


Now the best known routing algorithm for an

arbitrary permutation in a (2n)1)-stage MIN, is

found to be of time-complexity O(Nn) on a uni-

processor system [2±4], compared to its propaga-

tion delay O(n) only. Even with parallel set-up

algorithms, the routing time is reported to be X(n2)

[7]. However, in [8], a new routing algorithm has

been reported for 2n-stage rearrangeable MIN's

with O(N) steps. Therefore, in all these cases, the

time needed to realize an arbitrary permutation in

rearrangeable networks is dominated by the set-up

time.

However, in a Benes network, many useful

permutations, often required in parallel processing

environments are found to be self-routable [9±12].

Lenfant proposed e�cient set-up algorithms for

some frequently used bijections (FUB) [9], namely

the FUB family. Nassimi and Sahni [10] proposed

a simpler algorithm for routing the F class of

permutations that includes the bit-permute com-

plement (BPC) and inverse omega (IX) classes of

permutations. Boppana and Raghavendra [11]

developed another self-routing technique for lin-

ear-complement (LC) class and IX class of per-

mutations.

In all these earlier works, the authors started

from some known classes of permutations and

developed suitable self-routing strategies for each.

In e�ect, we just know about some classes of

permutations, self-routable by some known tech-

niques. Now, in general, the required communi-

cations are not restricted to any particular class of

permutations. Therefore, given any arbitrary per-

mutation P, before we can apply these self-routing

algorithms, we must have to identify that P be-

longs to a particular class of self-routable permu-

tations. The identi®cation step may increase the

e�ective routing complexity. Moreover, the appli-

cability of the di�erent self-routing techniques

developed so far is yet to be fully explored. In fact,

there exists many more permutations that are ro-

utable by the existing self-routing algorithms; but

their characterizations are not yet complete.

In this paper, we investigate the problem in a

more realistic way. For Benes network, we classify

the self-routable (SR) permutations into four cat-

egories, namely:

(i) Top-Control Routable set of permutations

(TCR),

(ii) Bottom-Control Routable set of permutations

(BCR),

(iii) Least-Control Routable set of permutations

(LCR)

(iv) Highest-Control Routable set of permuta-

tions (HCR).

We will show that each of these classes contain

at least 2n�2n�N=2�ÿn � n!ÿ 1� permutations. Each

of the above classes actually contains many more

permutations. In fact, it is a lower bound to the

size of the intersection of all the classes (i.e., TCR,

Fig. 1. An N´N Benes network B(n), n� log2 N.
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BCR, LCR and HCR) considered here. We also

develop an algorithm that will detect whether any

N ´N permutation P belongs to any of the four

classes, and if yes, it also generates the appropri-

ate control vectors for routing P. This algorithm

can be implemented on a multi-processor system

with a time complexity O(n). Therefore, this al-

gorithm enables us to route all the permutations

in the union of TCR, BCR, LCR and HCR in

O(n) time. By this algorithm a much larger class of

permutations will be identi®ed to be self-routable

in Benes network than it has been reported earlier.

The exact number of permutations covered by

each of these classes is found for N� 4 and 8.

These experimental results help us to have an

idea about the total number of permutations self-

routable in Benes network by any of these self-

routing strategies. In [13], for n-stage full-access

unique-path MIN's, a new equivalence relation on

permutations has been introduced, namely the

group-transformations, that explores a new tech-

nique for optimal routing of permutations in these

networks. Here, we apply the idea of group-

transformations to (2n)1)-stage networks. It

helps us to ®nd a one-to-one correspondence be-

tween the permutations in the set TCR (LCR)

with those in BCR (HCR) for Benes network. It

also enables us to cover a much larger number of

permutations routable in O(n) time in Benes net-

work.

The ideas presented here, for routing permuta-

tions in Benes network, may be extended to any

(2n)1)-stage MIN, topologically equivalent to

Benes network [6]. Hence it enables us to identify

and route a larger set of permutations, in a time

comparable to its propagation delay, on a broader

class of (2n)1)-stage networks.

2. Classi®cation of self-routable permutations

In self-routing algorithms, the setting of a

switch is done locally using the destination tags

of its two inputs. For any (2n)1)-stage rear-

rangeable MIN, which is a concatenation of two

full-access unique-path MIN's, with the central

stage being common (as it is in the Benes net-

work), the routing through the last n-stages, must

follow the normal destination tag routing scheme.

We are to determine the routing strategy for the

®rst (n)1) stages only, so that ultimately it be-

comes con¯ict-free through the rest of the net-

work. We shall concentrate on algorithms in

which one of the two destination tags is selected

using a global property (say, that of the top input

or the lesser of the two destination values etc.).

This input will be called the R-input. One par-

ticular bit of the R-input is chosen, depending on

the stage in which the switch lies and that bit is

used for setting the switch. This particular bit will

be referred to as the R-bit. We will assume that a

switch at stage i is denoted by Si;j, where

06 i6 2nÿ 2 and 06 j < N=2 and the destina-

tion tags attached to the two inputs of a partic-

ular switch Si;j are identi®ed as Ti;j (the top one)

and Bi;j (the bottom one), respectively. For an

8 ´ 8 Benes network, the labelling of the switches

are shown in Fig. 2.

Fig. 2. An 8 ´ 8 Benes network and the labeling of the switches.
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For the classes of self-routable permutations in

Benes network, discussed here, whatever be the

R-input at any stage i, 06 i6 nÿ 2, the R-bit is

the bit xi of the destination tag xnÿ1 . . . ; xi . . . x1x0 of
the R-input.

De®nition 1. In an N ´N Benes network, we con-

sider four classes of self-routable permutations:

(i) Top Control Routable (TCR), where the

R-input is Ti;j,

(ii) Bottom Control Routable (BCR), where

the R-input is Bi;j,

(iii) Least Control Routable (LCR), where the

R-input is min{Ti;j, Bi;j} and

(iv) Highest Control Routable (HCR), where

the R-input is max{Ti;j, Bi;j}.

Fig. 3(a)±(d) show examples of these routing

schemes for di�erent permutations on a Benes

network. Here, we will represent an N ´N

permutation by the sequence of outputs

corresponding to the sequence of inputs

�0; 1; 2; . . . ; N ÿ 1�.

Remark 1. For each of the permutations P shown in

Fig. 3(a)±(d ), it can be veri®ed that no self-routing

strategy, other than that chosen, from the above four

types, can successfully route P. In other words, none

of the classes TCR, BCR, LCR or HCR is con-

tained in any of the other ones.

De®nition 2. A permutation will be called Top/

Bottom/Least/Highest/Control/Routable if it can be

routed on an N ´N Benes network using the Top/

Bottom/Least/Highest Control Routing technique.

Among the four classes of permutations men-

tioned above, the classes TCR and LCR have al-

ready been introduced earlier [10,11]. Nassimi and

Sahni [10] have shown that a rich class of per-

mutations, namely the F class, that includes the

BPC class, IX class and also the ®ve classes of

permutations considered by Lenfant [9], is top

control routable, i.e., TCRÊF. Boppana and

Raghavendra showed that the LC and IX classes

of permutations are least control routable [11].

However, the four simplest self-routing strategies

proposed above, extend the set of self-routable

permutations beyond these known classes. Here

follow some interesting properties of the classes

which ®nally lead us to develop the general algo-

rithm for routing a given permutation P, if P be-

longs to any of the self-routable classes, mentioned

above.

De®nition 3. In an N ´N Benes network, the set of

free-choice self-routable (FSR) permutations is

de®ned as the intersection of TCR, BCR, LCR

and HCR.

Example 1. The permutation P� (0 1 4 5 3 2 6 7) is

routable in the 8 ´ 8 Benes network by any one of

the proposed self-routing techniques, namely the

top-control, bottom-control, least-control and

highest-control. Therefore, P 2 FSR.

De®nition 4. In an N ´N Benes network, the set of

R-invariant self-routable (RSR) permutations is

de®ned as the subset of FSR, such that for any P 2
RSR, the switch settings are independent of the

choice of R-input. In other words, the R-bits of the

two inputs of each switch are complement to each

other for any permutation P 2 RSR.

Example 2. The permutation P� (2 5 7 4 6 1 0 3) is

R-invariant self-routable on a Benes network, i.e.,

P 2 RSR.

Remark 2. In an N�N Benes network, RSR is

actually the IX set of permutations. Hence

jRSRj � 2Nn=2.

Lemma 1. In Benes network, BPC�FSR.

Proof. It has already been proved that BPCÍTCR

[10]. Now let us prove that BPCÍBCR. We shall

prove the result by induction on n. The result can

easily be veri®ed for n� 1. Let the result be true for

(n)1).

Let us consider a permutation P 2 BPC, de-

scribed by the bit-permute complement rule

P : �xnÿ1; . . . ; x0� ! �ynÿ1; . . . ; y0�;

where �ynÿ1; . . . ; y0� is a permutation of

�xnÿ1; . . . ; x0�, with complementation of some bits.

Since �ynÿ1; . . . ; y0� without complementations is a
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Fig. 3. Routing of permutations: (a) (0 2 1 6 7 3 4 5) by top-control-routing, (b) (2 0 6 1 3 7 5 4) by bottom-control-routing,

(c) (0 4 2 7 5 3 6 1) by least-control-routing, and (d) (0 4 2 5 6 3 7 1) by highest-control-routing. (The underlined input bit

determines the switchsetting).
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permutation of �xnÿ1; . . . ; x0�, there exists

k; 06 k6 nÿ 1, such that yk � x0 or �x0. Construct

P 0 from P such that

P 0 : �xnÿ1; . . . ; x0� ! �ynÿ1; . . . ; yk; . . . ; y0�:

Since P 0 2 BPC, we have P 0 2 TCR. From the

mapping rule of P and P 0 it can be shown that if

P � �p0; p1; p2; p3; . . . ; pNÿ2; pNÿ1� then

P 0 � �p1; p0; p3; p2; . . . ; pNÿ1; pNÿ2�

In other words, at the input of switches at stage 0,

each switch will have the same pair of inputs

(destination tags) for P and P 0, but their positions

(top or bottom) will be reversed. Hence, if we

route P according to BCR and P 0 according to

TCR, we will have the same destination tags at the

input of stage 1. It has been shown in [10] that,

when P 0 is routed by the top inputs, the two halves

of inputs at stage 1 will again be two BPCÕs ig-

noring the LSB. Therefore, when P is routed by

bottom inputs, stage 1 will similarly have two

BPCÕs at the two halves of the inputs. Therefore,

by induction, P is bottom control routable.

It has already been shown that LCRÊBPC

[11]. In order to show that BPC is also in HCR, we

observe that for a BPC permutation, the larger of

the two destination values at the inputs of every

switch at stage 0 will consistently be always at the

top or always at the bottom input. Hence, so far as

stage 0 is concerned, routing a BPC by HCR

amounts to routing it by either TCR or BCR.

Again, routing a BPC by top or bottom input in

stage 0 generates two BPCÕs at stage 1. Hence, it

can be shown by induction that, HCRÊBPC.

Remark 3. A BPC permutation P, generated from a

BP permutation P�, belongs to the IX set of per-

mutations, if and only if P� 2 IX. It has already been

shown that jBPC \ IXj � 1 (the identity permuta-

tion) [10].

Corollary 1. jFSRjP 2n�2n�N=2�ÿn � n!ÿ 1�.

Proof. From de®nition, FSR contains RSR. Now

RSR � IX. So, from Lemma 1, it follows that FSR

contains BPC [ IX.

Now, jBP \ IXj � 1 (the identity permutation).

Therefore, jBPC \ IXj � 2n. Since jBPCj � 2nn!

and jIXj � 2n:�N=2�, hence jBPC [ IXj � 2n�N=2�ÿn�
n!ÿ 1.

Remark 4. By de®nition, FSR is the intersection of

four classes of self-routable permutations. There-

fore, Corollary 1 gives a lower bound on the size of

each class.

3. Algorithm for class identi®cation and routing

Given any N ´N permutation P, our algorithm

will check if P is routable by any of the self-routing

techniques TCR, BCR, LCR or HCR as de®ned in

Section 2. If there is a success, i.e., P is routable by

one of the techniques, the algorithm will also

generate the corresponding controls for switch

setting.

We assume a multi-processor system with N/2

processing elements (PE) numbered as 0; 1; . . . ;
N=2ÿ 1. Each PE-j will have two registers I2j and

I2j�1, containing the destination tags for the inputs

Tj;j and Bi;j, of the switch Si;j, at any stage i,

06 i6 2nÿ 2. To store the control bits for each

Si;j, 06 i6 nÿ 1, each PE-j will have an array of

registers C0;C1; . . . ;Cnÿ2. Initially, PE-j will store

the outputs corresponding to inputs 2j and (2j+1),

as are in P, in registers I2j and I2j�1.

At any intermediate step i, 06 i6 2nÿ 2, PE-j

will store the destination tags of switching element

Si;j, in stage i, and routes them according to a

particular routing strategy M. We use two opera-

tions Ô*Õ (circular right shift on the least signi®cant

(n)i) bits) and Ô^Õ (circular left shift on the least

signi®cant (i)n+3) bits), to simulate the inter-

connections between stages i and (i+1), for

06 i6 nÿ 1 and nÿ 16 i6 2nÿ 2, respectively.

Finally, if the 0th bit of I2j and I2j�1 are comple-

ments of each other, PE-j sets success� 1. If all the

processing elements result success� 1, the control

vectors C0;C1; . . . ;Cnÿ2 from each PE-j are directly

fed to set up the switching elements-j at stages i,

06 i < nÿ 1. Thus, given any permutation P, if

P 2 Si, where Si is a self-routable class of permu-

tations, the algorithm will output the control vec-

tors necessary for routing.
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In case of failure, some alternative values of M

may be tried. Moreover, the algorithm may be

modi®ed a little to accommodate the trials for all

classes of self-routable permutations sequentially

one after another until it achieves a success or fails

in all the cases when we are to apply the general

looping algorithm [2] for routing.

3.1. Algorithm self-routing

Assume that M is the speci®ed self-routing

strategy (TCR/BCR/LCR/HCR) and x(i) denotes

the ith bit of the variable x.

begin

for any processor j, 0< j< N/2)1 do

begin

Input (M); success :� 0;

for i :� 0 to n)2 do

begin

if M�TCR then Ci :� I2j (i)

else if M�BCR then Ci :� I2j�1 (i)

else begin

if M�LCR then k :� least {I2j , I2j�1 }

else k :� highest {I2j , I2j�1 };

if k� I2j then Ci :� I2j (i)

else Ci :� I2j�1(i);

end;

if Ci � 1 then exchange(I2j, I2j�1 );

j0 :� *2j ; j00:� *(2j+1) ; I0j :� I2j ; I
00
j :� I2j�1 ;

end;

for i :� (n)1) to (2n)3) do

begin

if I2j (2n)2)i)� I2j�1 (2n)2)i)

then terminate

else begin

if I2j (2n)2)i)� 1

then exchange(I2j , I2j�1 );

j0 :� ^2j ; j00:� ^(2j+1) ; Ij :� I2j; I
00
j :� I2j�1;

end

If I2j (0) ¹ I2j�1 (0) then success :� 1 and termi-

nate

end;

end;

end.

It is easy to see that at each step-i,

06 i < 2nÿ 1, each PE performs at most one

comparison, one exchange and two data transfers

(which can be done in parallel). Considering all

these steps as a unit computation, the complexity

of the algorithm comes out to be O(n) only.

4. Concepts of equivalence and closure sets

In [13±14], the concept of group-transforma-

tions was developed as a tool for optimal routing

in n-stage unique-path full-access MIN's, i.e.,

baseline, omega etc. In this paper, we extend the

idea to (2n)1)-stage networks, which are the con-

catenations of two n-stage unique-path full-access

MIN's, with the central stage being common. It

®nds some excellent applications in the analysis of

the relations between TCR (HCR) and BCR

(LCR). For better understanding, the idea of

group-transformations and some observations

relevant to the following section, are described in

brief.

De®nition 5. For an N ´N Benes network, the in-

puts (outputs) are grouped in di�erent levels, as

shown in Fig. 4. The size of a group at level i is 2i.

Two groups at level i are said to be adjacent, if

both have the same parent at level (i+1).

De®nition 6. Let aM b denote: interchange a and b.

A group-interchange tX(j:x), (where X� I stands

for input and X�O refers to output) applied on a

permutation P, interchanges elements of two ad-

jacent groups of inputs (outputs) at level j,

06 j < n, following the rule kM k+2j, x6 k <
x� 2j, where x is the least element of the two

groups. This process generates another permuta-

tion P 0 and is denoted by: tX(j:x) �P � ! P 0.

Example 3. Consider a permutation P� (7 6 2 4 0 3

1 5), and the group-interchange tI(1:4) such that

tI(1:4)�P � ! P 0; the interchanging input-pairs are:

4M 6 and 5M 7. Hence P 0 � (7 6 2 4 1 5 0 3).

Similarly, a group-interchange on output

tO(2:0) applied on P generates a permutation P 00

given by P 00 � (3 2 6 0 4 7 5 1). (The output-pairs

interchanged are: 0M 4, 1M 5, 2M 6, 3M 7).

De®nition 7. Given a permutation P, an input

(output) cluster CX(j,x), (X� I for input cluster

and O for output cluster), is de®ned as the
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sequence of inputs (outputs) corresponding to the

outputs (inputs) of the group at level j, whose least

output (input) is x.

The set of input (output) clusters at level j, de-

noted by SCX(j) is the collection of all input

(output) clusters at level j.

Example 4.For the permutationP� (6 7 4 2 1 5 0 3),

CO(2,0)� (6,7,4,2), CI(2,4)� (2,5,0,1); SCO(1)�
{(6,7), (4,2), (1,5), (0,3)}.

Observation 1. Any group-interchange on inputs

(outputs) tX(j:x), keeps the sets of output (input)

clusters SCX(i) of a permutation unaltered, for

06 i6 j; for i> j, the elements of any output (in-

put) cluster are preserved, but the sequence may

change.

De®nition 8. A sequence of input (output) group-

interchanges ftX�l1 : x1�; tX�l2 : x2�; . . . ; tX

�lk : xk�g is said to be ordered, if i < j ) li 6 lj and

if li � lj ) xi<xj.

De®nition 9. Two sequences of input (output)

group-interchanges RX1 and RX2 are said to be

equivalent if for every permutation P, RX1 [P]�
RX2 [P].

Observation 2. For any sequence of input (output)

group-interchanges, there exists an equivalent or-

dered sequence of input (output) group-inter-

changes.

De®nition 10. An input (output) group-transfor-

mation GX, X� I or O is an ordered sequence of

input (output) group-interchanges.

Observation 3. Input group-transformation de®nes

an equivalence relation that partitions the set of all

permutations into some equivalence classes. If a

permutation P 0 is derivable from another permu-

tation P by the application of some GI, i.e.,

GI[P]® P 0 we will say that P and P 0 belong to the

same partition de®ned by input group-transfor-

mation.

Obviously, the same is also true for output

group-transformations but the partitions in the

two cases may be di�erent i.e., if GO[P]® P 0, we

will say that P and P 0 belong to the same equiva-

lence class de®ned by output group-transforma-

tions.

Fig. 4. The input (output) groups at di�erent levels.

536 N. Das et al. / Journal of Systems Architecture 46 (2000) 529±542



De®nition 11. Given any permutation P, let SX(P),

X� I or O, denote the set of all permutations de-

rivable from P by the application of all possible

input (output) group-transformations. Then

SX(P) is said to be the input (output) equivalence

set of P.

Observation 4. Given any permutation P, the

cardinality of its input (output) equivalence set

SX(P) is 2N+1, X� I or O.

De®nition 12. A group-transformation T is de®ned

as a sequence of an output group-transformation

followed by an input group-transformation (any

one may be a null sequence also).

Example 5. A group-transformation T� {tO(0:0),

tI(1:4)} applied on P will transform P in the fol-

lowing way:

P � �7 2 6 4 0 3 1 5� !
tO�0:0�

P 0

� �7 2 6 4 1 3 0 5� !
tI�1:4�

P 00 � �7 2 6 4 0 5 1 3�:

It is easy to show that for any random sequence of

input and output group-interchanges, there exists

a group-transformation which imparts the same

e�ect on any permutation.

Observation 5. Group-transformation induces an

equivalence partition on the set of all permutations.

If a permutation P 0 is derivable from another

permutation P by applying some group-transfor-

mation T, i.e., if T [P]® P 0, we say that P 0 ^ P (P 0 is

related to P) and it is easy to see that Ô^Õ is an

equivalence relationship.

De®nition 13. Given a permutation P, let C(P)

denote the set of permutations derivable from P by

the application of all possible group-transforma-

tions. Then C(P) is said to be the closure set of P.

Note that C(P) is a superset of SI(P) as well as

of SO(P).

Observation 6. Given any permutation P,

jC�P �jP 2Nÿ1.

Observation 7. In a unique-path full-access MIN,

all permutations in the same closure set have iso-

morphic con¯ict graphs; hence they all are rout-

able by the same optimal routing algorithm.

Now, it is interesting to note that these concepts

of equivalence classes and closure sets ®nd an ap-

plication in self-routing of permutations in Benes

network. The following section gives the details.

5. Group-transformations and self-routable permu-

tations

The following lemmata state some results on the

cardinalities of the four self-routable classes of

permutations.

Lemma 2. The cardinality of the set of TCR per-

mutations is exactly equal to the cardinality of the

set of BCR permutations.

Proof. Let us consider a permutation P 2 TCR

and route it by top control routing technique.

Now, let us apply input group-interchanges

tI(0:x), for all possible values of x, on P that

transforms it into P 0. It will essentially exchange

the two inputs, i.e., the destination tags T0;j and

B0;j of all the switches S0;j, for 06 j < N=2. Since
P was routable by top control, if we route P 0 by

bottom control technique, the switches S1;j , for

06 j < N=2; will all have the same destination tags

as they have for P under top control routing.

Similarly, it is easy to see that if we apply all the

input group-interchanges tI(j : x), for 06 j < n and

for each j, with all possible values of x, on P to

transform it into P�, then if P is top control ro-

utable, P� will be bottom control routable.

Therefore, for each P 2 TCR, there exists a

unique P� in the set BCR. It proves the lemma.

Example 6. Let P� (0 2 1 6 7 3 4 5), P 2 TCR, its

routing is shown in Fig. 3. Now let us generate P�

from P by the input group transformation,

{tI(2:0), tI(1:0), tI(1:4), tI(0:0), tI(0:2), tI(0:4),

tI(0:6)}[P]!P�, i.e., P� � (5 4 3 7 6 1 2 0). Note

that P� 2 BCR. The routing of P� is shown in

Fig. 5.
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Lemma 3. The cardinality of the set of LCR per-

mutations is exactly equal to the cardinality of the

set of HCR permutations.

Proof. Let us consider a permutation P 2 LCR

and route it through the Benes network by least

control routing technique. Say it generates the

permutation Pi, at the input of stage i,

06 i6 nÿ 2.

Now let us complement all the bits of each

output corresponding to each input in P. It is ac-

tually obtained by applying all possible output

group-interchanges at each level i, 06 i6 nÿ 1; on
P, that generates a new permutation P 0. At stage

i� 0, for any switch, if the top (bottom) input was

the least one for P, now it is the highest one for P 0.

Now let us route P 0, by HCR through the stage

i� 0. Note that the position of the R-input re-

mains the same, but the R-bits are complements to

each other, for P and P 0, respectively. Let the

permutation at the input of stage i� 1 be P 0
1. If we

complement all the bits of each destination of P 0
1,

and compare it with P1, it is found to be just

{tI(n)1:0)}[P1].

Let us route P 0
1 by HCR at stage i� 1. Say it

generates the permutation P 0
2 at the input of stage

i� 2. If we complement all the bits of each desti-

nation tag of P 0
2, and compare it with P2, we ®nd

that it is nothing but {tI(n)1:0), tI(n)2:0),

tI(n)2:N/2)} [P2].

If we continue in this way at the input of stage

i� n)1, we will ®nd that by complementing all the

bits of each destination tag of P 0
nÿ2, it turns out to

be

ftI�nÿ 1 : z1�; tI�nÿ 2 : z2�; . . . ; tI�1 : znÿ1�g�Pnÿ2�

Now since Pnÿ2 was routable in the remaining n

stages of the network, so will be P 0
nÿ2. It proves

that P 0 is routable in the Benes network by HCR.

Hence, it is evident that in a Benes network, for

any permutation P 2 LCR, there exists a corre-

sponding permutation P 0 2 HCR. Since the map-

ping from P to P 0, is a one-to-one and onto

mapping (complementation of all bits of each

destination tag), it proves that the cardinality of

the set of LCR permutations is exactly equal to

that of the set of HCR permutations.

Example 7. Let us consider a permutation P� (0 4

2 7 5 3 6 1), where P 2 LCR, the routing is shown

in Fig. 3(c).

Now let us transform P to P 0 in the following

way:{tO(2:0), tO(1:0), tO(1:4), tO(0:0), tI(0:2),

tO(0:4), tO(0:6)}�P � ! P 0, where P 0 � (7 3 5 0 2 4 1

6). Note that P 0 2 HCR. The routing of P 0 is

shown in Fig. 6.

In [11], it has been mentioned that the least-

control self-routing technique is applicable to LC

(linear-complement) class of permutations as well

as IX permutations. The following theorem states

an interesting property of LCR and HCR classes,

that extends the applicability of LCR (HCR) class

further.

Theorem 1. If a permutation P 2 LCR�HCR�, then
any permutation (P 0 2 SI�P� also belongs to LCR

(HCR), where SI(P) is the input equivalence set

of P.

Proof. Let us route both P and P 0 by least con-

trol routing technique in the ®rst n stages. After

that P is obviously routable by destination tag. We

Fig. 5. Routing of permutation P�:(5 4 3 7 6 1 2 0) by bottom-control-routing. (The underlined input bit determines the switchsetting.)
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are to show that P 0 is also routable by destination

tag.

We note certain similarities in the sets of in-

puts to the di�erent stages of the network for P

and P 0. From Observation 1, the output clusters

of P and P 0 are the same. Speci®cally, in both the

cases, the set of output clusters at level 1 are the

same. The routing algorithms are the same and so

also are the pairings at all the switches. So an

input which is routed through the upper link of a

switch in P, will also be routed through the upper

link of a switch in P 0. The set of inputs which are

routed through the upper links of the switches in

stage 0 forms the input set for the top half of

stage 1. So, both P and P 0 will have the same set

of inputs for the top half (and also the bottom

half) of stage 1.

Let us think of the inputs to stage 1, also as a

permutation. Let the permutations corresponding

to P and P 0 be P�1� and P 0
�1�, respectively. We ob-

serve that the sets of output clusters of P�1� and P 0
�1�

are the same. Take the output clusters of size 2k in

P�1� (say, the top half). This is formed by the upper

links of an output cluster of size 2k�1 of P. This

output cluster of P is also present somewhere in P 0

(Observation 1). Now consider the inputs, routed

through the upper links of that output cluster of

P 0. It forms an output cluster of size 2k in P 0
�1�. This

output cluster of P 0
�1� is the same as the output

cluster of P�1� we started with.

If we repeat the above arguments, it is clear that

at stage i, the output clusters at level i, are not only

the same, but also in same position with respect to

the inputs. Also, in general the set of output

clusters of P�i� and P 0
�i� are the same. From this, we

see that, the input pairs to all the switches of stage

(n)1) are the same for P�nÿ1� and P 0
�nÿ1�. Since P�nÿ1�

is passable, so is P 0
�nÿ1�.

It is evident that the same will be true for any

permutation routable by highest control routing

technique as well.

De®nition 14. Let Q be any set of permutations,

then QI is de®ned as the union of all input

equivalence classes generated by the permutations

P 2 Q, i.e., QI �
S

8P2Q

SI�P �.

Corollary 2. Any permutation P 2 QI, where

Q� L
S
IX is routable by least-control routing

technique.

Proof. Follows directly from Theorem 1, since LC

and IX classes are routable by least-control rout-

ing technique.

De®nition 15. The BPIE (bit-permute input-equiv-

alence) class of permutations is de®ned as:

BPIE �
S

8 P2BP SI�P �:

Remark 5. Since

BP � LCR�HCR�;BPIE � LCR�HCR�:

Remark 6. jBPIEj � n!2Nÿ1, as jBP j � n!.

Corollary 3. jLCR \ HCRjP n!2Nÿ1.

Proof. Clear from the remark above, since

jBPIEj � n!2N ÿ 1. The exact number of permu-

tations covered by each of these classes are much

Fig. 6. Routing of permutation P 0: (7 3 5 0 2 4 1 6) by highest-control-routing. (The underlined input bit determines the switchsetting.)
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larger than BPIE class or IX class . For N� 4 and

8 , the exact number of permutations in each class

has been found by simulation. The results are

given in Table 1.

Fig. 7 shows the relationship among the di�er-

ent self-routable sets of permutations for N� 8.

Here total number of self-routable permutations is

denoted by SR, i.e.,

SR � TCR [ BCR [HCR [ LCR:

From Table 1, it can be seen that for N� 4, all

permutations are self-routable, and for N� 8, ap-

proximately 75% of the toal number of permuta-

tions are self-routable. Moreover, in both cases,

the total number of self-routable permutations are

much much larger than BPC or BPIE or BPC [ IX

class of permutations. Some additional observa-

tions have been made from the experimental re-

sults.

Observation 8. For N� 8, jFSRj � 8034, where

FSR� TCR \ BCR \HCR \ LCR , i.e., about

20% permutations are self-routable by any one of

the self-routing techniques, mentioned here, where

for N� 4, jFSRj � 20, compared to N!� 24 only.

Observation 9. For N� 8, jSRj � 30 208, whereas

jLCR [HCRj � 28 132. It indicates that most of

the self-routable permutations are routable by

LCR and or HCR only. For N� 4,

jSRj �N!� jLCRj � jHCRj.

6. Conclusion

In this paper, we propose four simple self-

routing strategies for N ´N Benes network B(n),

n� log2 N. It is shown that the union of the BPC

and IX classes of permutations is a subset of the

intersection of all the four classes of permutations

Fig. 7. Di�erent self-routable sets for N� 8.

Table 1

N N! LCR HCR TCR BCR SR BPC BPIE BPC [ IX

4 24 24 24 20 20 24 8 16 20

8 40 320 21 888 21 888 11 632 11 632 30 208 48 768 4136
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routable by the proposed self-routing strategies. It

implies that 2n�2�nN=2�ÿn � n!ÿ 1� is the lower

bound on the cardinality of any class of self-ro-

utable permutations, considered here. The enu-

meration of the exact cardinality of each class is

still an open problem. But by the application of the

theory of equivalence classes as presented in [13],

we establish that |TCR|� |BCR|, |LCR|� |HCR|

and that jLCR \HCRjP n!2Nÿ1. We develop an

algorithm, with time complexity O(n) that will

identify if any given permutation P 2 Si, where Si

is a self-routable class of permutation mentioned

here and also generates the necessary controls for

self-routing of P. It has been established that if a

permutation P 2 LCR (HCR), any permutation P 0

in the input-equivalence set of P, is also least

(highest)-control routable. Hence, the routing al-

gorithms presented here, e�ectively enhances the

set of permutations routable in Benes network in

O(n) time, to a large extent. Moreover, it is evident

that the same self-routing techniques can be ap-

plied to any (2n)1)-stage MIN, which is topolog-

ically equivalent to a Benes network.
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