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A RANDOMIZED LONGITUDINAL PLAY-THE-WINNER DESIGN
FOR REPEATED BINARY DATA

ATANU Biswas!* aND ANUP DEwANIIL
Indian Statistical Institute

Summary

In some clinical trials with two treatment arms, the patients enter the study at different times
and are then allocated to one of two treatment groups. It is important for ethical reasons
that there 1s greater probability of allocating a patient to the group that has displayed more
favourable responses up to the patient’s entry time. There are many adaptive designs in the
literature to meet this ethical constraint, but most have a single binary response. Often the
binary response is longitudinal in nature, being observed repeatedly over different monitor-
ing times. This paper develops a randomized longitudinal play-the-winner design for such
binary responses which meets the ethical constraint. Some performance characteristics of
this design have been studied. It has been implemented in a trial of pulsed electro-magnetic
field therapy with theumatoid arthritis patients.

Key words: adaptive design; allocation probability; longitudinal observations; performance char-
acteristics; pulsed electro-magnetic field; randomized play-the-winner rule.

1. Introduction

Adaptive allocation design in the context of sequential clinical trials involving two (or
more) treatments has been a challenging research area in the recent past. If patients enter any
study in a sequential manner, it is desirable that an entering patient is allocated to the treatment
group that so faz? has yielded more favourable responses. In such adaptive allocation designs,
which depend on past allocations and response histories, an entering patient has higher prob-
ability of being allocated to the treatment group ‘doing better’ so far, which leads to more
patients in the ‘better’ treatment group in the long run. Zelen (1969) introduced the popular
concept of the play-the-winner sampling design to compare two single (not repeated) binary
treatment responses. Subsequently, for a single dichotomous response, various authors have
reported different adaptive allocation designs that can be explained by urn models: initially
the urn contains an equal number of balls of each kind, then an appropriate number of balls
are added after each response. See, for example, the randomized play-the-winner (RPW) rule
of Wei & Durham (1978) where a fixed number of balls of the same (opposite) kind are added
to the urn for a success (failure), and the success-driven design of Durham, Fluornoy & Li
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(1998) where balls are added only for a success. Some applications of the RPW rule follow
Bartlett et al. (1985) who studied the effect of extracorporeal membrane oxygenation (ECMO)
In treating newborns with respiratory failure, and Tamura et al. (1994) who studied the effect
of fluoxetine hydrochloride in treating out-patients with depressive disorder.

Recently an adaptive randomized placebo-controlled clinical trial was designed by the
Indian Statistical Institute, Kolkata, to investigate the effect of pulsed electro-magnetic field
(PEMF) therapy for the treatment of rheumatoid arthritis patients. In this particular trial, the pa-
tients are scheduled to go through an ‘adjustment period’ of 4 weeks followed by approximately
16 weeks of treatment (by therapy or placebo). The patients undergo this treatment three times
a week and their conditions are monitored once a week. Therefore, the response pattern is lon-
gitudinal. Eachresponse is a five-component ordinal vector on pain, tenderness, swelling, joint
stiffness and functional disability, with a four-category response (nil/mild/moderate/severe)
on each component. For simplicity, the multivariate ordinal response at any observation time
1s dichotomized as ‘recurrence’ or ‘non-recurrence’ by consulting the medical expert involved
in the study (see Section 5). These binary responses are, in practice, treated as response
histories, which update the urn composition and, hence, the future allocation probabilities.
Therefore, we have longitudinal binary responses. In this paper, we develop an allocation
design in the spirit of the RPW rule to meet the ethical demand of allocating more patients
to the ‘better’ treatment group. Although the role of prognostic factors is important in the
allocation design and the final analysis, we assume homogeneity among the patients in the
following development for simplicity in notation and mathematical development. We also
consider a sample design with a fixed number of patients.

The main features of this trial were staggered entry (sometimes in a batch) of the patients,
missing observations and unequal numbers of observations for different patients. This com-
plicated scenario motivated us to develop this new adaptive design. So far, not much work has
appeared in the literature on the development of adaptive designs for longitudinal responses.
We describe the design in Section 2. Section 3 considers two characteristics of the design: the
proportions of allocations to the two competing treatments, and the proportions of both types
of balls in the umn. Section 4 discusses the maximum likelihood estimation of the parameters.
Section 5 describes the study at hand, adopting the design of Section 2, and illustrates the
results of Sections 3 and 4. We end with some discussion in Section 6.

2. The proposed adaptive design

The patients enter the system sequentially, one or more at a time, where the interarrival
times are not necessarily the same. At entry time, a patient is allocated to one of the two
treatment groups (therapy or placebo) following an adaptive design, so that the patient has
higher probability of being allocated to the ‘better’ group. The design can be illustrated by
means of an urn model] as follows.

We start with an urn having 2« balls of two types (T and P), « balls of each kind. Here
T stands for PEMF therapy and P stands for placebo. The incoming patients are randomly
allocated to either of the two treatment groups according to the urn composition at that time.
We allocate the initial 2m patients randomly to the two treatment groups, in such a way
that exactly m patients are allocated to each of the treatment groups, mimicking the initial
balanced state of the urn. This is justified since, at this time, we have no information about
superiority of one treatment over the other. The patients are monitored for a fixed (but possibly
different) number of times and the monitoring time-points are not necessarily equispaced. At
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each monitoring time-point, we observe whether recurrence (R) has occurred or not (N) for
every patient under study. If recurrence (R) is observed for a particular patient, we treat it as a
failure for the corresponding group (T or P) at that monitoring time, and, accordingly, add
balls of the opposite type to the urn. On the other hand, if non-recurrence (N) is observed, we
treat it as a success for the corresponding group at that time, and, accordingly, add 8 balls of
the same type. The idea behind the addition of balls is to skew the urn composition in favour
of the treatment group having the ‘better’ record of success until that time.

When a patient enters the study, we draw a ball from the urn, note the type of the drawn
ball, and return it immediately to the urn. The type of the ball drawn indicates the group to
which the entering patient 1s allocated.

This sampling design can be viewed as a longitudinal version of the popular and well-
known randomized play-the-winner rule. We call this design a randomized longitudinal piay-
the-winner (RLPW) rule. For any fixed («, 8), we denote it the RLPW (e, B) rule. Although
m is also a design parameter, we do not mention it in the notation, by convention. From the
above description, it is seen (in the next section) that the rule essentially depends on only one
design parameter y = B/a, in which case we start with one ball of each kind, and add y balls
for every response. Conceptually, therefore, y is allowed to be a fraction.

3. Some performance characteristics of the design

Let » denote the number of patients in the study. Let x_ and y. denote the entry and exit
times, respectively, of the sth patient entering the study, who is monitored on k, occasions.
These entry and exit times (x, and y.) and the number of monitorings (k) are assumed to be
non-stochastic. Let ¢, ..., t; denote the monitoring times (assumed to be non-stochastic)
for the sth patient. We then have x, <1, <--- <1y <Yy;. The sth patient is allocated to
a group (T or P) at time x,; and monitoring starts from time ¢ ; . For the sth patient entering
the study, we define the indicator variables &; and Z; as follows: §; takes the value 1 or 0
depending on whether allocation is made to the T or the P group, and Z; takes the value 1
or O corresponding to R or N in the jth monitoring at time ¢_;.

For s > 2m + 1, we summarize the history of the clinical trial at time x;,— (just before

the entrance of the sth patient) as follows:

s—1 ke s—1 ke
Rpy, =9 80 Zylly<x). Ny =D 8 1t <x), (1)
£¢=1 j=I £=1 =1

where I denotes the indicator variable. These are the number of recurrences and the num-
ber of monitorings, respectively, in the T group before time x,. The number of balls added
for responses of the T patients before time x; is BNy, , of which SRy, are balls of kind
P. Similarly, we can obtain Rp, and N Px, with §, replaced by (I - §,) in (1). For al-
locating the sth patient, we use only the summarized data history up to ime x,—, that is
(Ryy» Rpy s Npy» Npy)- The conditional probability that the sth patient is allocated to the T
group, given all the earlier allocations and responses, depends only on this summary history

and is
o+ ﬂ((Nsz - RTx,) . 2 RPx,)

Pr(6, =1| Ry, Rp, s Npy s Npy ) = 7 ’

(2)

where B, = 2a + B(Nq, + Np, ) denotes the total number of balls in the urn just before
time x.. For our purpose, B, 1s non-random.
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Observing that Pr(8, = 1) denotes the unconditional probability that the sth patient is
allocated to the T group, we write

re=Pr(é;, =1), fors=1.
Note that r, = 0.5 for s = 1, ..., 2m. We also write
np=PHZ;=1|8,=1) and np=Pr(Z;=1|35=0),

which are the probabilities of R at the jth monitoring of a patient in the T and P groups,
respectively.

As stated above, the primary goal of adopting such an adaptive allocation design is to
skew the allocation pattern in favour of the treatment doing ‘better’. Hence, the most rea-
sonable performance characteristic is the proportion of allocations to the T group, given by
I, =@n- 2m)~ Y% +19;, leaving aside the first 2m allocations. Our objective is to
study the distribution of 7,. In particular, we obtain E(7,), the expectation. Using (1), we
have

s—1

E(Np, ) =) 1, Z I(1, < x,)

£=1 j=lI
s—1 5s—1
and E(Rsz)=EE( Y th]8£=l)Pr(8¢=1)=Z( > xrj)r,.
=1 “Jjitg;<xs =1 j:te;<xs

A similar expression for E(R p, ) can be obtained by replacing n; by 7 p; and rp by (1 —r,)
in the expression for E( R1y,)- Taking expectation in (2), r, can be recursively obtained from

a+p Z£=1 J: te; -cx,((l - ul’j)rﬂ T nPj(l —Tp))
o e —— S ————, for s=2m+1. (3)

Xs

Hence we have

]
E(T )= r;=r (say). 4)
— 2m l—-;'l'l

Note that, from (3), the specification of the marginal probabilities, 7,; and 7 p;, is suf-
ficient for calculating r_, and, hence, E(T,).

As a closely related performance characteristic, we study the ultimate proportion of T
balls in the urn at the end of the study, denoted by 77: this is the right-hand side of (2)
calculated at x,_ ;, the time of termination of the study, and it gives us the probability of
allocation to the therapy group at x,_ ;. Similar to the derivation of (3), we see that

a+B8Y 5, J,_1((1 = gre + 7 p(1 - rg))
20+ BN

where N = Ny, g TN Pxp st is the total number of monitorings in the T and P groups.
Later, in Table 1, we report the values of these two expectations, E(T ) and E(T"‘) under
some simple modelling assumptions and monitoring schemes. We a]so have the followmg
convergence result for T), in a somewhat simplified scheme, where the numbers of monitorings
per patient are equal. The proof is provided in the Appendix.

E(T;) :rn+1 — 3 (5)
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Theorem 1. For k monitorings per patient, as n = 09, T, LA 7, where

k
Zj=l T pj

; 6
jo1 ey + 7)) °

In the proof, k, = k is taken for convenience. The convergence in probability still holds
for unequal but finite k; values. Considering the Cesaro limit, the expectations in (4) and (5)
have the same limit. Hence, E(T};) also has the limit 7. The sequence {r,,s > 2m + 1} is
seen, in our numerical work, to be monotonically increasing or decreasing while converging
to 7. In the Appendix, we prove and characterize this result in a special scenario.

Both (4) and (5) depend solely on the marginal probabilities 7 p; and wy;. Since spec-
ification of these probabilities seems somewhat artificial, we consider the following simple
model for numerical illustration. We write 7, = g, and p; = gp. For equispaced monitor-
ing times, we assume that Pr(Z;=11Z,=2y4,...,Z; j~1 = Zg, j—1» 65) depends, besides
d, only on the time since the last recurrence (that is, on j — £,, where £, is the maximum
€(< ) such that z,, = 1). For example, if z, =l and z,,,, =--- =2z, , | =0, then the
above probability depends only on j — £ and is denoted by ¢r.;_, or gp ;_,, for 3, =1 or(,
respectively. In particular, if z;; = ... =z, ;_; = 0, then the above probability is gq; or
gp;- This modelling is similar to that of Bonney (1987) for correlated binary data with some
natural ordering in the observations. We obtain the recursive relation

j—1 j=1-£ j—-1
My = un‘j_zzruf( ]_[ (1 -quf)) +qujn(l -q,;), foru=Tad P. (7)

We can then obtain r,, using (3) and (7), in terms of g, je We now consider further modelling
of the g,; as

q,;=1-(1-gq,), foru=T and P, (8)

so that g, . increases with j. As j increases, this model is found to have an increasing odds-
ratio and decreasing correlation between Z , and Z_, ; for fixed £ — desirable features in
this context.

We assume equal numbers (k = 10) of monitoring times for each patient. Patients enter
the study one at a time with a gap of five monitoring times between successive patients. We
take m = 2, o = 2 and 8 = 1. Table 1 presents values of the two expectations (4) and (5)
for different values of g, and g, using the model given by (7) and (8). Table 1 also provides
the limiting value w, given by (6). For g < ¢p, the expectations are greater than 0.5. The
expectations for g, > gp are less than 0.5 and, as expected, symmetric (in the case g < gp)
around 0.5, and therefore not reported. When g = ¢p, from the symmetry of the design,
and also using (3), (7) and (8), r, = 0.5 for all 5. The two expectations are very similar for
all values of n. However, when the values of ¢, and ¢, are very small, the expectations are
somewhat different from the limiting value since the convergence is slower. The difference
decreases as n becomes large.

Estimates of expectations of 7, and T, corresponding to the monitoring scheme of
our study with n = 22, are obtained by 10000 simulations and presented in the last two
columns of Table 1. As expected, for gr = gp, these estimated expectations are around 0.5;
but for ¢, < gp, they are greater than 0.5. We see remarkable agreement of these estimates
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TABLE 1

Values of ¥ and rp4 and the corresponding n for equal numbers (k = 10) of monitorings and
equal (five monitoring times) interarrival times for each patient. Herem =2, a =2, f=1.

n =150 n = 100 PEMF study
P ar 7 Tr+1 r Tn+1 i r n+l
0.002 0.001 0.506 0.508 0.507 0.509 0.663 0515 0.524
0.004 0.001 0.517 0522 0.521 0.527 0.792 0.540 0.562
0.005 0.001 0.522 0.529 0527 0.535 0.824 0.550 0.578
001 0.005 0523 0530 0.528 0.536 0.649 0.537 0.557
002 0.01 0.535 0.545 0.543 0.553 0.636 0.549 0.576
005 0.01 0.601 0.627 0620 0.644 0.765 0642 0.706
005 0.02 0.566 0.581 0.577 0.592 0.652 0.591 0.633
0.1 0.01 0.666 0.701 0.691 0.724 0.832 0.713 0.799
0.1 0.05 0.565 0.576 0.573 0.582 0.604 0.584 0.614
0.2 0.05 0.644 0.663 0.656 0.672 0.696 0.659 0.708
0.2 0.1 0.580 0.588 0.585 0.592 0.600 0.582 (.604
0.5 0.1 0.705 0.714 0.711 0.717 0.722 0.655 0.682
0.5 0.2 0.628 0.631 0.630 0.632 0.633 0.577 0.586
0.8 0.1 0779 0.780 0.780 0.781 0.781 0.671 0.693
0.8 02 0.707 0.705 0.705 0.704 0.704 0592 0.603
0.8 0.5 0.583 0.580 0.581 0.579 0.579 0.518 0.518

with the corresponding exact values, although the monitoring schemes are very different. The
corresponding standard deviations have also been estimated by simulation (not reported here),
and seem to decrease with the increase in g, and g, values.

4. Maximum likelihood estimativn

To describe maximum likelihood estimation of the model parameters, note that the allo-
cation probabilitics (of the §,) involve only the design parameters o and B, and, given the
allocations, the probabilities of responses at different monitoring times involve only the model
parameters (see also Ware, 1989). Therefore, the relevant likelthood contribution, in terms of
the ¢7; and gp; described in the previous section, from the sth patient is given by

Zs.+1 As;—1 Zse
Ls = ( H 1—[ (1— qut)) (nqu,ﬁs,-) ’
i=I1

=1 {£=1

where z, = zf’_l Z,; 18 the number of recurrences in the sth patient with recurrence times,
SAY, Uy < - < U, , As; =ug—ug; g,fori=1,...,z, +1, with uy = 0 and
Uy, +1 =ty +1l,andu=T or P depending on whether §. = 1 or 0. The total likelihood

, n, which, for the model (8), simplifies to

1s then the product of L  overs =1, - --
A Lse A
") )(P£P 1—[ n(l — Ppsf)) . 9

L= ( n ]'[(1
5:8,=0 i=1

5:0:=1 =1l
to fr with the first sum bemg over all s with 5 =0.
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The likelihood (9) can be used to obtain maximum likelihood estimates of p, and pp
by solving

Z E -—-As. , foru=Tand P. (10)

S. 3,—-[“-1' i=l1 pu -

The likelihood can also be used for testing a hypothesis involving g, and gp. For example,
the null hypothesis Hy: gy = gp, can be of interest. Under H,, the common parameter
Pr = pp = P, say, can be estimated from an equation similar to (10) with f, replaced by
f. = fr + fp and the first sum being over all s.

S. An example: the PEMF trial

In this section, we briefly describe the trial and the results of the placebo-controlled
PEMF therapy for which the proposed RLPW sampling design was initially developed. This
1s an implementation of the proposed design with @ = 2, 8 = 1 and m = 2. The study
was conducted in the Indian Statistical Institute, Kolkata, from January 1999 to March 2000.
Twenty-two patients participated in the study. The first four patients were randomly assigned
in such a manner that two patients were treated by the PEMF therapy and the other two by
the placebo. The remaining 18 patients were randomly allocated to either T or P group using
the updated state of the urn at their entry times. The number of patient monitorings differed
according to the condition of the patients, varying from 7 to 62. Of the 798 total monitorings,
16 recurrences were observed in the 22 patients of which four were in the T group and 12 in
the P group. The study was a double-blind trial in the sense that neither the patients nor the
medical expert were aware of the group-identification of the patients. During a monitoring, a
patient was considered to have a recurrence if pain or joint stiffness was severe.

Data on the number of patients in the two groups clearly exhibits the superiority of the
PEMF therapy over the placebo. Excluding the initial four patients, 14 out of 18 have been
treated with the PEMF therapy by our adaptive design. Therefore, the observed value of T, is
14/18 = 0.778, which is well above the 50% mark. The urn proportions at different entry
times exhibit a skewed pattern in favour of the PEMF therapy, with values of 0.630 at the entry
time of the fifth patient and 0.731 at the entry of the 22nd patient. The ultimate proportion
T"‘ = 0.733, showing benefit of therapy over the placebo. The observed value of T"‘ is quite
close to that of T, showing a large sample characteristic in this small sample case also

The maxmmm likelthood estimates of g, and g are 0.00033 and 0.00409 and, under H,),
the maximum likelihood estimate of the common parameter g, = gp = g is 0.00106. The
likelihood ratio test for Hy: g, = gp leads to the observed value of the statistic as 23.03

which, by comparison with the xl distribution, is strong evidence for the superiority of the
PEMF therapy.

6. Discussion

The choice of m, depending on the total number of patients, can be looked upon as
a compromise between fully adaptive and fully balanced allocation. It ensures at least m
patients to each treatment, though subsequently the adaptive procedure may allocate all the

remaining patients to one particular treatment. In our study, the choice of m = 2 was driven
by some prior knowledge of the flow of patient accrual.
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The choice of design parameters a and B is crucial, although the limiting proportion
of allocation x in (6) is free from these parameters. A large value of o (as compared to B)
assigns considerable weight to the initial balanced allocation and, accordingly, the first few
allocations are little influenced by the few response-driven added balls, as the urn is dominated
by the initial balls. Therefore, a very large « forces the allocation pattern to stay near the 50%
proportion (the allocation becomes almost a balanced random allocation scheme), which is a
loss in the sense that a large number of patients get the inferior treatment. If m is moderately
large, the effects of these parameters diminish quickly, as the urn soon becomes dominated
by the response-driven added balls. If @ = 0, the urn composition is totally controlled by the
response-driven added balls indicating a total belief in data for the allocation purpose. Thus,
a decrease in & makes the allocation sensitive to responses and so increases the variability of
the number of allocations in a group (see Rosenberger (1999) for such result in the context of
the RPW rule). There is, therefore, a trade-off which needs to be addressed appropriately. An
alternative and possibly more realistic design is to start with o balls of each kind and to add
B balls for non-recurrence and B, balls for recurrence. If recurrence is much less frequent
than non-recurrence, as in our study, one may choose 8; < B,. Then, the denominator of the
conditional probability (2) is random, resulting in 2 more complicated mathematical formu-
lation. However, there is no problem in interpretation, understanding and implementation of
such a design in practice.

Although the responses are dichotomized, it may be of interest to extend the present
design for the original type of responses (i.e. multivariate ordinal). Suppose we have an M-
component response vector Z_; = (Zs;v 3 6 3 ZSJ-M) at the jth monitoring time of the sth
patient, where each of Z; , w =1,..., M, cantake values 0, 1, ..., K (K may be allowed
to vary with w). Wlthout loss of generahty, we assume that hi gher values of Z. o indicate
worse health conditions. We again start with a balanced urn having « balls of each of the two
kinds. We go on updating the urn by adding appropriate balls at every stage. In this case, we

find,forw=1,..., M,

s—1
Rp o= Z:e;,zz:z,.,;ﬂ,,,l(arfJ <x) and Ny = KZaez I(tg; < x,),
=1 j=l1 =1 j=l

and similarly Rp, ,, and Np, . The number of balls added to the urn for the wth component
of the response vectors in the T group before time x; is B, Ny, , of which B, Ry, , are of
kind P. Thus, using the summarized data,

'H(Is—) —_ (Rszw, RPX_;W’ w = 1, e o ay M; NTX; > Nsz)

up to time x,—, the conditional probability that the sth patient is allocated to the T group 1s
given by

@+ Yy By((Npy, — Rpy,) + Rp, )
20 + (NTx,- + NPx,) Zﬁ;l ﬁw

Pr(s, = 1 | H(x,—)) =

The subsequent derivations are along similar lines. Also, we may wish to incorporate any
covariate information in the process of updating the urn. In that case, when the patient’s
condition is favourable in terms of the covariates, we add a larger number of balls of the other
kind for R and add smaller number of balls of the same kind for N.
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Appendix

Proof of Theorem 1. As {r, s > 2m + 1} is a bounded sequence, there exists a subsequence
{r.(} Which is convergent. Suppose it converges to some 7. From (3), we find that

r u(s)+1

ru(s)

~1 as u(s) > 00.

Then, for some € > 0,

7g(1 — €) < liminf Fus)+1 < limsup a1 < 7ol +€),

and hence msupr, ., —liminfr, . , < 2n4¢.

Since ¢ is arbitrary, the sequence {r, .} is convergent and it converges to 7,. Proceeding
in this fashion the convergence of {r.} can be established.

Since k is fixed and finite, for large s,

s—1 o~k * *
rs ~ * o+ 52£=l Zj=l (NPj - (HTJ + “Pj)rg + rg)
L1, where rf=—— sl o=lTR - T T ORI T 0

r: 20 + B(s — 1)k ’
which is the unconditional probability of allocating the sth patient to group T, if all the &
responses of each of the previous (s — 1) patients are available before the entrance of the sth
patient into the study. Since & is finite, ] also converges to m, as s goes to infinity. Hence,

for the sake of simplicity, we work with § to find x,. Letting s — o0 in (11) (taking the
Cesaro limit on the right hand side), we get

(11)

k
1
To = 7 Z (mp; - (w35 + 7p)y + 7o)

j=)
k
: . j=1 nPj
which yields M= —— =T7.
j=1 (JTT} +NPJ)
l n
Hence, E(Tpmp)=n—2m Z r;—>mT a n— 00,

taking the Cesaro limit once again.
Now, as in Bandyopadhyay & Biswas (1997), it can be shown that

Pr6, =1|6,=1)-Pr(6,=1)>0 as s— o0,

for any fixed i (< s), which immediately proves that cov(s;, 0,) = 0 as s = 00 (since the
8; are binary). Hence, as in Bandyopadhyay & Biswas (1997), we have

n

1 n
%VM(ZSI.) = ;E(Zvar(ai)+22cov(8i,8j)) -0, as n- oo.

i=1 i=1 i<j

Hence the convergence in probability is established.



684 ATANU BISWAS AND ANUP DEWANIJI

Monotonic convergence of {ri,s>2m+1)}

From (11), we have

k
20+ B(s — 1)k B .
Ferl = (""‘"2a" @+ Bsk )": + 20 + Psk ;;1 (“Pj — (g + 7pp)rs + re)y.  (12)

Therefore, using the right-hand side of (12) for 5., , we have

Np:;
reg=r; &< —_— =, (13)

Multiplying both sides of (13) by ((2a+ fsk) — B Z‘Ll (Jtn- + 7Tp;)) and rearranging, we get

5 )IIE
(2a + B(s — Dk)r; + B z (p; — (g + 7pprs +15) < Qo+ 53,()_&1_—_1_5_ ,
j=1 Zj=1(’tr" + ij)
and hence rewg <. (14)

Hence, from (13) and (14), if r3,,,; < m, the sequence {r{,s = 2m + 1} is increasing and
bounded by &. Also, from the proof of Theorem 1, the sequence converges to . A similar
resuit holds for r5,, . , > =, in which case the sequence {rg, s > 2m + 1} is decreasing while
converging to z. This result provides theoretical support for the numerical finding.
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