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ABSTRACT. An affine equivariant version of multivariate median is introduced.
The proposed median is easy to compute and has some appealing geometric
features that are related to the configuration of a multivariate data cloud.
The transformation and re-transformation approach used in the construction of
the median has some fundamental connection with the data driven co-ordinate
system considered by Chaudhuri and Sengupta (1993, Journal of the American
Statistical Association). Large sample statistical properties of the median are
discussed and finite sample performance is investigated using Monte Carlo
simulations.

1. INTRODUCTION

There are several versions of multivariate median that have been proposed and
studied in the existing literature (see e.g. Small [16] and Chaudhuri [8] for detailed
reviews). Some authors (e.g. Bickel [6], Barnett [5], Babu and Rao [3], Abdous and
Theodorescu [1]) have considered the median vector formed by the univariate me-
dians corresponding to the co-ordinate variables of a multivariate data set. Others
(e.g. Haldane [11], Gower [10], Brown [7]) have discussed a multivariate extension

n
of median defined as the minimizer (w.r.t #) of the sum Z ||X; — ]|, where the

i=1
X;’s are d-dimensional multivariate observations and || - || is the usual Euclidean Lo-
norm. Asymptotic properties of this median (popularly known as spatial median)
have been extensively studied by several people. It is obvious that the multivariate
median, which consists of univariate medians of the real valued components of the
data, is not equivariant under rotations or other affine transformations of the obser-
vations. However, given a set of multivariate observations, such a median is quite
easy to compute being based on the usual medians of the univariate components of
the data. The spatial median is equivariant under location transformations as well
as rotations or orthogonal transformations of the data. But, for general configura-
tions of multivariate data in dimensions two or higher (i.e. when d > 2), spatial
median cannot be expressed as a function of the data points in a closed form, and
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it can be computed only by means of some iterative schemes. Further, it is not
equivariant under arbitrary affine transformations.

Different affine equivariant versions of multivariate median have been proposed
and investigated by Tukey [17], Oja [14] and Liu [13]. These medians however
are not easy to compute for high dimensional data especially when d > 3, and
the computational difficulty increases enormously as d increases. Like the spatial
median, each of these medians is defined as the solution of an optimization problem,
and none of them can be expressed as a function of the data points in a simple and
convenient form if d > 2. The results on the asymptotic behavior of Oja’s median
and Liu’s median have been worked out in the literature (see e.g. Arcones, Chen and
Gine [2]). However, not much is known about asymptotic properties (e.g. rate of
convergence, limiting distribution, asymptotic variability, etc.) of Tukey’s median.
In this note, we propose an affine equivariant version of multivariate median and
study its statistical properties. The proposed median is quite easy to compute in
any dimension, and its computation does not require any iterative optimization.
As a matter of fact, this multivariate median can be expressed as a function of the
data in a nice and elegant form, and it has some interesting connections with the
fundamental geometry of a multivariate data cloud.

In Section 2, we introduce a way of constructing an affine equivariant multi-
variate median using a transformation and re-transformation technique, where the
transformation used is closely related to the data-driven co-ordinate system intro-
duced in Chaudhuri and Sengupta [9]. In Section 3, we investigate the asymptotic
behavior of the proposed median. In particular, some interesting and useful results
related to its limiting distribution are derived when the probability distribution
underlying the data is elliptically symmetric. Based on these results, we suggest
an adaptive procedure for choosing the appropriate transformation so that the as-
ymptotic variation of the sample median is minimized in some appropriate sense
leading to an efficient estimate of multivariate location.

2. AFFINE EQUIVARIANT MULTIVARIATE MEDIAN: THE TRANSFORMATION
AND RE-TRANSFORMATION APPROACH

We begin by introducing some notation. Consider data points X1, Xs,... , X,
in R?. Unless specified otherwise, all vectors in this paper will be column vectors,
and the superscript T will be used to denote the transpose of a vector or a matrix.
Define

Sp ={ala €{1,2,...,n} and |a|=d+ 1}

which is the collection of all subsets of size d + 1 of {1,2,...,n}. For a fixed
a = {ig,i1,... ,%4} € Sn, let X(a,ip) be the d X d matrix whose columns are the
random vectors (X; — X;,) with ¢ € o and ¢ # ip. We assume that elements of o are
naturally ordered, and if the X;’s are i.i.d. observations with a common probability
distribution that happens to be absolutely continuous w.r.t. the Lebesgue measure
on R¢, X(a,ip) must be an invertible matrix with probability one. We will treat
X (o, ip) as a data based transformation matrix, and for each i € a, write Y (hto)
{X(a,ip)} 1 X; (cf. data-driven co-ordinate system discussed in Chaudhuri and
Sengupta [9]). These transformed observations are a way of viewing the multivariate
data cloud from a data-centric reference frame. Consider

Z ) = {X(a,i0)} (X — Xip) = V) — {X(a,i0)} 71X
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It is easy to verify (using straight-forward algebra and some minor modifications
of the arguments used in proving Proposition 2.1 in Chaudhuri and Sengupta [9])
that for fixed a € S, and iy € a, the Zi(a’io)’s with 1 <i<nandié¢ a form a
maximal invariant for the group of invertible affine transformations on R?.

Let (Z)%a’io) be the vector of medians of the co-ordinates of the d-dimensional
transformed observations Y;(a’i')) such that 1 < ¢ < n and i € a. Then define

the multivariate median éﬁf"io) for the original data by re-transforming ésﬁ?”'ﬂ) as

(1) — (X (e, i0) ™). The following Proposition asserts affine equivariance of

0(a ©) and we will prove it in the Appendix.

Proposition 2.1. Let é,(la’i(’) be the multivariate median based on the data points
X1, Xo, ..., X, as described above. Suppose that A is a fived d x d nonsingular
matriz and b is a fized vector in R®. Then the multivariate median computed from
AX1+b,AXs+b,... ,AX,, + Db in the same way as above (using the same index

set a and the same index iy € ) will be Aéf{x"i’o) + b.

In the case of data arising from an elliptically symmetric distribution, 61"

estimates the centre of elliptic symmetry of that distribution (see also Section 3.1).
In general, é;"‘”o) can be viewed as a descriptive statistic yielding a new concept
of location of a multivariate data cloud. Note at this point that for d = 1 and a
fixed o = {ig, i1} € Sn, 6{0) yeduces to the usual univariate median of the X;’s
excluding the observations X;, and X;,. Hence the difference between 6{) and
the median of all the X;’s with 1 <4 < n will be insignificant especially when the
sample size n is large, and their asymptotic behavior will be identical. Specifically,
if Xy, Xo,...,X, are i.i.d. univariate observations with a common density f that
has a median at 6, and f is continuous and positive at 6, the asymptotic distribution
of \/ﬁ(é;‘*’i") — 6) will be Gaussian with mean 0 and variance {2f(0)}~2, which is
the same as the asymptotic distribution of the median of all the X;’s (see Bahadur
[4]). The situation however is very different in higher dimensions. For d > 2, the
asymptotic behavior of é%a’i") critically depends on the matrix X(a,ig), and as we
will see in Section 3, the selection of o € S, and iy € « has a crucial impact on the
asymptotic performance of gloio)

In an attempt to make the spatial median affine equivariant, Rao [15] pro-
posed normalization of data points by multiplying them with S~1/2, where S is
the usual sample dispersion matrix. In other words, his proposal was to minimize

Z{ —0)TS7YX; — 0)}*/? wr.t. §. While such a modified version of the spa-

tlal median is indeed affine equivariant, normalization of the observations using the
square-root of the sample dispersion matrix cannot produce any affine equivariant
modification of the vector of medians of real valued components of a multivariate
data set. For a fixed a € S, and iy € «, multiplication of the data points with the
matrix {X(a,ig)} "t can be viewed as a different (and somewhat unconventional)
way of normalizing the observations. Clearly, once we select a € S, and iy € a, the
computation of 3 and 6 is extremely simple in any dimension. One only
needs to compute the usual univariate median for each co-ordinate of the trans-

(ev,i0)

formed observations Y , and then re-transform the resulting vector of medians
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(i.e. ésﬁ{’*i“)) by multiplying it with X(«,i9). We conclude this Section with the
following Theorem, which exposes an interesting geometric feature of éﬁla"m).

Theorem 2.2. Fiz o € S,, and ip € o, and let @ € R?. For each i € «, replace X;
by Z; = X + 0, and for each i & «, replace X; by Z; = X; + X,,. So, each data
point is transfomed by a location shift, where the shifting vector is either 6 or X;,
depending on whether the data point to be shifted is used in the formation of the
transformation matriz X (o, o) or not, respectively. Consider those simplices in R?

each of which is formed by a collection of d+ 1 points {Z;,, Z;,,... , Zj,_,, Ziy, Zi}
such that {j1,j2,-.. ,ja—1} C @ and i & a. Then 0 = L) minimizes the sum of

the volumes of all such simplices.

The proof of this Theorem will be given in the Appendix. Random simplices
formed by data points play a very crucial role in the construction of Oja’s median
[14] as well as Liu’s median [13]. The above Theorem indicates that they have a

fundamental role in the construction of és,,a’io) too.

3. ASYMPTOTIC PROPERTIES OF PROPOSED MEDIAN

From now on we will assume that the X;’s are i.i.d. observations with a common
probability distribution that is absolutely continuous w.r.t. the Lebesgue measure
on R%. Then, for a fixed a € S,, and iy € a, the transformed observations Y, (evio)
with 1 <i <n and 7 € « are conditionally independently distributed with a com-
mon absolutely continuous distribution if we condition on the X;’s for which i € a.
It is now obvious that the limiting conditional distributions (conditioned on the
X,;’s with ¢ € ) of both q@ﬁ?”*’) and 9;(104,@'0) will be normal in view of well-known
asymptotic results about the univariate median that are applicable to a vector of
univariate medians (see e.g. Babu and Rao [3]). When the common distribution
of the X;’s happens to be elliptically symmetric, it is possible to describe that lim-
iting normal distribution explicitly by deriving a useful expression for the limiting
dispersion matrix in terms of X(«,ip). This leads to valuable insights into the
asymptotic performance of 92“’7’0) as an estimate of the center of elliptic symmetry,
and provides us with a way of adaptively selecting o € S,, and 79 € « based on
asymptotic variation of the resulting location estimate.

3.1. Behavior in the elliptically symmetric case. Suppose that the X;’s have
an elliptically symmetric probability distribution with density {det(X)}~/2
f{xz— 0TSz — 0)}. Here § € R? is the location of symmetry, and ¥ is a
d x d positive definite matrix. Let us write {3~Y2X(a,i0)} ' = R(a,i0)J (a, o),
where R(q, i) is a diagonal matrix with positive diagonal entries and J(«,ip) is a
matrix whose rows are of unit length. Clearly, the rows of J(«, o) are obtained by
normalizing the rows of {¥~1/2X(a,ig)}~', and the diagonal elements of R(«,1i)
are the norms of those rows.

Theorem 3.1. Fiz o € S, and ip € « as before. Assume that the density func-
tion f is such that any univariate marginal g of the spherically symmetric density
f(xTx) is differentiable and positive at zero. Then as n tends to infinity, the con-
ditional distribution of \/E(G’A%CHO) — 0) given the X;’s with i € a converges weakly
to a d-dimensional normal distribution with zero mean and with dispersion matriz
eSY2{J (v, i0)} D (e, i) H{[J (@, 10)] T} ' EY2. Herec = {2¢(0)} 2, and D(a, o)
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is the d x d matriz whose diagonal elements are all equal to 1, and for i # j, its
(i,7)-th element is (2/m) sin_l'yij, vi; being the inner product of the i-th and the
j-th row of J(a, o).

It follows from the preceding Theorem that 8 is an nl/2-consistent estimate

of 6, and its conditional asymptotic generalized variance is
(¢/n)*{det(Z)}[det{D(a, i) }|[det{J (a,i0)}] 2.
Consider now the symmetric positive definite matrix
V(a,io) = {J(a,i0)}~H{D(aio) H[J (e, i0)] "}

Note that it depends only on the directions of the rows of {2*1/2X(a, ip)}~! and
not on their magnitudes. The following Theorem establishes a lower bound for
det{V (e, o)}, and this yields a lower bound for conditional asymptotic generalized

variance of (%)

Theorem 3.2. For the matrices D(a,ig) and J(w,i9) defined above, we have
det{D(a,i0)} > [det{J(a,ip)}]? so that det{V(c,io)} > 1. This lower bound

is sharp in the sense that an exact equality in place of the inequality will hold if
J(ayig) happens to be an orthogonal matriz.

3.2. Adaptive choice of a. Theorem 3.2 implies that whatever f and ¥ may be,
the conditional asymptotic generalized variance of é%a’i(’) cannot be smaller than
(¢/n)?det(X) for any choice of o € S, and iy € «, and one should preferably
choose X(a,ig) in such a way that the columns of ¥~%/2X(a,ig) (i.e. the vectors
YY2(X; — Xi,), where i € o and i # ig) are as orthogonal as possible so that
det{V(a,io)} becomes very close to one. Here we propose an adaptive way to select
the best subset a and iy € a. First, obtain some consistent estimate of the scale
matrix X, say f], that is equivariant under nonsingular linear transformation of the
data. Then, normalize each data point X; by ©~%/2. Define V; = L~V2X, for
1 <4 < n. Choose a € S,, and ip € o and compute det{V(«,ip)} based on Y;’s
as described before. Then minimize det{V(a,io)} over all choices of o € S,, and
1o € .. Suppose that a* and 4§ are some minimizers. Form X(a*, ) and compute
6("%) from the original observations Xj.

In this adaptive selection of o € S,, and ig € a, we have to search from a total

number of (d+1) ( ) possible cases, and for each such case, we have to invert

n
d+1
a d x d matrix. However, once the matrix X(a*, i) is formed, the computation
of é,(za*’za) is straightforward as it does not require any further optimization or
iterative computation. As a result, the adaptive version of the transformation
and re-transformation estimate continues to remain computationally advantageous
compared to several other equivariant versions of multivariate median considered
in the existing literature.

In this paper, we are not presenting any analytic study of the robustness and the
efficiency of the adaptive estimate, and we intend to pursue it in a future paper.
However, we are presenting some finite sample simulation results on the efficiency
of the adaptive estimate compared with the vector of co-ordinate wise medians,
when data points are generated from (1) a bivariate standard normal distribution
and (2) a bivariate Laplace distribution with density (2r)~!exp {—(2? +y?)'/2}.
For calculating efficiencies, we have estimated the determinant of the 2 x 2 mean
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square and product error matrix based on 2000 Monte Carlo replications for our
adaptive estimate as well as the vector of co-ordinate wise medians. Results are
summarized in Table 1. The adaptive estimate is based on n observations and we
have tried three different sample sizes. Eff; gives the efficiency of the adaptive
estimate compared to the co-ordinate wise median when the latter is based on
(n —d —1) observations, while Ef f5 gives the efficiency when the co-ordinate wise
median is based on n observations.

TABLE 1. Finite sample efficiency

GAUSSIAN | n =20 | n=30 | n =140
Effi 1.01162 | 1.03836 | 1.04814
Effa 0.82544 | 0.90015 | 0.91812

LAPLACE [ n=20 [ n=30 [ n=40
Effi 0.98563 | 0.97195 | 0.92566
Effs 0.74914 | 0.82285 | 0.86649

We observe that for both the distributions considered here, E f f; is larger than
Effs as one would expect. The reason behind comparing with the co-ordinate
wise median based on (n — d — 1) observations is that we are constructing the ma-
trix X(a*,g) using (d + 1) data points, and then (n — d — 1) transformed data
points are being used to construct the location estimate. The adaptive construc-
tion of X(a*,i) is comparable with estimation of the unknown scale matrix ¥
associated with the elliptically symmetric distribution from which the observations
are generated. So, in the efficiencies reported in Table 1, we are actually compar-
ing the case when X is unknown and the adaptive version of the transformation
re-transformation estimate is used with the case when ¥ is known (without loss
of generality ¥ can be taken to be the identity matrix) and the vector of the co-
ordinate wise median is used.

4. APPENDIX: THE PROOFS

Proof of Proposition 2.1. First observe that in view of the way the matrix X (a, ig)
has been constructed, if the X;’s are transformed to (AX; + b)’s, X(«, ig) will be

transformed to AX(a,ip). Also, note that the Yi(a’io)’s remain invariant under
a linear transformation of the X;’s, and the vector of medians of the real valued
co-ordinates of a multivariate data set is equivariant under a location shift of the

data points. Hence, for the transformed data points (AX; + b), 310) will be
transformed to (" +{AX(a,ip)}'b. Consequently 6{") which was originally
defined as {X(a, ig)}qgsla’m), will be transformed to A0 + b. O

Proof of Theorem 2.2. For Z = (z1,22,...,24) € R%, let |Z| denote the L;-norm
d

of Z defined as |Z| = Z |zi|. Then it is easy to see that

i=1

flasio) — : iV -Lloy. )
s argmin -} {X(aio)} (X~ 0)
1<i<n j i€a

Now, {X(a,i9)}~1(X; —0) can be viewed as a solution (in Z) of the system of linear
equations {X(a,i9)}Z = (X; — ). So, if one applies the well-known Cramer’s rule
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for solving a system of linear equations, the absolute value of any component of the
d-dimensional vector {X(a,ip)} 1 (X; — ) will be of the form

|det{X(a, 2'0)}|41| det{(le — Xionjé — Xio, s55 ,X — Xio,Xz‘ — 9)}| .

Jd—1
The proof of the Theorem is now complete in view of the fact that
| det{(le - Xio7Xj2 - Xio7 S ¢ 7de—1 - XimXi - 9)}|

is the volume of the simplex in R?, which is formed by the set of d + 1 points
{Z;,,Zjy,..., Zj,_, Ziy, Zi} as described in the statement of the Theorem. O

Proof of Theorem 3.1. In view of affine equivariance of the location estimate 65",
it is sufficient to prove the Theorem in the special case when # = the zero vector
in R? and ¥ = the d x d identity matrix. Then, given the X;’s for which i € «, the
transformed observations Y; (@10 with 4 ¢ « are conditionally i.i.d. random vectors
with common density |det{X(c,i0)}|f{y?[X(,i0)]7 [X(a,i0)]y}. Let ri,...,7q
be the diagonal entries of R(a,ip). In view of the main result in Babu and Rao [3]
on asymptotic distribution of the vector of univariate quantiles of a multivariate
data, the conditional distribution of n'/ 24255:“'0) will converge weakly to a d-variate
normal distribution with zero mean, and the limiting dispersion matrix will be such
that its k-th diagonal entry will be cr?, and for k # I, its (k,[)-th element will be
derpri{ Pr( Ui(,?’zo) > 0 and Ui(la’lo) >0)—1/4}. Here Ui(,?’lo) and Ui(la’lo) are the k-
th and the I-th components of Y; (evio) respectively. Note that we are using the fact
that for a d-dimensional random vector Z with a spherically symmetric distribution,
the distribution of the random variable a’ Z is the same for any a € R? such that
a’a = 1. Also, since the conditional distribution of Y, (eio) i elliptically symmetric
around the origin in R%, Pr{ U™ > 0 and U{*™ > 0} does not depend on
the density f. Recall that the rows of J(a,ip) are of unit length obtained by
normalizing the rows of {X(a,i9)}~!. We now have the following by some routine
analytic computation:

Pr( Ui(,?’io) > 0 and U,L-(la’io) >0)=1/4+ (1/2r)sin "y .

So, the dispersion matrix of the conditional asymptotic distribution of n'/ 24255:“'0)

is ¢{R(a,i0) }H{ D (e, i0) }{R(cx,0)}. Next recall that
) = X0 i) = {J(ai0)} ™ {Rla i)} 130

The proof of the Theorem is now complete by straightforward algebra. O

The following well-known Fact will be used in the proof of Theorem 3.2. A proof
of this Fact has been discussed in Lancaster [12].

Fact 4.1. Let X and Y be p- and g-dimensional normal random vectors. Then

Ty WIv) —
e Corr(a® X,b'Y) = max Corr(n(X),v(Y)) ,

where “Corr” stands for the usual correlation coefficient, and n : RP — R, 9 : R? —
R are measurable functions such that n(X) and ¢ (Y") have finite second moments.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Proof of Theorem 3.2. Denote {J(a,i0)}{J(c,i0)}T by P, and for notational con-
venience, we will write simply D for D(a,ip). We will prove the result by induction
on the dimension d. For d = 2, the matrices D and P can be written as,

2 i1
D= [ 1 sin~1(cosd) 1 cosb ] ’

2 cosd 1

2sin~!(cosb) 1 ] and P:{

where 0 < § < 7 is the angle between the two rows of J(«,ip). So, det(D) =
1—{2sin"!(cos6)}? =1 — (1 — 26)? and det(P) = 1 — cos?6. Now, for 0 < § <
m, cos’§ > (1 — 26)?, and the equality holds if and only if § = 7/2. This proves
the result for d = 2.

Now assume that th}e result is true for dimension d — 1 > 2. 7l?artition the d x d

matrix D as L d and the d x d matrix P as Lp . Note that P
d D, p I

can be viewed as the correlation matrix of a d-dimensional normal random vector
(U,Wi,... ,W4_1), and D can be viewed as the correlation matrix of the random
vector (I(U > 0),I(W; > 0),... ,I(Wgq—1 > 0)) = (V,Z4,...,Z4-1) (say), where
I is the usual 0-1 valued indicator function. Write W = (Wq,... ,Wy_1) and
Z =(Zy,...,Z4-1). Then using Fact 4.1 stated above, we get

max Corr(U,b"W) > max Corr(V,b"Z).
beRd—l be]Rd—l

But on the LHS above, we have the multiple correlation coefficient between U and
W, and on the RHS, we have the multiple correlation coefficient between V and Z.
Therefore, we must have p? P-'p > d”D;'d. The induction hypothesis implies
that det(D,) > det(Py). The proof of the Theorem is now complete by observing
that det(D) = {det(D.)}(1 —dTD;*d) and det(P) = {det(P,)}(1—-pT P tp). O
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