1, XQ = 0}
where X = (X1, ..., X,,—x—1). Itis important to interpret this idea
with respect to the truth table of g. Since all entries of () are ones, the

vector X (Q is either the all-zero or the all-one vector. Further, it is the
all-zero vector iff wt (X) is even. This means that f is balanced if

#{X|9(X) =0, wt (X) = even}
= #{X|9(X) =1, wt (X) = even}.

Thus, in the truth table we have to check for balancedness of ¢ restricted
to the rows where the weight of the input string is even. In half of such
places ¢ must be 0 and in the other half ¢ must be 1. Motivated by
this discussion we make the following definition of brEven (restricted
balancedness with respect to inputs with even weight) and brOdd (re-
stricted balancedness with respect to inputs with odd weight).

Definition 5: Letg € Qpand X = (Y
brEven (respectively brOdd) if #{g(X) = 0|\\t = even} =
#{9(X) = 1|wt(X) = even} = 21) (respectlvely, #{9(X) =
0wt (X) = odd} = #{9(X) = 1jwt (X) = odd} = 2°72).

, X ) Then g iscalled

We show that PW functions can be modified to make them brEven.
This in turn provides balanced n-variable, SAC (k) functions with de-
gree n — k — 1 and very high nonlinearity. The construction of such
functions were posed as open problems in [11], [10].

Proposition 6: For p odd it is possible to construct g E Q, with
nonlmearlty iy2r—t — 252" for p < 13 andii) 27" — 257 420 x

=2 for p > 15 which is brEven.

Proof: First note that if any function f(X) is brEven, then
f(X @& @) is brOdd whenever wt (@) is odd and vice versa. Also,
nl (£(X)) = nl(f(X & @)).

For odd p < 13, choose f3 € €,_1, a brEven bent function, as
given in Proposition 7 (see later). Then construct fo € 2,1, such that
fo = f3(X @& @) where wt (@) is odd. Thus, fo is a brOdd function.
Now construct a function F' € €,,, where F is concatenation of f3 and
fa,ie, F = (14 X,)fs & X, fo. Then F is brEven and nl (F') =
pFL oy,

For p > 15, we use a recursive construction. Let f1 € Q5 be a
15-variable PW function. Note that nl (f;) = 2'* — 27 4+ 20. Now
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consider the 32 768 functions of the form f; & [, where I € L(15).
We have found functions among these which are brOdd (but none of
which are brEven). Let f2(X1, ..., Xi5) be such a brOdd function.
Then f3(X1, ..., Xi15) = fo (X1 B ay, ..., X15 B a5) is brEven
whenwt (o, ..., ay5)isodd. Note thatnl (f2) = nl(f3) = nl (f1).
This settles the base case.

Consider that for all odd p, 15 < p < m, (m odd), there exists a
brEven function f € 2, with

nl(f) =201 — 255 420 x 2550

Let us take f5 € £2,,, be a brEven function with

al(f;) = 2™ —2%F

Then we can construct brOdd function

fo(Xn, ooy X)) =

where wt(aq, ..., ;) is odd. Construct F € ,,4> where
F = fsfaf2f5. Then it can be shown that F’ is also brEven. Now, any
linear function on (m + 2) variables is of one of the following forms
Ui, uele, wiele, uciel, for some I € L(m). Thus, considering the
distance of F' = f3f2 f2 f5 to the linear functions of the above forms,
it is possible to show

f3 AXI E‘Balq LRI AXp’«TQm)

mE2—1 m+2-15
2

gmtETl g +20x2

nl(F) =
This proves the inductive step. (]
The construction in the above theorem can also be seen in the fol-
lowing way. Consider a brOdd function f2 and a brEven function f5
on 15 variables with nl (f2) = nl(fs) = 2" — 27 + 20 x 2°.
Now we show the construction of a brEven function on 15 + 2k vari-
ables. Let g(Y1, ..., Y5, ) be a bent function on 2k variables. Define
F € Q5495 as follows:
=M@ aYu)ygd )11 D )(g D f3).
Then F is brEven and nl (F) = 21+2k — 27+F 4 90 x 2%,

® Yor

Theorem 7: Let (n — k —1) > (k+1),ie, k 5 — 1 and
n — k — 1 = odd. Then it is possible to construct balanced SAC (k)
function f € €2,, such that deg(f) = n — k — 1. Moreover, for

3<n—-k—-1<13

nl(f) = 2"t = 9"F" _ gkt
and forn —k —1 > 15
nl(f) = 2""1 — 2% 420 x 2™ TF T gkt

Proof: We start with an (n — k — 1)-variable brEven function g
constructed using Proposition 6. Note that wt (¢) is even. Choose an
input@ = (ap—k—1, ..., o) of g such that wt (@) is odd. Construct
a function ¢’ as follows:

J'(X) =g(X),
= (/(‘X) T’ 5
Clearly, wt (¢') = wt(g) & 1 = odd and hence, using Proposition
3, the degree of ¢ is odd. Since wt (@) 1s odd the function ¢’ retains

the brEven property. The nonlinearity of ¢’ is exactly one less than the
nonlinearity of g. We use this ¢ in the construction [6]

[ i@, GTRp— ...,Yt)

if X #a,
ifX =a.

X,, Y1,
. XJQM, ..., )"

to get the desired results. O

/%‘(/(.Yl. sy ‘YS)

The next result is important as it shows that certain types of bent
functions can be brEven. This allows us to obtain balanced n-variable,
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SAC (k) functions with degree n — k — 1 and very high nonlinearity
which could not be obtained in [6].

Proposition 7: For p even, it is possible to construct bent functions
g € Q, which are brEven.

Proof: Firstnote that g is brEven iff g is brEven. Let ¢ = &. For
0<i<qg—1,letl; € L(q) be the linear function a, X,& - - -F a1 X1,
where a4 - - - a; is the ¢-bit binary expansion of i. We provide construc-
tion of bent functions g(X1, ..., X,) which are brEven. Let X =
(X1, ..., Xp).

Casel: ¢g=1mod2.Letg=1Iof1-- fq—2lq—1, Where

Frswees Ta=2 € s v s s lgads 17 5 s Ig_s}
and fori # j, fi # f; and f; # f;. It is well known that such a g
is bent [12]. We require the following three results whose proofs are

straightforward though a bit tedious.
a) #{lo(X1, ..., Xy) = 0|wt (X1, ..., Xy) = even} = 297!
and #{lo(X1, ..., X,) = Ywt (X1, ..., X,;) =even} = 0.

b) Since the f;’s are degenerate affine functions in L(q), it is pos-
sible to show that individually they are both brEven and brOdd.

c¢) Using the fact that ¢ isodd and I, = X3 @ --- D X, itis
possible to show
#{lq—l(}(h ey Xq) = 0|Vvt (Xl, ey 4Yq) = SVCH} =0
and
#{l,—1 (X1, ., Xg) = 1wt (Xy, ..., X,) =even} = 297"
As wt( Xy, ..., X)) = wt(Xu, ..oy Xg) + wt (Xgg1s .00, X))

and g is the concatenation of lo, fi, ..., fy—2, lq—1, it is possible to
show that ¢ is brEven.

Case 2: For ¢ = 0 mod 2, the result is true for bent functions of
the form g =I5 f1 ... fq—2lq—1. O

In [6, Theorem 32], it has been stated that for even n — k — 1, there
exists balanced SAC (k) functions such that deg(f) = n — k — 2.
The question whether such functions with algebraic degree n — k —
1 exists has been left as an open question. The next result shows the
existence of such functions which proves that the bound on algebraic
degree provided in [11] is indeed tight for & < & — 1.

Theorem 8: Let (n — k —1) > (k+1),ie,k < & — 1 and
n — k — 1 = even. Then it is possible to construct balanced SAC (k)
function f € 2,, such that deg(f) = n — k — 1. Moreover, nl (f) =
gn—1 _ 9=t _ gk+1,

Proof: Use a bent function g € 2,,_r—1 which is brEven. Out
of the 2" ~#~ bit positions in ¢ (in the output column of the truth
table), there are 2" ~*~2 positions where wt(X1, ..., Xp_r—1) =
odd and the value of ¢ at these positions can be complemented without
disturbing the brEven property. Since ¢ is bent, wt (¢g) is even. Thus,
we choose a row j in the truth table where wt (X1, ..., Xn—r—1) is
odd and construct g’ by complementing the output bit. Thus, wt (¢') =
wt (¢g) %1 = odd. Hence by Proposition 3, deg(g') = n—k—1. Thus,

f(}(h e AX—n) = (;AYI DD A"(n—lv—l,)(}{n—k

D Q”‘Yn) ;gl(}(l ) }(nfkfl)

is balanced SAC (k) with algebraic degree n — k — 1. Also,

n—k—1

nl (g[) =nl (g) — 1= 271—k_2 _9 L

_1_1
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Thus,

ntk—1

nl(f) =2 xnl(g)=2""1-2"2

— gt O

VII. CONCLUSION

In this correspondence, we have shown how to modify the famous
PW functions to make them balanced and still retain nonlinearity higher
than the bent concatenation value. Also, the modified n-variable func-
tions can have the maximum algebraic degree (1 —1). Further, we have
used a different type of modification of PW and bent functions along
with a construction by Kurosawa and Satoh to construct functions sat-
isfying SAC and PC which were not known earlier.
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