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Fig. 1. Scatter plot of salmon data. Class boundaries estimated by LDA1
and QDA.

is the most popular choice for this distance function. One can

standardize the data set using an estimate of the class dispersion

matrix and compute the density estimate for the standardized

variable. The density estimate at the original data point can

be obtained from that using a simple transformation formula,

where the measurement vector undergoes a linear transforma-

tion. Note that the usual nearest neighbor classification rule

(e.g., see [5] and [9]) considers the densities of different classes

to be constant over a common neighborhood around x, but

k-nearest neighbor (k-NN) density estimates allow us to have

different shapes of neighborhoods for different populations.

II. ILLUSTRATIVE EXAMPLE

Let us consider the following example with a salmon data

set taken from [20]. This data set consists of 100 bivariate

observations on growth ring diameters (freshwater and marine

water) of salmon fish taken from Alaskan and Canadian water.

A scatter plot of this data set is given in Fig. 1, where dots

(“·”) and crosses (“×”) represent the observations coming from

Alaskan and Canadian populations, respectively. We chose four

out of these 100 observations from different parts of the data

(marked by “◦” in the figure) for which the class information is

known and classified them using the remaining 96 observations.

Observations “A” and “B” belong to the Alaskan population,

whereas “C” and “D” belong to the Canadian population.

Notice that for observations “A” and “D,” the evidence in

favor of the true class is much stronger than that in the other

two cases. As discussed in [20], in this data set, the data

distributions for both classes appear to satisfy the assumption

of normality, and hence, the traditional methods of linear and

quadratic discriminant analysis (LDA and QDA), especially

QDA, perform well. In this example, both LDA and QDA could

correctly classify all the four observations. The estimated class

boundaries for these two methods are given in Fig. 1. In this

figure, we observe that “B” and “C” are very close to the class

boundary, but they lie on the opposite sides of the separating

line (curve). “A” and “D” also belong to opposite sides, but

they are far away from the line (curve) of discrimination. So,

one should normally expect to have different behaviors of the

classification methodology for these four observations.

Using a simple Euclidean distance and a leave-one-out cross-

validation technique for minimization of ∆(k1, k2) on this data

set, we obtained k1 = 3 and k2 = 9 as the best choice for neigh-

borhood parameters. However, this choice of (k1, k2) failed to

properly exhibit the difference in the strength of classification.

It could correctly classify only three of these four observations.

Posterior probability estimates in favor of the Alaskan popu-

lation were found to be 0.9577, 0.7910, 0.7222, and 0.1132,

respectively, for “A,” “B,” “C,” and “D.” This cross-validation

method could not estimate the class boundary properly, and

it classified “B” and “C” to the same class with almost equal

posterior estimates. Later in this section and in Section III, we

will see that in this case, more improved results can be obtained

if we carry out our analysis using multiple values of (k1, k2).
Since different values of neighborhood parameters correspond

to different scales of smoothing, this study using multiple

values of (k1, k2) will be referred to as multiscale analysis. In

multiscale analysis, we measure the strength of evidence for

two competing classes for different choices of neighborhood

parameters, and they are displayed in a two-dimensional plot.

This plot provides an effective visual comparison between the

strengths of different classes.

A. Multiscale Analysis Using Posterior Probability

If k1 and k2 are used as the neighborhood parameters for the

two classes, the estimated posterior probability for the first pop-

ulation is given by Pk1,k2
(1|x) = π1f̂1,k1

(x)/{π1f̂1,k1
(x) +

π2f̂2,k2
(x)}, where π1 and π2 are the prior probabilities of the

two classes. Varying the values of k1 and k2, we get a sequence

of posterior estimates for each observation. The plots in the

first row of Fig. 2 show the grayscale values of these posterior

estimates, where white color denotes the highest posterior (i.e.,

Pk1,k2
(1|x) = 1) and black color denotes the lowest posterior

(i.e., Pk1,k2
(1|x) = 0) in favor of population 1 (i.e., Alaskan

population in this example). The intensity of the color varies

with the magnitude of the posterior estimate. As expected, for

observation “A,” we observe very light color over the entire plot

from which the decision in favor of the Alaskan population is

quite transparent. The same is true for observation “D,” where

the plot shows a strong evidence in favor of the Canadian

population. However, for the other two cases, the decisions are

not that clear. In these cases, we observe gray color over the

entire plot with a little lighter or darker shade in various regions,

which gives a clear indication of borderline cases. One may also

notice the dominance of lighter shades in case of observation

“B” and that of darker shades for “C.” This gives us some useful

idea about the final classification of these observations.

B. Multiscale Analysis Using a pValueType Measure

Instead of posterior probabilities, one may plot the prob-

ability function Ψk1,k2
(1|x) = P{π1f̂1,k1

(x) > π2f̂1,k2
(x)}

as well. This probability function Ψ can be viewed as a one-

sided p-value for testing the hypothesis H0 : E{π1f̂1,k1
(x)} ≤

E{π2f̂1,k2
(x)} against Ha : E{π1f̂1,k1

(x)}> E{π2f̂1,k2
(x)},

and that is why we chose to call it a p-value-type measure

(see [13] for a discussion on a similar p-value in the context of
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Fig. 2. Estimated posterior probabilities and p-value-type measures at four selected data points.

discriminant analysis using kernel density estimates). Clearly,

high and low values of Ψk1,k2
(1|x) give decisions in favor of

the first and the second populations, respectively. We know

that if kj varies with nj in such a way that kj → ∞ and

kj/nj → 0 as nj → ∞, for any given x, f̂j,kj
(x) converges to

the true density function fj(x) in probability if fj is continuous

(e.g., see [12] and [21]). If this condition holds for both j = 1
and j = 2, the posterior-probability estimate Pk1,k2

(1|x) being

a continuous function of f̂1,k1
(x) and f̂2,k2

(x), converges

(in probability) to the true posterior as min{n1, n2} → ∞
(e.g., see [29]). When x lies on the common support of f1 and

f2, this true posterior is a value in the range (0, 1). However, one

should also notice that under the above condition, π1f̂1,k1
(x) −

π2f̂2,k2
(x) converges to θ(x) = π1f1(x) − π2f2(x) in proba-

bility. Therefore, for any given x, depending on whether θ(x)
is positive or negative, Ψk1,k2

(1|x) converges (in probability)

either to 1 or to 0. Thus, the use of this p-value-type measure is

expected to give more weight in favor of the winning class, and

thereby, it would sharpen the plot by enhancing the black and

white contrast.

However, it is difficult to get any closed-form expression

for this probability function Ψ. Here, we estimate it using

bootstrap samples (e.g., see [8]) from the two populations.

Given a training sample of n1 observations from population 1,

there are n1 distances between the training-set observations and

the specific data point to be classified. From this set of n1

numbers (distances), we choose a sample of size n1 using with

replacement technique, and treat them as the distances of the

specific data point from the newly generated training set. We

sort these new n1 distances to find the order statistics, and den-

sity estimates for different values of k1 can be easily computed

from this sorted sequence. Similarly, the density estimate for

the competing population can be computed for different values

of k2 as well. We generate these random samples for a large

number of times and the proportion of times, where π1f̂1,k1
(x)

is larger than π2f̂1,k2
(x), is taken as the bootstrap estimate for

Ψk1,k2
(1|x) = P{π1f̂1,k1

(x) > π2f̂1,k2
(x)}.

As expected, the resulting plot sharpens the picture, and

thereby makes it more effective for visualization. The plots

in the second row in Fig. 2 show the grayscale values of

estimated Ψk1,k2
(1|x) for different values of k1 and k2, when

1000 bootstrap samples are used for estimation. Once again,

decisions for observations “A” and “D” become quite clear

from these plots, as we observe white or black color over the

entire region. For the other two observations, which lie near

the class boundary, we observed white as well as black shades

in the plots, which give indications about borderline cases.

Percentages of white or black regions also give some indica-

tions about the final classification of “B” and “C,” and these

indications are clearer than those obtained in corresponding

posterior probability plots.

In the case of bivariate data, we can get an idea about the

location of a data point from the scatter plot itself. However, in

a high-dimensional problem, it is difficult to visualize whether

a data point is near the class boundary or if it is far away from

it. The plots of posterior probability and p-value are helpful in

such situations. Using these plots, one can easily compare the

strength of the competing classes at a given data point and form

an idea about whether it is a borderline case or a clear-cut one.

III. AGGREGATION OF RESULTS

To make the final decision for an observation, one should

also consider the statistical uncertainties associated with

classification results. One should rely more on those

neighborhood parameters, which lead to lower misclassification

probabilities. Here, we estimate these misclassification

probabilities by the leave-one-out cross-validation method,

and the grayscale values for the corresponding probabilities

of correct classification are presented in a two-dimensional

plot (see Fig. 3). For better visualization, we rescale these

probabilities to have minimum value 0 and maximum value 1.

Clearly, light and dark color point towards low misclassification

probability (high probability for correct classification) and high

misclassification probability, respectively. Thus, the plot shows

the preferable values of (k1, k2) for a given data set. The values

of (k1, k2) lying in the light colored region are the values one

should rely more, and the user should assign more weight on

them while aggregating the classification results for different

(k1, k2) to arrive at the final decision.

A natural way to aggregate the results for different classifiers

is to take the weighted average of the estimated posterior

probabilities. Well-known aggregation techniques like bagging

(e.g., see [1]), boosting (e.g., see [11] and [27]), and arcing
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Fig. 3. Probability of correct classification (rescaled).

(e.g., see [2]) adopt similar ideas for aggregating the results of

several classifiers. Recently, Holmes and Adams [18] used a

logistic regression setup for aggregating the results of several

nearest neighbor classifiers based on the Markov–Chain Monte

Carlo technique (e.g., see [15]). In another paper (see [19]),

they considered similar regression setup and used an iterative

reweighted least square method (e.g., see [22]) for aggregation.

Ghosh et al. [14] also proposed an aggregation technique for

combining the results of usual nearest neighbor classifiers.

However, none of these authors deal with nearest neighbor

density estimates, which are used in this paper.

If w(k1, k2) is used as the weight for the pair of

neighborhood parameters (k1, k2), the weighted posterior

for the first population can be expressed as

Pw
k1,k2

(1|x) =

n1−1∑
k1=1

n2−1∑
k2=1

w(k1, k2)Pk1,k2
(1|x)

n1−1∑
k1=1

n2−1∑
k2=1

w(k1, k2)

.

One would expect the weight w(k1, k2) to be higher for

those values of (k1, k2), which lead to lower misclassification

probability ∆(k1, k2). Unlike what happens in bagging (e.g.,

see [1]), which uses equal weights for all classifiers to be

aggregated, we propose to use a weight function that would

decrease gradually as the misclassification rate increases.

Boosting (e.g., see [11] and [27]) uses a similar idea for

aggregation, where the weight w = loge{(1 − ∆)/∆} is used.

This logarithmic weight function used in boosting decreases

with misclassification probability at a very slow rate, and it

is our empirical experience that for aggregation of classifiers

based on nearest neighbor density estimates, this choice of the

weight function sometimes fails to appropriately down weight

the poor classifiers leading to unsatisfactory classification

results. Instead, if one uses a Gaussian-type weight function,

the poor classifiers would be down weighted appropriately.

Here, we estimate ∆(k1, k2) by the leave-one-out cross-

validation technique and define the weight function as

w(k1, k2)

=






e
− 1

2

(
∆̂(k1,k2)−∆0

)2

∆0(1−∆0)
N , if

(
∆̂(k1,k2)−∆0

)2

∆0(1−∆0)

N

≤ τ and

∆̂(k1, k2) < min{π1, π2}
0, otherwise

where N is the training-sample size and ∆0 =

mink1,k2
∆̂(k1, k2) (see also [13]). Notice that ∆0 and

∆0(1 − ∆0)/N can be viewed as estimates for the mean

and the variance of the empirical misclassification rate of the

best classifier based on nearest neighbor density estimates

when such a classifier is used to classify N independent

observations. The constant τ determines the maximum amount

of deviation from ∆0 in a standardized scale beyond which

the weighting scheme ignores the classifiers by putting zero

weight on them. Clearly, τ = 0 corresponds to the situation

of putting all the weights only on those classifiers for which

∆̂(k1, k2) = ∆0, and when this optimal classifier is unique,

the resulting aggregation method becomes equivalent to the

usual leave-one-out cross-validation technique. However, in

the context of multiscale analysis, it is more meaningful to

consider some positive value of τ so that the results of other

classifiers can be taken into consideration. However, because

of the choice of the Gaussian weight function above, one does

not need to consider a value of τ larger than three in practice.

Moreover, the pair (k1, k2) is allowed to have positive weight

only if the performance of the corresponding classifier is better

than that of a trivial classifier (i.e., the misclassification rate is

smaller than both the prior probabilities). Of course, the above

choice of weight function is somewhat subjective, and one

may use many other suitable functions as well. Our empirical

experience suggests that the final result is not very sensitive

to the weighting procedure as long as any reasonable weight

function, which decreases appropriately at an exponential or

high-order polynomial rate as the estimated error rate increases,

is used. A comparative empirical study of bagging, boosting,

and other ensemble methods is available in [24].

In the example with salmon data, our aggregation method

led to posterior estimates 0.8804, 0.6447, 0.3994, and 0.1046,

respectively, for “A,” “B,” “C,” and “D.” Note that unlike the

cross-validated choice of (k1, k2), this aggregated classifier

correctly classified all the four observations, and it could

properly exhibit the difference in the strengths of classification

as well. Using this method, we could arrive at different

classification results for “B” and “C,” which one would

normally expect from the scatter plot in Fig. 1.

As we have mentioned before, in the presence of J(J > 2)
competing populations, it becomes computationally difficult

to evaluate the misclassification rates ∆(k1, k2, . . . , kJ ) for

a whole range of different values of k1, k2, . . . , kJ . In such

cases, we adopt a pairwise approach, which splits a multiclass

problem into several two-class problems taking a pair of classes

at a time, and thereby makes it computationally tractable. It has

been stated earlier that the optimal neighborhood parameter

of a class density estimate not only depends on the population

itself but also on its competing class densities. Therefore, it

is more useful to consider different neighborhood parameters

for a class density estimate when it is compared with different

competing class densities. Our pairwise approach allows this

flexibility, and at the same time, it makes it possible to present

the results of multiscale analysis in two-dimensional plots even

when there are more than two competing populations. After all

pairwise comparisons are carried out, the results are combined

by the method of majority voting (e.g., see [10]) to come up
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with the final decision. Instead of voting, one may use the

method of pairwise coupling (e.g., see [17]) as well, but the

latter one is computationally costlier.

IV. RESULTS FROM THE ANALYSIS OF

BENCHMARK DATA SETS

In this section, we use some benchmark data sets to com-

pare the performance of our proposed aggregation method.

Along with the error rates of our method, we also report

the misclassification rates of other classifiers based on nearest

neighbor density estimates that use a single value of kj for each

population. These methods require the optimum value of kj to

be estimated. One can estimate this value by optimizing some

suitable criterion based on marginal density estimates. Least

square cross-validation LSCV (e.g., see [28] and [31]) is one

such technique, where we look for minimization of the mean

integrated square error (MISE =
∫
{f̂j,kj

(x) − fj(x)}2dx) of

the density estimates. In practice, a cross-validated unbiased

estimate of MISE is used for this minimization. However,

since this method involves the calculation of
∫

f̂2
j,kj

(x)dx,

it is computationally difficult to use it for high-dimensional

problems. Instead, one may select the optimal bandwidth using

a likelihood cross-validation (LCV) (e.g., see [31]) technique.

LCV selects the optimum kj by maximizing the log-likelihood

score
∑nj

i=1 log{f̂ (−i)
j,kj

(xji)}, where xji is the ith observation

from the jth class, and f̂
(−i)
j,kj

(xji) is the nearest neighbor den-

sity estimate of fj(xji) obtained by the leave-one-out method.

One should notice that both these cross-validation methods

select the optimum neighborhood parameters based on mar-

ginal population distributions only, whereas in a classification

problem, the optimum value of kj not only depends on the jth

population but may also depend on its competing population

densities. Therefore, in practice, it is more useful to minimize

the cross-validated misclassification rate ∆(k1, k2, . . . , kJ ) si-

multaneously with respect to k1, k2, . . . , kJ . To differentiate

this method from other cross-validation techniques (LSCV and

LCV), we will refer to it as CVclass. As we have mentioned

before, due to computational burden, it is very difficult to min-

imize ∆(k1, k2, . . . , kJ ) when J > 2. In such cases, we apply

CVclass on each pair of classes, and the results are then com-

bined by the method of majority voting (e.g., see [10]). How-

ever, no such voting method is required for LSCV and LCV.

In all cases, we first standardized the data sets using esti-

mated dispersion matrices, and then used the Euclidean metric

to find the nearest neighbor density estimate for the standard-

ized variable. The density estimate at the original data point

was obtained from that using a simple transformation formula.

To compute fj(x) (j = 1, 2, . . . , J) at a new data point x, at

first, it is premultiplied by a matrix Sj for standardization. The

density estimate at Sjx is computed using the standardized

observations of the jth class, and then it is multiplied by the

determinant of Sj to get the density estimate at the original

data point x. One can either use an estimate of the pooled

dispersion matrix Σ for standardization of all data points (i.e.,

Sj = Σ̂
−1/2

for all j = 1, 2, . . . , J) or the user may use the

estimates of class dispersion matrices Σj for standardization

of observations in different classes (i.e., Sj = Σ̂
−1/2

j for j =
1, 2, . . . , J). However, one may notice that in the former case,

multiplication by the determinant of Σ̂ is not necessary for

the classification purpose. Whether one should use the pooled

dispersion matrix or separate dispersion matrices for different

classes depends on the data set to be classified as well as

on the classification method to be used. Here, we used both

types of standardization for LCV, CVclass, and our proposed

method, and in each case, we reported the result for that one,

which led to a lower misclassification rate. For finding the

error rates of our aggregation method, we have always used

τ = 3. This choice of τ is mainly motivated from the use of

the Gaussian-type weight function. Throughout this section,

training-sample proportions of different classes were used as

their prior probabilities.

Instead of fixing the values of individual kj’s as it is done

in the case of LCV, LSCV, or CVclass, if we fix the value of

k =
∑

kj and use the same neighborhood for all populations,

it leads to the usual k-NN classification rule (e.g., see [5] and

[9]). This k-NN classifier is very popular among statisticians

as well as in machine-learning communities, and it has been

extensively investigated in the literature (e.g., see [6], [7], [33],

and [34]) from various perspectives. To facilitate the compar-

ison with our aggregated classifier, in this paper, we report

the error rates of k-NN classification based on Mahalanobis

distance (which is equivalent to Euclidean distance after stan-

dardization) and the leave-one-out cross-validated choice of k.

We have used 15 data sets in this section. Among them,

the salmon data have been described earlier in Section II.

A description of the vowel data-1 (we have used two different

data sets on the vowel recognition problem and denoted

them as vowel data-1 and vowel data-2) is given in [25].

Phoneme data and its description are available at http://

www.dice.ucl.ac.be/neural-nets/Research/ Projects/ELENA/

elena.htm. The rest of the data sets and their descriptions

are available either at the University of California—Irvine

(UCI) machine-learning repository (http://www.ics.uci.edu)

(see [23]) or at the Carnegie Mellon University (CMU)

data archive (http://lib.stat.cmu.edu). Six of these data sets

(synthetic data, vowel data-1, satimage data, vowel data-2,

letter-recognition data, and sonar data) have specific training

and test samples. In all other cases, we divided the whole

data set randomly into two parts to form the training and the

test sets. The sizes of the training and the test sets in each

partition are given in Table I. This random partitioning was

carried out 1000 times to generate 1000 different training

and test samples. Average test-set error rates over these 1000

partitions are reported for different methods along with their

corresponding standard errors. Only in the case of phoneme

data were 100 random partitions used. For synthetic data,

vowel data-1, satellite image data (satimage data), vowel

data-2, letter-recognition data, and sonar data, which have

specific training and test sets, we have reported the test-set

misclassification errors for different classifiers. For these six

data sets, if a classifier leads to a test-set error rate p, the

corresponding standard error is taken as
√

p(1 − p)/Nt,

where Nt is the size of the test sample. All these

results are given in Table I below. Due to computational
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TABLE I
AVERAGE TEST-SET MISCLASSIFICATION RATES (IN PERCENTAGE) AND THEIR STANDARD ERRORS FOR DIFFERENT CLASSIFICATION METHODS

difficulties, we could use LSCV only for two-dimensional

problems. On the synthetic data, this method achieved the same

misclassification rate as obtained by LCV. On the salmon data

and the vowel data-1, it led to error rates of 8.49% and 30.0%,

respectively, with corresponding standard errors of 0.11% and

2.51% in the respective cases.

In ten out of 15 data sets, our proposed aggregation method

led to the lowest misclassification rates among the classifiers

considered here. Moreover, using the corresponding standard

errors reported inside the braces, in most of these cases, its

error rate was found to be statistically significantly lower

than that of the other classifiers. On as many as seven data

sets, it significantly outperformed all the three competing

classifiers. Apart from biomedical data, in all other cases, if

not significantly better, the aggregation method could achieve

comparable error rates to that of the CVclass technique. Only

in the case of Australian data and vowel data-1 could the

popular nearest neighbor classifier perform better than our

proposed method, though in the latter case, the difference was

statistically insignificant. The performance of LCV was not

satisfactory at all. In ten out of 15 data sets, it led to the highest

error rates among the competing classifiers.

If we take a closer look at the biomedical data, we can notice

some observations, which are sparsely distributed, and they are

almost outliers with respect to their true classes. Fig. 4 shows

the results of multiscale analysis for one such observation. Re-

call that the biomedical data set does not have specific training

and test sets, and we formed those sets by randomly partitioning

the data. In each partition, training sets were formed by taking

35 observations from class-1 and 65 observations from class-2,

while the rest of the observations were used as test cases for

that partition. Fig. 4 shows the results of multiscale analysis for

a test case originally taken from class-1. The first two plots on

the left (rescaled version of probability of correct classification

and that of weight function) give an idea about the range of

values of k1 and k2 one should look at. A white spot on

the bottom left corner also indicates that the cross-validation

method selected k1 = k2 = 1 as the best value of neighborhood

parameters. Light colors on the bottom-left corners in the plots

of posterior probabilities and p-values suggest that the cross-

validated choice of neighborhood parameter yields the correct

result in this case. However, if one looks at these two plots more

carefully, the user can notice that apart from some small values

of k1 and k2, in all other cases, there is a strong evidence in

favor of the other class. From these plots, it is quite clear that

in the training sample, there are only two or three data points

from the true class corresponding to that test case, which are in

the vicinity of the test case, while the rest of the observations

from the true class are far away from it. This gives an indication

that the test case was really an outlier from class-1, which

is its correct class. Our aggregation method failed to classify

this outlier correctly. Because of the presence of some outliers

like this in the data set, our aggregation technique led to poor

performance in this data set.

Breiman [1] argued that there is not much gain in combining

the classifiers using subsampling techniques like bagging or

boosting when the classifiers are stable. In the context of

usual nearest neighbor classification, Shalak [30] suggested to

combine the classifiers only when they have reasonable amount

of diversity among themselves. Since the classifier based on
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Fig. 4. Multiscale analysis of an observation from biomedical data.

TABLE II
CPU TIMES (IN SECONDS) REQUIRED FOR DIFFERENT CLASSIFICATION METHODS

nearest neighbor density estimates with nearly the same values

of kj’s are expected to produce similar classification results, it

seems that there is not much gain in combining them when all

weights are distributed among only few classifiers having al-

most similar values of k1 and k2. In such cases, the aggregation

method is expected to perform as good as the leave-one-out

cross-validation technique. However, it should be noted that

in terms of misclassification rates, one would normally expect

to gain by combining the classifiers, and the diversity among

different classification rules can be viewed as a measure of the

extent to which the error rates can be improved. For widely

different values of k1 and k2, the classifiers based on nearest

neighbor density estimates are expected to have reasonable

diversity among themselves. While the classifiers with smaller

values of k1 and k2 are expected to catch the local patterns

of the measurement space, more global patterns will be

extracted by the larger values. Therefore, when these classifiers

with widely different values of kj’s produce comparable

misclassification rates (i.e., they have positive weights in

aggregation), the proposed aggregation method, being a

combination of widely different classifiers, is expected to

perform better. For instance, in the case of salmon data,

the light color over a large region in Fig. 3 indicates that

in terms of misclassification rate, the classifiers with some

smaller values of k1 and k2 are as good as the classifiers with

some larger values of k1 and k2. Therefore, in this case, our

proposed aggregation method considered the results of all

these different classifiers by putting positive weights on them.

As a result, the weighted averaging method led to significant

improvement in the misclassification rate of the resulting

classifier. Not only on salmon data, the aggregation technique

could achieve significantly better performance than the CVclass

method on six other data sets as well. Only in the case of

biomedical data did the presence of several outliers in test

sets lead to significantly higher misclassification rate for the

aggregation method.
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Fig. 5. Misclassification rates for aggregated nearest neighbor classifiers.

A. Computational Complexity and Related Issues

Note that, from a computational perspective, the dimension d
is involved only for computing the pairwise distances between

the data points, and this is common for all the nearest neighbor

methods. Thus, for our complexity calculations, we shall

start from the stage when all pairwise distances are given to

us. We shall also assume that for all j = 1, 2, . . . , J , nj/N
(where N =

∑
nj) remains bounded away from 0 and 1,

i.e., n1, n2, . . . , nJ are of the same asymptotic order O(N).
Under this condition, classification using nearest neighbor

density estimates requires O(N3) computations to define the

weight function, and after that O(N2) calculations are required

for classification of a new observation. One major problem

of the multiscale aggregation method is this computational

complexity. In order to reduce this computational cost, instead

of aggregating the classifiers for all possible values of (k1, k2),

one may restrict this aggregation to k1 ≤ √
n1 and k2 ≤ √

n2.

This choice is mainly motivated by the theoretical result that

if kj → ∞ and kj/nj → 0 as nj → ∞, the nearest neighbor

density estimates converge to the true density functions in

probability. This truncation makes the aggregation technique

computationally more efficient. It requires O(N2) calculations

to compute the weight function, while the classification

of a new observation requires O(N) computations. In

Table II, we report the CPU times for different classification

algorithms when they are run on a Pentium IV machine. The

computational advantage of the truncated aggregation method

over the original aggregation procedure is quite transparent

from this table, especially in the cases of large data sets.

Fig. 5 gives a comparison between the performance of this

truncated aggregation procedure (indicated by black bars) and

that of the original aggregated classifier (indicated by gray

bars). From this figure, it is quite evident that the truncation

method did a reasonably good job in most of the cases.

V. CONCLUSION

This paper presents a multiscale approach for classification

based on nearest neighbor density estimates. Instead of using

a single value of the neighborhood parameter for each class, it

studies the results for a sequence of neighborhood parameters

simultaneously in order to develop a more informative classifi-

cation procedure. In practice, the use of fixed values of neigh-

borhood parameters may not work well in different parts of the

measurement space. In such cases, it is more useful to consider

the results for different levels of smoothing. The multiscale

technique adds that flexibility to the classification methodology.

The multiscale method has another useful application in

terms of visualization. The plots of p-values and posterior

probabilities provide effective visual comparisons between the

strengths of different competing classes. These plots give use-

ful information about the distribution of different classes in

the vicinity of the observation to be classified, which helps

us to form an idea about the location of the data point

with reference to the separating surfaces. This makes it eas-

ier to identify the borderline cases from the clear-cut ones,

which is very helpful in high-dimensional problems, where

we cannot use a two-dimensional scatter diagram to visualize
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the distributional geometry of data clouds. For classification

among several populations, when it is computationally dif-

ficult to use usual cross-validation techniques to select op-

timum neighborhood parameters, our pairwise treatment not

only reduces the computational cost significantly, but also

facilitates the visual representation of multiscale analysis using

two-dimensional plots.

The aggregation method used in this paper is simple in

nature. In order to study the robustness of this proposed clas-

sification procedure with respect to the choice of τ , we need

a thorough analytic and empirical investigation, which is well

beyond the scope of this paper. However, the results of our

empirical studies reported in this paper indicate that only in

one data set out of a total of 15 data sets does the aggregation

method lead to a statistically significant deterioration of the per-

formance of the classifier when compared with the performance

of the classifier corresponding to τ = 0, which has similar

performance as the classifier denoted as CVclass. In 12 of the

data sets, the aggregation method improved the performance

over the classifier corresponding to τ = 0, and in two cases

(i.e., the “sonar data” and the “letter-recognition data”), the

aggregation method led to the deterioration of misclassification

rates but only by an amount that is statistically insignificant. In

the case of “biomedical data,” there is a significant rise in the

misclassification rate when one uses the proposed aggregation

method. In Section IV, we have used the visualization device

on an observation from this data set that appears to behave like

a typical outlier with respect to its true class, and the presence

of such observations in the data has caused poor performance of

the aggregation method. It is possible that there is some intrinsic

lack of robustness in the proposed aggregation method, which

might cause higher misclassification rates when there are such

outliers in the data that seem to occur only rarely. As compared

to the performance of other classification methods like LCV,

LSCV, and the usual nearest neighbor classifier, where fixed

values of neighborhood parameters are used over the entire

measurement space, the proposed aggregation procedure pro-

duced significantly better performance on most of the data sets,

while its performance on the other data sets was also quite

competitive. In view of the above data analysis, it is appropriate

to conclude that aggregation of results for multiple levels of

smoothing would usually be better than using a single neighbor-

hood parameter, though the reduction in misclassification rate

may not always be statistically significant.
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