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Abstract

This paper presents an algorithm for identifying a maximal empty-staircase-polygon (MESP) of largest area,
among a set of n points on a rectangular floor. A staircase polygon is an isothetic polygon bounded by two
monotonically rising (falling) staircases. A monotonically rising staircase is a sequence of alternatingly horizontal
and vertical line segments from the bottom-left corner of the floor to its top-right corner such that for every pair of
points & = (xy, yo) and B = (xg, yg) on the staircase, x, < xg implies yy < yg. A monotonically falling staircase
can similarly be defined from the bottom-right corner of the floor to its top-left corner. An empty staircase polygon
is a MESP if it is not contained in another larger empty staircase polygon. The problem of recognizing the largest
MESP is formulated using permutation graph, and a simple O(n3) time algorithm is proposed. Next, based on
certain novel geometric properties of the problem, an improved algorithm is developed that identifies the largest
MESP in O(n?) time and space. The algorithm can be easily tailored for identifying the widest MESP in a similar
environment. The general problem of locating the largest area/width MESP among a set of isothetic polygonal
obstacles, can be solved easily. These geometric optimization problems have several applications to VLSI layout
design, robot motion planning, to name a few.

Keywords: Geometric graph theory; Permutation graphs; Algorithms; Complexity

1. Introduction

The problem of finding an empty convex k-gon of maximum area or perimeter, amidst a set of points
[1,4] is an important problem in computational geometry, and has lot of applications to computer-aided
design. In VLSI layout design, isothetic polygons play a major role; the sides of these polygons are
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parallel to the coordinate axes [3]. Among a set of n point obstacles, the problem of locating the largest
empty isothetic rectangle is studied extensively (see [2,6,20]). The best known algorithm for this problem
runs in O(n log® ) time [2]. A related problem of locating all possible maximal-empty-rectangles among
a set of isothetic rectangular obstacles can be solved in O(R + n logn) time, where R is the size of the
output [21].

In this paper, we address the problem of recognizing the largest-area/width empty staircase polygon
among a set of isothetic obstacles distributed on a rectangular floor. A staircase polygon is a special
type of orthoconvex polygon [22]. Given a set P of n points as obstacles, we define a maximal-empty
staircase polygon (MESP) as an empty isothetic polygon bounded by two monotone staircase paths
from one corner of the floor to its diagonally opposite corner, such that no other empty staircase polygon
completely inscribes it. The objective is to identify the largest area (width) MESP on the floor.

The problem is formulated using a permutation graph [14] whose nodes correspond to the points in
P, and the edges capture the monotonicity property among the pairs of points. Each MESP is shown to
correspond to a path between two designated nodes in a weighted digraph, called staircase graph (SG),
which is obtained from the permutation graph. Each edge in the permutation graph corresponds to a node
in SG; the edges of SG and their weights depend on the problem definition. A simple algorithm is first
described that computes the largest area MESP as a maximum weighted path in the graph SG; its time
and space complexities are O(n®) and O(n?), respectively. Later, it is observed that if the edges in the
staircase graph are processed in a particular order, then the time complexity can be reduced significantly
by exploiting certain geometric properties. We explored three important geometric properties, namely
footprint propagation, inheritance, and dominance, and formulated our second algorithm. The time and
space complexities of the improved algorithm are both O(n?).

A slightly different scheme can be used to solve the problem of finding a MESP whose width is
maximum. The width of a MESP is defined in Section 4.1. A slightly modified algorithm can be used to
locate the largest-area/width MESP among a set of isothetic polygonal obstacles with the same time and
space complexities.

The paper is organized as follows. In Section 2, the motivation and possible applications of the problem
are discussed. In Section 3, the problem of finding the largest-area MESP using permutation graph is
introduced, and a simple algorithm is presented. In Section 4, the improved algorithm and the requisite
data structures are presented. In Section 5, modified algorithms are outlined for finding the largest-width
MESP, and for tackling polygonal obstacles. Concluding remarks appear in Section 6.

2. Applications

A VLSI floorplan is a rectangular dissection of a bounding rectangle with isothetic cut lines. Each
indivisible cell (block) in the floorplan represents a circuit module. Two cut lines are assumed to meet
at T-junctions only. A floorplan is said to be slicible if it is obtained by using isothetic cut lines as
in binary space partitioning (see Fig. 1(a)), otherwise, it is non-slicible (see Fig. 1(b)). The cut lines
denote the routing channels through which interconnecting wires are to be routed. If the floorplan is
slicible, then hierarchical partitioning by the cut lines may be used to facilitate global routing [23]. For
non-slicible floorplans, such a partitioning does not exist. Furthermore, directed cycles appear in the
channel digraph, leading to infeasible channel routing order [17,23,25]. However, if the definition of
channel is generalized to a monotone staircase polygon, the routing order always become acyclic, and
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Fig. 1. (a) A slicible floorplan, (b) a non-slicible floorplan.

can be obtained easily by identifying staircase channels hierarchically (see Fig. 1(b)) [25]. At each step
of recursion, the objective is to identify the largest-width channel so that maximum number of nets can be
routed through that channel. This motivates us to study a more general theoretical problem of recognizing
the largest area/width empty staircase polygon among a set of points or isothetic obstacles. In context to
VLSI layout design, an obstacle represents a circuit block on silicon. The width of a staircase polygon is
defined as the minimum euclidean distance (clearance) between the two stairs. A MESP among a set of
non-overlapping isothetic polygonal obstacles can be defined in an analogous manner.

Recently, several problems involving staircase channels in VLSI layout design have been reported.
The problem of identifying a staircase channel in a VLSI floorplan minimizing the number of crossing
nets (i.e., the number of different nets whose terminals appear on both sides of the channel) can be
solved in O((n + k) x T) time, where n, k, and T are respectively the number of blocks (rectangular
circuit modules), the number of nets, and the number of terminals on the floor [18]. Another relevant
problem is to find a staircase cut on the floorplan such that the two partitions consist of almost equal
number of blocks, and simultaneously minimizing the number of crossing nets [19]. It is observed that
for a floorplan with n blocks, the problem of finding a partition by a staircase channel that minimizes the
difference in the number of blocks lying in the two halves, can be solved in O(n) time [12]. However,
staircase partitioning that minimizes the area difference is NP-hard even if minimization of the number
of nets crossing the cut is not considered [19]. An efficient heuristic is reported in [13] based on acyclic
graph search with unrestricted (positive or negative) edge cost. Further, efficient wire-routing algorithms
through a staircase channel using Manhattan-diagonal model appear in [10,11].

Apart from classical channel routing, locating a MESP may find another application to the more recent
repeater (buffer) placement problem. Buffer insertion is a very important problem in interconnect-driven
floorplanning, and is needed to reduce delay and preserve signal integrity [7-9]. Empty staircase regions
on silicon are considered for solving the buffer insertion problem [24].

The problem of recognizing the largest-width MESP is relevant to robot motion planning, where the
objective is to navigate a circular robot through a staircase path. A related problem of identifying the
widest empty L-shaped corridor amidst a set of point obstacles can be solved in O(n?) time [5].
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3. Formulation of the problem
3.1. Definitions and preliminaries

Let P ={b, p1, p2,-.., pu,t} be a set of points, where b = (0,0) and r = (x;, y,) are respectively
the bottom-left and top-right corners of a rectangular floor, and {p; = (x;, y;), i = 1,2, ...,n} denote
n point-obstacles on the floor. For the sake of simplicity, we assume that the points in P are in general
positions, i.e., for every two points p; and p;, x; # x; and y; # y;. Henceforth, we shall refer a horizontal
line passing through a point p; by the line ¥ = y;.

Definition 1. An isothetic curve is a rectilinear path consisting of alternating horizontal and vertical
line segments. An isothetic curve is a monotonically rising staircase (R-stair) if for all pairs of points
a = (xq, Yo) and B = (xg, yg) and on the curve, x, < xg implies y, < yg. Similarly in a monotonically
falling staircase (F-stair), for all pairs of points o = (x,, yo) and B = (xg, yg) and on the curve, x, < xp
implies y, > yg.

Definition 2. A staircase polygon is an isothetic polygon either bounded by two R-stairs or by two
F-stairs. The former one is called a R-staircase polygon and the latter one is a F-staircase polygon.
A staircase polygon is empty if it does not include any point of P in its interior. An empty staircase
polygon is said to be maximal (MESP) if it is not contained in another larger empty staircase polygon.

In Fig. 2, two types of MESPs among a set of points are shown. If the floor is rectangular, then the
bottom-most and top-most edges of both the R-stairs of a maximal empty R-staircase polygon meet at
the bottom-left and top-right corners of the floor, respectively. Similarly, the top-most and bottom-most
edges of both the F-stairs of a maximal empty F-staircase polygon meet at the top-left and bottom-right
corners of the floor, respectively. A corner point (g) between two adjacent edges of the staircase polygon
is said to be convex (respectively concave) if the internal angle at ¢ is /2 (respectively 37/2). In a
MESP, each concave corner must coincide with some member in the set {py, p2, - .., pn}. Furthermore,
the perimeter of each MESP is the same and is equal to the perimeter of the bounding rectangular floor.

Theorem 1. For any MESP, if the lower stair is fixed, the upper stair becomes unique, and vice-versa.

Proof. Follows from maximality and emptiness of the polygon. O

(a) R-staircase polygon (b) F-staircase polygon

Fig. 2. Two types of staircase polygons.
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3.2. Representing MESP using permutation graphs

In order to obtain the largest-area MESP, the largest-empty R-staircase polygon and the largest-empty
F-staircase polygon are located separately, and then the larger of these two is reported. Here, we shall
consider only the problem of finding the largest empty R-staircase polygon.

The points in P are labeled in increasing order of their y-coordinates. According to Theorem 1, the
objective reduces to identifying an appropriate lower R-stair such that the corresponding polygon is
empty and its area is maximum. It is easy to show that the total number of MESPs may be exponential
in n. Thus, complete enumeration of all MESPs would not be computationally feasible. The graph-
theoretic formulation of the problem is motivated by the fact that if p; = (x;, y;) and p; = (x;, y;) are a
pair of consecutive concave corners on the lower stair of an empty R-staircase polygon, then p;, p; € P;
moreover if x; < x; then y; < y;.

Let us now consider a directed graph G = (V, E) with V = {p; | p; € P} and E = {(p;, p;) | (x; < x;)
and (y; < y;)}. The digraph G is acyclic, in which b (¢) is the only node that has indegree (outdegree) 0.
The indegree (respectively outdegree) of a node p; is denoted by in(p;) (respectively out(p;)). Figs. 3(a)
and (b) show an example of a floor with the point obstacles and the corresponding digraph G. A directed
path from b to ¢ in G is called a complete path.

Lemma 1. Every complete path in G determines a MESP uniquely, and every MESP corresponds to a
unique complete path in G which indicates the lower stair of the MESP,

Proof. Consider a complete path {b, pi, p2, ..., pk, t} in G. Clearly, there exists a unique R-stair whose
concave corners coincide with the points py, pa, ..., pr. The MESP whose lower stair is the above R-
stair, is unique by Theorem 1. Conversely, for every MESP, the set of points which appear on the concave

corners of its lower R-stair, are members of P, and they form a complete path in G. O

Example. The complete path b — p; — p, — ¢ in the graph of Fig. 3(b), represents a MESP which is

shown in Fig. 3(d).
t (O
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Fig. 3. (a) Example of a floor with point-obstacles, (b) the corresponding digraph G, (¢) G7: the transitive reduction of G, and
(d) the MESP corresponding to the complete path b — p; — pr — 1.
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The digraph G is essentially a transitively-oriented permutation graph, as defined below.

Definition 3 [14]. Suppose & = [7y, 712, ..., wy] is a permutation of the numbers 1,2, ..., N. Denote
by ni_l as the position of i in 7. The permutation graph G, = (V,, E;) is an undirected graph with
Ve={1,2,..., N};anedge (i, j) € E, implies (i — j)(yri_l — JTJ-_I) < 0, and vice-versa.

Lemma 2. The undirected version of the digraph G is a permutation graph.

Proof. Let us consider the floor with n points along with the bottom-left and the top-right corners of the
floor, and the graph G produced from it. Let the points be labeled as {1,2,..., N} (N =|P|=n+2) in
increasing order of their y-coordinates. Now, a line is swept from the right boundary of the floor to its left
boundary, and the labels of points, as they appear, are recorded. The sequence of labels, thus observed,
plays the role of 7. O

A permutation graph is known to be transitively orientable, i.e., (i, j) € E, and (j, k) € E, implies
that (i, k) € E, [14].

As a matter of fact, the digraph G, defined as above, captures the transitive orientation. The transitive
reduction (Gr = (V, Er), E7 C E) of the digraph G in Fig. 3(b), is shown in Fig. 3(c).

Definition 4. For a pair of points p; and p; with (p;, p;) € E, the rectangle with p; and p; at its bottom-
left and top-right corners, respectively, is denoted as rectangle[p;, p;].

Observation 1. for an edge (p;, pj) € E, if (pi, p;) € Er then rectangle|p;, p;] will contain no point
of P in its interior, and if (p;, pj) ¢ Er then rectangle|p;, p;] contains at least one member of P in its
interior.

The number of complete paths in graph G, may be exponential in n in the worst case, and so is the
number of MESPs. Our aim is to locate an appropriate complete path in G as the lower stair of a MESP,
such that its area is maximum among all the MESPs on the floor.

3.3. MESP as the max-weight path problem

Since every MESP corresponds to a directed complete path in the digraph G, identification of the
largest(area)-MESP seems to have a natural formulation as a max-weight path problem in a weighted
digraph. Unfortunately, a weighted version of the digraph G capturing the essence of the problem cannot
be constructed, as we shall demonstrate shortly. However, a new digraph called the staircase graph
derived from G, will suit our purpose.

3.3.1. Primitive staircase polygon
A staircase polygon can be partitioned into a set of smaller or primitive staircase polygons, called
L polygons, as described below.

Definition 5. Let o = (x4, yo) and B = (xg, yg) be two points on the floor, such that x, < xg, y, < yg
(o, B may or may not belong to P). An L _path(a, f) is a rectilinear path from the point « to the point 8
with exactly one corner at (xg, y,).
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Pj

Fig. 4. (a) L polygon, (b) subpolygon of a MESP corresponding to an L _path in the lower stair, (c) motivation of footprints.

Definition 6. The largest empty-staircase-polygon whose lower stair is the L path(c«, 8) and the upper
stair is a rising-staircase from o to § is denoted as L _polygon|a, B] (see Fig. 4(a)).

Consider a staircase polygon, and split it by drawing a horizontal line through every concave vertex
on its lower stair. Each of these subpolygons is an L _polygon, defined by an L._path on the lower stair of
the staircase polygon. Let us consider such a subpolygon defined by L_path(p;, p;), (pi, pj) € E (see
Fig. 4(b)). Its upper stair is a staircase path which spans between two points, i; and j,, where i; is the
projection of a point p; € P (where (pg, p;) € E) on the line Y = y;, and j, is the projection of a point
pe € P (where (pg, p;) € E) on the line ¥ = y;. This subpolygon contributes Area(L_polygonlix, p;])
in the entire staircase polygon.

It may be noted that if the lower stair of a staircase polygon passes through L_path(p;, p;), then its
area bounded by the horizontal lines ¥ = y; and ¥ = y; may not be unique. To illustrate this, let us
consider two staircase polygons whose lower stairs pass through L_path(p;, p;). Let R; and R; be the
portions of the lower stairs of these two staircase polygons from b to p; (see Fig. 4(c)). R reaches p;
using L_path(py, p;) and R, reaches p; with L_path(pg, p;), where py, py € P. The upper stairs of
the two MESPs meet the line ¥ = y; at iy and i, respectively. The subpolygons of these two staircase
polygons between the horizontal lines ¥ = y; and Y = y;, are L_polygonlis, p;land L_polygonliy, p;],
respectively, as shown in Fig. 4(c). Thus, a unique weight cannot be assigned to the edge (p;, p;) of the
digraph G, and hence, the problem of finding the largest MESP cannot be formulated as finding the max-
weight path in an weighted version of G. This motivates us to introduce a new weighted digraph, called
staircase graph, whose nodes correspond to the footprints of the points in P as defined below.

Definition 7. Let p; and p; be two points in P such that x; < x; and y; < y;, i.e., (pg, p;) € E. Then the
point (xx, y;) (where the vertical line through the point p, meets the line Y = y;) is called the footprint
of p; contributed by py, and is denoted by i, (see Fig. 5(a)). The footprint of b (the bottom-left corner
point of the floor) is b itself.

The set of footprints of point p; will be denoted as FP(p;). The number of footprints of a point
pi € P\{b} is the indegree of node p; in the digraph G, or in other words, |FP(p;)| = in(p;). In Fig. 5(b),
the set of footprints of p; (€ P\ {b}) contributed by the points in P, is shown.
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Fig. 6. Proof of Lemma 3.

Lemma 3. Consider an L_path(p;, p;) such that p;, p; € P. Then,

(a) for every footprint iy of p;, there exists at least one MESP whose lower stair passes through
L_path(p;, p;), and the upper stair passes through i;

(b) for every MESP whose lower stair passes through the L_path(p;, p;), the point where the upper
stair intersects the line Y = y;, must be a footprint of p;;

(c) for every MESP whose lower stair passes through L_path(p;, p;), if its upper stair passes through
the footprint iy (of p;, contributed by py), then the upper stair also passes through a unique footprint,
say je of pj, for some py € P, where x; = xi & y¢ > Y.

Proof.

(a) Let iy be a footprint of p; contributed by p;. From Definition 7, p; lies on the vertical line through
i, and x; < x; & yr < y;. Now, consider a subfloor with bottom-left and top-right corners at b and p;
respectively, and consider a complete path from b to p; in G whose last edge is (py, p;). By Lemma 1,
this complete path corresponds to the upper stair of a unique maximal-empty staircase polygon, say
R, whose bottom-left and top-right corners coincide with b and p;, respectively (see Fig. 6(a)). Now
consider another maximal-empty staircase polygon (R;) from i; to t whose lower stair passes through
the L_path(p;, p;). Concatenation of Ry and R, is a MESP from b to ¢, which proves this part of the
lemma.

(b) Consider a MESP whose lower stair passes through the L_path(p;, p;), and the upper stair
intersects the line Y = y; at i (see Fig. 6(b)). The upper stair cannot have a concave corner at p because,
in that case u € P, and will have the same y-coordinate as that of p;, which contradicts our assumption.
Let py = (xg, yo) be the last concave corner on the upper stair of the MESP before reaching n. Clearly,
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pe € P and the vertical line through py passes through . Also xy < x; and ys < y;. Hence, u must be
the footprint of p; contributed by py.

(c) Consider a MESP between iy and p;, whose lower stair is the L_path(p;, p;). From Theorem 1, the
point where the upper stair meets the line Y = y;, is unique. By part (b) of this lemma, this intersection
point must be a footprint of p;. The remaining part of the lemma follows from the monotonicity of the
upper R-stair. O

Consider an edge (p;, p;) in the digraph G. Lemma 3 implies that all the MESPs whose lower stairs
pass through the L_path(p;, p;), and the upper stairs pass through the footprint iy of p;, have the
L_polygonliy, p;] in common (see Fig. 6(c)). Furthermore, the upper stair intersects the line ¥ = y;
at a unique footprint of p;, say j, contributed by some point p, € P. Thus, the L_polygonliy, p;] is
uniquely characterized by the pair of footprints (ix, j;). A MESP can be viewed as a concatenation of
a set of such disjoint L._polygons. We now introduce a new directed graph, called the staircase graph
SG = (V’, E’), which is an enhanced and weighted version of the digraph G, and show that the location
of largest MESP is equivalent to finding the max-weight path between two designated nodes in SG.

3.3.2. The staircase graph

Definition 8. The staircase graph SG = (V', E’) for a given digraph G = (V, E) is a weighted digraph
with nodes V' = siep F'P(pi) = {the set of footprints of all the points in P}. A footprint iy € FP(p;)
has a directed edge to a footprint j, € FP(p;), if (p;, p;) € E (i.e., (pi, p;) is an L_path), and the
upper stair of the L_polygonliy, p;] meets the line ¥ = y; at the footprint j,. The weight of the edge
(ix, je) € E', denoted as w(ix, ji), is equal to the area of the L_ polygonliy, p;].

In the staircase graph SG, defined above, the node b (footprint of b by Definition 7) will have indegree
0, and the nodes #,, 11, ..., t, € FP(t) will have outdegree 0. We now augment SG with a dummy sink
node and put directed edges of weight 0 from each node in FP(t) to the sink node.

Clearly, the staircase graph corresponding to a given digraph G is unique. For the example of Fig. 3(a),
the set of footprints and the corresponding staircase graph are shown in Fig. 7(a) and Fig. 7(c). The
illustration of edge weights in SG is shown in Fig. 7(b). The staircase graph SG = (V’, E’) can be
constructed directly from the digraph G = (V, E) as stated in the following lemma.

Lemma 4.

(a) There will be a directed edge from the node i to the node j, (k # £) in the staircase graph SG if and
only if (px, pi) € E, (pi, pj) € E and p; = (x;, y;) is a point in P such that x; = max,{x, | p, € Xjj«},
where Xijx ={ps | s > i, (px, ps) € E and (ps, p;) € Er} # ¢;

(b) There exists a directed edge from iy to jx in SG if and only if (px, pi) € E, (pi, pj) € E and the set
Xijk, defined in part (a) of this lemma, is empty.

Proof. The proof immediately follows from the geometrical significance of the lemma. Let R denote
the rectangle whose bottom-left and top-right corners lie at iy = (xx, y;) and p; = (x;, y;), respectively.
From the definition of staircase graph SG = (V’, E’), it follows that a directed edge (ix, j¢), k # £, will
be present in E’, if and only if the point p,(€ P) lies within the rectangle R, and x, is maximum among



152

S.C. Nandy, B.B. Bhattacharya / Computational Geometry 26 (2003) 143—171

th t1 3 4 b N
L L
' [
4|: 431 1o
o R
| p4:
3 i 1
3pf--% -1 [
! Dy 1
21: ]
2oy === -
] Dy
1
1
-.
Iy D,

b

(a) Footprints for the
example of Figure 2a

FP(p;) ={1v}

FP(b) ={b}

).
wiy) [
'\/é\:; Vi

w/(i,) = Area(L-polygoniy , pj)

(b) directed edges in the
staircase graph

FP(t) = {tv, t1, 13, t4, 1)

FP(py) = {4b, 41, 43}

FP(p3) = {3p, 31}
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(c) The corresponding staircase graph (edge-weights are not shown)

Fig. 7. The staircase graph.

all points lying inside R (see Fig. 8(a)). On the other hand, (i, jx) € E’ if and only if R contains no point
of P (see Fig. 8(b)). O

The graph SG is acyclic. If (p;, p;j) € E, Then there exists at least one edge from the set of nodes

FP(p;) to the set of nodes F/P(p;) in the graph SG. The edges from the nodes in F/P(p;) to those in

FP(p;) satisfy the following properties:

Corollary 4.1. The edge (ir, j) of SG(V', E") corresponds to the L_polygonliy, p;l.
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Fig. 8. Geometric significance of Lemma 4.

Fig. 9. L polygons for various footprints.

Corollary 4.2. If (iy, jeo) € E" and iy, to the left of j,, then for all i, € FP(p;) which lie to the left of iy on
the line Y = y;, (iy, jo) € E'.

Corollary 4.3. In the digraph SG, the outdegree of every footprint i, € FP(p;) is equal to out(p;), and
every footprint i, € FP(p;) has exactly one successor (say jg) in the set FP(p;), whenever (p;, p;) € E.

Since all the footprints of a point p; € P appear on the horizontal line Y = y;, it is convenient to label
them in a linearly-ordered fashion in the decreasing order of their x coordinates.

Let FP(pi) ={fi, f2» ..., fw} and FP(p;) = {g1, &2, ..., gn} be the set of footprints of p; and p;,
respectively, ordered from right to left; m = in(p;), f. =iy, m* =in(p;), and g, = jj. Corollary 4.3
indicates that every footprint f, € FP(p;) has exactly one successor in F’P(p;). The weights of the edges
from the set F/P(p;) to the set F'P(p;) satisfy the following inequality.

Corollary 4.4. If FP(p;) ={ f1, f2, -+, fum}, then w(f1, g1+) < w(f2, g2+) < -+- < wW(fin, &n*), where the
successor of fy in the set FP(p;) is denoted as g

Proof. We need to show that

Area(L_polygon[fl, pj]) <Area(L_polyg0n[f2, pj]) <. <Area(L_polyg0n[fm, pj]).
From Fig. 9, it trivially follows that L_polygon| fi, p;1 C L_polygon| f, p;1 C --- C L_polygon| fu, p;l,
where “C” denotes the relation “contained in”. Hence the result follows. O

The size of the staircase graph SG = (V’, E’) can be expressed in terms of the number of vertices and
edges of the graph G = (V, E) as stated in the next theorem.
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Theorem 2. |V'| = |E| + 1, and |E'| = O(n|E|).

Proof. The first part of the theorem is clear. By Corollary 4.3, the total number of outgoing edges of i
in the graph SG is equal to out(p;). Again, the total number of footprints of a point p; is equal to in(p;).
Thus, the number of edges |E'| = Z?:l in(p;) x out(p;) which, in the worst case, is O(n|E|). O

Theorem 3. For every complete path in G, there exists a unique directed path from b to the sink node in
SG and vice-versa.

Proof. Follows from the construction of the digraph SG. O

Consider the path b — p; — p3 — ps — ¢, in G (Fig. 3(b)). The corresponding path in SG is b —
1, — 3, — 4, — 1, — sink (see Fig. 7(¢c)). Similarly, for the directed path b — 1, — 43 — t3 — sink of
SG, the corresponding path in G is b — p; — ps — t.

Theorem 4.

(a) Every directed path in SG from b to the sink node represents a MESP uniquely, and vice-versa.
(b) The sum of edge-weights along a directed path in SG is equal to the area of the corresponding MESP.

Proof. By Theorem 3, each directed path in SG corresponds to a unique complete path in G which,
in turn, corresponds to a unique MESP (by Lemma 1). Each edge in SG corresponds to an L._polygon
(Corollary 4.1). A MESP corresponding to a complete path in SG is the concatenation of the L._polygons
corresponding to the edges on that directed path, and its area is the sum of weights of the edges on that
path. O

For the sake of notational simplicity, we shall define the weight of a directed path in SG by the sum of
edge-weights along that path. The max-weight path is a path from b to the sink node of SG whose weight
is maximum among all such paths in SG.

Theorem 4 leads to the fact that the largest MESP from the bottom-left corner of the floor to its
top-right corner can be found by determining the max-weight path in the digraph SG. Note that, the max-
weight path describes both the upper and the lower stair of the largest MESP. If a node i, € V' is on a
path, the lower stair of the corresponding MESP passes through p;, and the upper stair passes through
Pk Thus, we have the following theorem.

Theorem 5. The largest MESP can be recognized in O(n|E|) time using O(|E'|) space.

Proof. Follows from the fact that the construction time of the graph SG is O(n|E|). The time for locating
the max-weight path in an acyclic digraph is O(|E’]) = O(n|E|), which may be O(n?) in the worst case.
The space complexity follows from the number of nodes in SG (see Theorem 2). O
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4. Improved algorithm based on geometric properties

The method of finding the largest MESP can be accelerated significantly based on certain geometric
properties of the ensemble of points on the floor. The staircase graph SG = (V’, E’) need not be
constructed explicitly. The max-weight path in SG can be recognized by sweeping a horizontal line on the
floor from bottom to top in the first pass. The execution starts from the bottom-left corner b. Each point
pi is picked up sequentially from the set P in increasing order of their y-coordinates; it is completely
processed (i.e., all its outgoing edges in the graph G are processed), and then the next point is selected
for processing. The process continues until the top-right corner 7 is reached, and finally, the area of the
largest MESP is reported. In the second pass, the lower and upper stairs of the largest MESP are reported.

The core of the revised algorithm is the complete processing of a point, say p;, which involves two
phases. In Phase-1, a preprocessing is done. In Phase-2, all the outgoing edges of p; in graph G are
processed.

In order to formalize the Phase-1 (the preprocessing phase), we define a directed graph G = (V¢, E€);
Ve=PU{',t'}, b = (x,,0) and t' = (0, y,) are respectively the bottom-right and top-left corners of the
floor, and E = {(p;, p;) | pi, p;j € V, xi > x; and y; < y;}. Clearly, G is also a permutation graph.
We shall denote the transitive reduced graph of G by G5 = (V¢, E}).

We split the set of points above p; into two subsets by a vertical line through p; (see Fig. 10). In Phase-
1, the points in the left subset are processed by sweeping a horizontal line from Y = y; upwards, and a
data structure is created with the set of points having directed edges from p; in the graph G?.. In Phase-2,
the points in the right subset are processed by sweeping a vertical line from X = x; towards the right, and
all the outgoing edges from p; in the graph G are inspected in order to choose an appropriate point p;
such that L_path(p;, p;) appears on the lower stair of the MESPs passing through p;. We exploit three
important geometric properties, namely (i) dominance, (ii) footprint propagation, and (iii) inheritance to
accelerate processing in Phase-2. At the beginning, for a point p; € P, the footprints of p; (i.e., the set
FP(p;)) is available. Each member f, € FP(p;) is assigned with the area of the largest MESP from b
to p; and whose upper stair reaches the horizontal line ¥ = y; at f,. The dominance property helps to
reduce the size of FP(p;) by eliminating footprints that can not produce the largest MESP. Next, for each
edge (p;, p;) € E, we apply the method of footprint propagation to generate new footprints to the point
pj, and the MESPs reaching at p; are extended up to p;. A suitable data structure is created in Phase-1
to expedite this process. The area is progressively computed using the inheritance property.

This set of points will A This set of points will
be processed in Phase 1 o . HEERY be processed in Phase 2

Fig. 10. Complete processing of a point p;.
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| L-polygon [f, Pl

Fig. 11. Demonstration of LMESP and its area computation.

4.1. Geometric properties

Consider the point p; € P currently under processing, and let F/P(p;) be the set of footprints generated
prior to processing of p;. By Lemma 3, for every MESP whose lower stair passes through p;, the upper
stair must pass through some footprint f,, € FP(p;). Conversely, for every footprint on p;, there exists at
least one such MESP. If f, € FP(p;), A(f,) denotes the area of the largest MESP from b to p;, whose
upper stair hits the line Y = y;, at footprint f,. Thus, for a node f, € V', A(f,) denotes the sum of
weights of the maximum weighted path from b to f, in SG= (V', E).

Consider now an edge (p;, p;) € E which corresponds to an L_path in the lower stair. For each
footprint f, € FP(p;), we use LMESP[p;, p;, f,] to denote the largest MESP from b to p;, whose
lower stair terminates in the L_path(p;, p;), and the upper stair goes through f;, (see Fig. 11). Then,

Area(LMESPIp;, p;, fal) = A(f,) + Area(L_polygonl fu. p;l).

In the following subsection, we show that all the members in FP(p;) need not to be considered
while processing p;. Next, we consider the processing of outgoing edges (p;, p;) € E. In Sections 4.1.2
and 4.1.3, we describe the actions if (p;, p;) € Er and (p;, p;) ¢ Er, respectively.

4.1.1. Dominance

Lemma S. For a pair of footprints f, and fg on p;, if a > B and A(fy) > A(fp), then Area(LMESP][ p;,
Pjs Jal) > Area(LMESP[p;, p;, fgD.

Proof. Follows from Corollary 4.4. O

Thus, in order to determine the largest MESP, the footprints f3 (8 < o) need not be considered further
it A(fp) < A(fo). This shows that only a subset of footprints on p;, say { fa,, fuys - - -» fa,} (ordered from
right to left) is to be retained provided A(fy,) > A(fy,) > -++ > A(fq,). This reduced set of footprints
will be referred to as the prime set of footprints.

4.1.2. Footprint propagation

Consider an edge (p;, p;) € Er. The set of footprints FP(p;) = { fi, f2, ..., fm} are ordered from right
to left. The following lemma describes an efficient mechanism of propagating FP(p;) in the footprint
lists of the points p; by projecting them on the line ¥ = y;.
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() (b)

Fig. 12. [llustration of Lemma 6: (a) (p;, p¢) € E7 and (b) (p;, pe) & ES..

Lemma 6. Consider a point p, € P such that (p;, p¢) € E€, i.e., x; < x; and y; > y;. Now,

@) if (pi, pe) € ES, then there exists at least one MESP whose lower stair passes through p;, and upper
stair passes through py;
(b) if (pi, pe) & EY., then there exists no such MESP.

Proof. Consider the rectangle with p; and p, at its bottom-right and top-left corners, respectively. If
(pi, pe) € E5, then the aforesaid rectangle is empty (see Fig. 12(a)). In such a case, a MESP, as stated in
the lemma, exists. Butif (p;, p,) ¢ E7, then the rectangle contains another point (say p,,, as in Fig. 12(b))
in its interior, and the existence of a MESP is impossible. O

Let P¢ denote the set of points having directed edges from p; in G%. Let the members of P be
arranged in increasing order of their y-coordinates. The following facts are important.

Fact 1. Let (p;, pj) € Er; FP(p;) and FP(p;) be the sets of existing footprints prior to processing of
(pi» pj)- Then during processing of (pi, p;),

(a) if there does not exist any point ps € Pf such that y; < y;, then by Lemma 4(b), all the members
of FP(p;) will be projected on the horizontal line Y = y; to create new footprints in FP(p;) (see
Fig. 13(a)). In the remaining discussion, this event will be referred to as FP(p;) being propagated to

FP(p;);
(b) otherwise, let p, € PS be the point such that y, < y;, and having the maximum x-coordinate value.
There may exist a subset of FP(p;), say {fo,a =1,2,...,r}, whose x-coordinates are greater than

x¢. For each of them, the rectangle| fo, p;| is empty (see Fig. 13(b)). So, all of them are projected on
the line Y = y; to create footprints in FP(p;). In addition, one new footprint j, is created in FP(p;),
which is obtained by projecting py on the line Y =y; (by Lemma 6(a)).

Fact 2. While processing an edge (p;, pj) € Er, if p; is found above p, € Pf then p; will not inherit
any footprint from FP(p;) whose x-coordinates are less than x, (see Fig. 13(b)).
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Fig. 13. Illustration of footprint propagation.

We scan the footprint list #P(p;) from right to left starting from f; and propagate them to FP(p;).
The termination of this procedure is determined using the case stated in Fact 1(b).

Fact 3. All the newly generated footprints of p; have x-coordinates less than that of the left-most of the
existing footprints of FP(p;). Thus, they can be added to the left of the existing footprints of FP(p;), in
the order they have been generated.

Proof. (By contradiction) Let F/P(p;) be the list of footprints that are generated prior to the processing
of the edge (p;, pj) € Er. We show that, while processing the edge (p;, p;), if a new footprint j, is
generated, it cannot lie to the right of an existing footprint ji € FP(p;).

Suppose such a situation happened. Here, j; has been generated while processing another edge
(pas pj) € E, such that y, < y; (since the points are being processed by sweeping a horizontal line
from bottom to top). Now, the following two situations may arise:

(pas pi) € E: Here, the staircase polygon whose lower stair ends with L_path(pq, p;), and upper stair
passes through p; is not empty; it contains p; in its interior (see Fig. 13(c)).

(pas pi) ¢ E: Inthis case, the staircase polygon whose lower stair ends with L_path(p,, p;), and upper
stair passes through p; is not empty; it contains either p, or both p; and p, in its interior (see
Fig. 13(d)).

Thus, j, cannot be a footprint of p;. In Figs. 13(c) and (d), this event is depicted by scratched lines. O
Let FP(p;) =1{q1,q2, - .., g} be the set of footprints of p; prior to the processing of the edge (p;, p;).
Then the new footprints of F'P(p;), created by the projections of { f1, f2, ..., f,} € FP(p;) are numbered
as {Gs+a, @ =1,...,r} (by Fact 3). In the graph SG, (f,, gs+¢) isanedge foralla =1, ..., r (by Fact 1).

The weights of these edges are computed as follows:

(1) w(fa, gs+a) = Area(rectangle| f,, p;l), foralla =1,...,r.
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Fig. 14. Illustration of Lemma 7.

(1) w(frs1, o) = Area(L_polygonl fri1, p;])-

(i) For each of the other footprints f,, o > r + 1 (if at all exists), the upper stair of the
L_polygon| f,, p;] meets the line Y = y; at j, (Lemma 6(a)). So, (fy, j¢) is an edge in SG, and
its weight w( fy, ji) = Area(L_polygon| f, p;]) for all @ > r 4+ 1 (see Fig. 13(b)).

Definition 9. For an edge (p;, p;) € Er, a point p, is said to be a footprint blocking point for p; with
respect to p; if it is the rightmost point in P/ satisfying y, < y; (see Fact 2).

Lemma 7. Let us consider two MESPs whose lower stairs contain L_path(p;, p;) and L_path(p;, pi),
respectively; the edges (p;, p;) and (p;, px) are both in Er, and x; < x;. If p, and pg are respectively
the footprint blocking points for the points p; and py with respect to p;, then y, = yg.

Proof. Follows from Fact 2 and the fact that y; > y; (see Fig. 14). O

Lemma 7 implies that if the successors of p; in G are processed from left to right, then in order to
get the footprint blocking points for all the points {p; | (p;, p;) € Er}, the list P is to be traversed only
once.

4.1.3. Inheritance

Let (p;, pj) € E. By Corollary 4.3, every node f, € FP(p;) will have exactly one successor node gg in
FP(p;) in the graph SG; the weight associated with this edge is w( f,, gg) = Area(L_polygon| f., p;l).
In the earlier subsection, a method of calculating the edge weights among the nodes in FP(p;) and
FP(p;)in SG has been discussed for (p;, p;) € Er. Here, we consider the case where (p;, p;) ¢ Er, and
show that if the successors of p; is processed from left to right, then the computation of edge-weight for
one successor of p; often aids determining the same for other successors of p;. This process, explained
below, will be referred to as inheritance in subsequent discussions.

Lemma 8. If (p;, p;) & Er, then all the footprints in FP(p;) have a common successor in FP(p;).

Proof. Since the edge (p;, p;) ¢ Er, there must exist a point p; such that (p;, pr) € E and (py, p;) € Er
(see Fig. 15). Draw a vertical line through p; which meets the lines ¥ = y; and ¥ = y; at p* and
Ji» respectively. By Definition 7, ji is a footprint in FP(p;), and the rectangle[p*, p;] is empty. By
Lemma 4(a), each of the footprints f, € FP(p;) will have a directed edge to the footprint jx € FP(p;).
Furthermore, the weights of these edges can be determined as follows:
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Fig. 15. Illustration of inheritance.

w(fu, ji) = Area(L_polygon| f,, p;])

:Area(L_polygon[fa, pk]) —i—Area(rectangle[p*, pj]). O

Thus, if the edge (p;, px) € E is already processed, then Area(L_polygon| f,, pi]) is already available,
and we can use this incremental scheme of computing the edge weights between the nodes in FP(p;) and
FP(pj). Such an effect of inheritance can be accomplished provided for every point p; € P, its successors
in the graph G are processed in the increasing order of their x-coordinates. Furthermore,

LMESP[p;, p;, ful =LMESP[p;, pi, fol +Area(rectangle[p*, pj]).
4.2. Data structure

We maintain a linear array, called P, which contains the set of points P U {b, ¢t} in the increasing
order of their y-coordinates. With each member p; € P, apart from its coordinates, a pointer to the list of
footprints FP(p;) is attached. Initially, FP(b) = b, and FP(p;) = ¢, for all p; € P\ {b}. These lists grow
dynamically during the execution of the algorithm. As all the incoming edges of a point p; in the graph
G are processed prior to the processing of its outgoing edges, all the footprints in /P(p;) are available
at the beginning of processing p;. As mentioned in Section 4.1.1, we need to retain only the prime set of
footprints of p;; henceforth, FP(p;) will be used to denote the prime set of footprints of p;. The fields
associated with each member f,, € FP(p;) are as follows:

(a) the x coordinate of f,;
(b) A(f,), the area of the largest MESP from b to the point p; whose upper stair meets the footprint f,;
(c) apointer pred, indicating the immediate predecessor of f,, in the graph SG, which contributes A( f,).

Field (c) is used for retracing the path in the backward pass for identifying the largest MESP.

In order to process the successors of a point p; in G in the left-to-right order, we maintain another
array P* with the members of P in increasing order of their x coordinates. Attached to each member of
‘P, there is a pointer, called self-indicator, that points to its own presence in P*.

In addition, two stacks, namely S; and S, are created, during the processing of a point.
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4.3. Complete processing of a point

As mentioned earlier, the complete processing of a point p; € P, involves two phases, details of which
are described below. The main steps of the entire algorithm are enumerated in Appendix A.

4.3.1. Phase-1

In this phase, we create a stack S; that contains the set of points PS = {p, | (pi, p¢) € E3} in
decreasing order of their y-coordinates. Let us consider an edge (p;, pj) € E (which corresponds to
an L path in the lower stair), and the maximum weighted path in SG which passes through FP(p;) and

FP(p;). If the upper stair passes through p, € P (y, < y;), then by Fact 1(b), an area
B(pe) = r}flj;((A(fk) + drea(L_polygon fi. pil))

must be contributed to the above mentioned maximum weighted path, where f, is the rightmost element
in FP(p;) whose x-coordinate is less than that of p, (see Fig. 13(b)).

Thus, with each point p, € P¢, we attach two fields (i) B(p¢), and (ii) a pointer to f,.

We compute B(p,) for all points p, € P by sweeping a horizontal line £ from Y = y; upwards. An
active span of L is maintained during the sweep, which is a closed interval of the form [a, x;]. The right
boundary of the active span is fixed at x;, whereas its left boundary changes during the sweep. Initially, a
is set to 0. If a new point p,, encountered by L, lies outside the active span, it is ignored (since either (i)
x¢ > x;—here p, & Pf, or (ii) x, < a—in this case (p;, p¢) ¢ E7). Otherwise, (i.e., if (p;, p¢) € ET), we
compute B(p,), and push the triplet (p,, B(p¢), f.) in stack S;. The active span is then reduced to the
interval [x;, x;], and the sweep of L is advanced. Note that, if S; is non-empty before adding p,, with p;
being the top-most element in Sy, then the upper stair reaches p, either from py, or directly from any of
the footprints of p; lying in the interval [x;, x,] (see Fig. 16). Thus,

B(p,) = max{(B(pk) +Area(rectangle[(xk, Vi), pg])),

max (A(f,g) +Area(rectangle[f,3, Pz]))}.
Sfpe€lxe.xe]

This phase terminates when the sweep line reaches the top boundary of the bounding box. At this
moment, §; will contain all the points in Pf.

Lemma 9. Completion of Phase-1 for a point p; requires O(n) time in the worst case.

current active

p.
Sl\ J
n )_
S
initial active A
span

Fig. 16. Computation of B(py).
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Proof. Follows from the following two facts: (i) the number of points in Pf is at most O(n), and (ii) the
maintenance of active span during the sweep ensures that while computing B(p,) for all points p, € Pf,
the list of footprints FP(p;) is effectively traversed only once from left to right. O

4.3.2. Phase-2

In this phase, we process the successors of p; in the graph G by sweeping a vertical line from left
to right starting from p;, establish necessary edges in SG, and finally compute the largest MESP with
L_path(p;, p;) in the lower stair for all the edges (p;, p;) € E. Let (p;, p;) be an edge that is currently
under Phase 2 of complete processing for the point p;. Now, the following observation is important.

Observation 2. The concave vertices of the upper stair in the L_polygon|p;, p;] correspond to the points
(nodes) on a path from p; to pj in Gr.

In order to exploit the effect of inheritance as described in Section 4.1.3, we use Observation 2, and
maintain a stack S, while processing p; as follows:

Let the edge (p;, pr) € E be processed just before (p;, p;), and {p;(= puy), Par> Pays - - - Pk
(= Pu,,)} be the set of points on a path from p; to py in Gy, such that p, = p;(= (x5, yy)) if
Vs =min{yy | (Pa,_,» Po) € Er} forall r =1, ..., m. The stack S, will contain the set of points

{Pay(=Pi)s Pays Pass - - -5 Pa (= pi)} prior to the processing of the edge (p;, p;) (see Fig. 17(a)).

During processing of p;, we reach the point p; € P* using the self-indicator attached to p; € P. Next,
we start inspecting the members in P* to the right of p; by sweeping a vertical line from p; towards
right. When the sweep line encounters a point p; € P*, two situations may arise: (i) y; < y;, and (ii)
y;j > yi. In the first case, (p;, p;) ¢ E; we ignore this case and the vertical line sweep is advanced. In the
second case, (p;, p;) € E; hence, it may form an L_path in the lower stair. Thus, we need to consider the
following two sub-cases:

(pi, pj) € Er: Inthis case, the footprints of p; are propagated to FP(p;) as mentioned in Section 4.1.2
(Fig. 13(a)). In order to search for the footprint blocking point, we need to pop the elements

elements deleted

from stack S2 I

p. |l B0 X - . processing
stack S2

| ~ point under

R R X

¥---- X=X - =% * f-—X----X--X%--%x*

£y f; £, f, P, £, fy £, f, P;

() (b)

Fig. 17. Processing of an edge (p;, p;) ¢ E7 in Phase 2; (a) prior to the processing of (p;, p;), (b) after processing of (p;, p;).
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from S; until we get a point p; such that y, < y;. Let {fi,..., f;} be the set of footprints in
FP(p;) whose x-coordinates are greater than x;. All of them are propagated to FP(p;); the
corresponding elements are numbered as {g,1, ..., &}, Whereas {gi, g2, ..., &} denotes the
set of existing footprints in P(p;) prior to processing of (p;, p;). In addition, ji is added to
FP(p;) as the left-most member. We compute the area of the largest MESP from b to p; whose
lower stair terminates at L_path(p;, p;) and upper stair terminates at all the newly generated
foorprints of p; as follows:

A(gs+a) = Area(LMESP[p;, p;, fo]) = A(f,) + Area(rectangle| f,, p;),
YVa=1,...,r,

AGy) = ﬁrgflj_;lArea(LMESP[ pis pj» f5l) = max (A(fp) + Area(L_polygonl f3, p;1)).

By Lemma 7, we may ignore all the elements that are popped out from S, since none of them
can be a footprint blocking point to the successors of p; that appear to the right of p;. Finally, we
apply the dominance rule (Lemma 5) to eliminate the set of non-prime footprints from FP(p;).

The pred field of g, are set to point to f,, foralla = 1,2, ..., r, and the pred field of j; is
set to fg which has contributed to A(j).

(pi, pj) & Er: Here, we must get a point p; such that (p;, px) € E and (py, p;) € Er (see Fig. 17(a)).
The new footprint j; is added to FP(p;) (see Lemma 8). By the inheritance rule, w( fy, ji) =
w(fy, g1) + C, for all f, € FP(p;), where g, is the rightmost footprint in FP(p;), and
C = Area(rectangle[ p*, p;]), and p* is defined in the proof of Lemma 8. By dominance rule,
A(g1) = maxy, epp(p,) Area(LMESP[ p;, pi, fo]). So,

A(Jr) = A(g1) +Area(rectangle[p*, pj]).

The point py is obtained by popping the elements of S, one by one until we get a point whose y
coordinate is less than y;. Note that, the popped elements of S, will not contribute any footprint
to the points that appear after p; during Phase 2 of processing p; (see Fig. 17(b) for illustration).
Finally, the pred field of j; is set to point to g; (€ FP(py)).

Lemma 10. Phase-2 of complete processing for a point p; can be completed in O(T; + n) time, where T;
is the total number of footprints generated in the footprint lists of all the successors of p;.

Proof. Let the edge (p;, p;) € Er; then its processing requires x;(p;) + O(61(p;)), where x;(p;) is the
number of footprints in FP(p;), that are propagated to FP(p;), and 6;(p;) is the number of elements
popped from stack S;. Thus, the total time required for processing all the successors of p; in Gr is
ijl(pi,pj)eEr xi(pj) + ijl(pi,pj)eEr 01(p;). The first term is equal to 7;, and the second term can be at
most O(n) from Lemma 9.

If (pi, pj) € E, but ¢ Er, then the required processing time is O(6,(p;)), where 6, (p;) is the number
of elements popped from stack S,. During complete processing of point p;, the total number of points
inserted in S, may be O(n) in the worst case, and an element once deleted from S, does not enter again.
So, the total time required for processing all such successors of p; is also O(rn). O

4.3.3. Recognition of stairs
While processing p;, an edge from a footprint f, (€ FP(p;)) to gg (€ FP(p;)) is indicated by a
backward edge that is created by setting the pred field of gg with the address of f,. The pred field of
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gp 1s updated if another incoming edge of gz is recognized, which makes the value of A(gg) higher. At
the end of complete processing of all the points in P, if 7 is the right-most footprint of ¢ then A(7) is
maximum (by dominance rule). We report A(7) as the area of the largest MESP. Next, we report the lower
and upper stairs by traversing the nodes of SG from 7 through the pred fields attached to the max-weight
path until b is reached. If gg € FP(p;) is reached during backward traversal, and its pred field points
to fy € FP(p;), then the L_path(p;, p;) is in the lower stair. The upper stair is obtained by sweeping a
horizontal line segment [x,, Xg,] from f, to gg in a manner similar to Phase 1. It can be shown that the
recognition of the stairs in this pass takes O(n) time in the worst case.

4.3.4. Complexity of the algorithm

Theorem 6. The largest-area MESP amidst a planar set of n points can be determined in O(n?) time and
space.

Proof. Phase 1 of the complete processing of a point p; = (x;, y;) requires O(n) time (by Lemma 9),
and Phase 2 requires 7; + O(n) time (by Lemma 10). Thus, complete processing of all the points in P
requires Z?ZlTi + O(n?). Again, by Theorem 2, Z?:l T; = the number of nodes in SG = O(n?) in the
worst case.

The space complexity result follows from the fact that for each element p; € P, its prime set of
footprints F'P(p;) are to be stored for use in the backward pass. O

5. Other applications
5.1. Maximum-width staircase polygon

As mentioned in Section 2, determination of an empty staircase polygon having maximum width turns
out to be an useful problem in VLSI layout design. This subsection deals with the method of finding such
a MESP. The width of a polygon may be defined using a suitable metric depending on the nature of the
problem. Here, we shall define the width of a polygon as follows.

Definition 10. Let @ be a point on the lower stair of an empty staircase polygon. The clearance of «
(denoted as w(«)) is defined as follows. We use d(«, 8) to denote the euclidean distance between a pair
of points o and .

e If o is a corner point on the lower stair then w(«) = d(«, B8), where B is a point on the upper stair,
such that d(«, 8) < d(a, B) for all points 8’ (# B) on the upper stair.

e [f« is a point on a horizontal edge of the lower stair then w(«) = d(«, B), where g is a point on the
upper stair such that the vertical line drawn from « meets the upper stair at 3.

e If o is a point on a vertical edge of the lower stair then w(«) = d(«, B), where f is a point on the
upper stair such that the horizontal line drawn from o meets the upper stair at g.

The width of the staircase polygon is the minimum clearance among all points on the lower stair.
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Fig. 18. Width of L polygonlia, p;1=min{w(p;), w(p;)}.

Observation 3. Let A be a horizontal (respectively vertical) edge on the lower stair of a R-staircase
polygon, and «a be the lefimost (respectively top-most) point ,. Then w(a) < w(p), for any point B
(F«a) on A

Thus, to compute the width of the R-staircase polygon, the clearances should be computed only at
the concave corners of its lower stair and at the bottom-left and top-right corners. The staircase graph
(SG) is constructed as before, but the weight of an edge (i, j;) € E’ is determined by the width of the
L_polygonliy, p;], which in turn is equal to min{w(p;), w(p;)} (see Fig. 18). A directed path in SG from
b to the sink node, is now found such that the minimum edge-weight along the path is maximum among
all paths in the graph. In order to apply our earlier algorithm for this problem, we need to show that the
dominance and inheritance rules, defined earlier, remain valid for this problem.

Assume that the predecessors of p; in the graph G has already been processed, and let FP(p;) =
{f1, fo, ..., fm} be the set of footprints of p;, ordered from right to left. As in the earlier problem, for
each member f, € FP(p;), the scalar field A( f,) denotes the width of the staircase polygon, whose lower
stair spans from b to p;, and the upper stair terminates at f,,.

Consider an edge (p;, pj) € E. Let WMESP[p;, p;, fo] denote the widest MESP from b to
p; whose lower stair terminates at L_path(p;, p;), and the upper stair passes through f,. Then,
width(WMESP(p;, p;, fo]) = min{A(fy), w(p:), w(p;)} (see Fig. 18).

Lemma 11. For a pair of footprints f, and fg of a point p;, if o < B and A(fy) < A(fp), then
width(WMESP([p;, p;, fol) < width(WMESP[p;, p;, fg]) for all points {p; | (pi, p;) € E}.

Proof. If o < B, then f, is closer to p; than fz in the footprint list FP(p;). We need to consider two
cases:

o If the upper stair of WMESP|[p;, p;, f,] does not pass through any point inside the pair of horizontal
lines Y = y; and Y = y;, then width(L_polygon| f,, p;1) < width(L_polygon| fg, p;]).

e If the upper stair of WMESP[p;, p;, f.] passes through any point inside the pair of horizontal lines
Y =y; and Y = y;, then the upper stair of WMESP[p;, p;, fg] will also pass through that point. In
that case, width(L_polygon| f, p;1) < width(L_polygon| fg, p;]).

The result follows from the fact that
width (WMESP[p,-, Djs fa]) = min{A(fa), width (L_polygon[fa, pj])}. O
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Lemma 12. Let (p;, pr) € E, fy € FP(p;) and gg € FP(py) be such that (f,,gp) € E'. In other
words, gg is a footprint of py such that the upper stair of WMESP|[p;, pi, fo| terminates at gg. Now,
if (pi» pj) € E be such that (py, p;) € Er, then (fq, ji) € E'" and A(ji) =min{A(gp), (xj —xp)}.

Proof. Follows from the definition of the width of a WMESP. O

Lemma 11 suggests that the dominance rule holds among the footprints of any point in P. Lemma 12
says that the inheritance property also holds in this case. So, our earlier algorithm can easily be tailored
for recognizing the widest MESP in O(n?) time and space.

5.2. Largest/widest MESP amidst rectangular obstacles

We now outline the modifications of the earlier algorithm and necessary preprocessing for identifying
the largest/widest MESP amidst a set of n non-overlapping isothetic rectanglular obstacles. Such a
polygon is of interest to VLSI layout design, where the circuit modules are abstracted as solid rectangles
on the chip floor, which play the role of obstacles; the empty space among the modules is used for
wire routing or repeater placement. Several routing algorithms use the monotone-channel model [16],
which essentially is an empty staircase polygon among a set of rectangular obstacles. A solid rectangle
is denoted by R;[(a;, b;), (ci,d;)], where the points (a;, b;) and (c;, d;) are its top-left and bottom-
right corners, respectively. We will describe the method for finding the largest/widest empty R-staircase
polygon only. Each concave corner of the upper (lower) stair of a maximal empty R-staircase polygon
coincides with the bottom-right (top-left) corner of a solid rectangle.

To formulate the problem, we need a digraph called the L_visibility graph the role of which is similar
to the permutation graph used earlier.

A point p(x, y) is said to be intercepted by a solid rectangle R;[(a;, b;), (¢;i, d;)] if a; < x < ¢; and
b; >y >d;.

Definition 11. A solid rectangle R;[(a;,b;),(c;,d;)] is L_visible from another solid rectangle
Ri[(a,’,b,’), (C,',di)] if (l) a; < aj, (ll) b,' < bj and (lll) no point on the L_path[(ai,bi), (Clj,bj)] is
intercepted by any solid rectangle.

In Fig. 19, we demonstrate the concept of L visibility. A digraph, called the L visibility graph, is
constructed, each vertex of which represents a solid rectangle. The bottom-left (») and top-right (¢)

(a) Ry is L-visible to Rj (b) Rj is not L-visible to Rj

Fig. 19. Demonstration of L _visibility.
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(a) A floor with rectangular obstacles

(.’/

(b) L-visibility graph (d) Staircase graph

Fig. 20. Determining the MESP among rectangular obstacles.

corners of the floor also appear as vertices representing two degenerate solid rectangles. Two vertices
R, and R; in the L visibility graph are connected by a directed edge (R, R;) if the rectangle R; is
L visible from R;. An example floor containing a set of solid rectangular obstacles, and its corresponding
L visibility graph are shown in Figs. 20(a) and (b), respectively. The L _visibility graph, among a set of
solid rectangles, plays a similar role as that of the digraph G in an ensemble of points, and can be
constructed by sweeping a vertical line L from left to right in O(| E| + n logn) time. The set of footprints
and the staircase graph, suited for this situation, are defined as follows.

Definition 12. Let R;[(«;, b;), (¢i,d;)] and Ri[(ax, by), (ck, d)] denote two solid rectangles such that
cr < a;, by < b;. If the vertical line segment obtained by joining the points (¢, bx) and (cx, b;) are not



168 S.C. Nandy, B.B. Bhattacharya / Computational Geometry 26 (2003) 143—171

intercepted by any other rectangles on the floor, then R; creates a footprint i, on the horizontal line
Y = b; (the line passing through the top boundary of R;) at the point (¢, b;).

In Fig. 20(c), the footprints are highlighted by putting their labels as in Fig. 7(a). Following the
convention of the earlier problem, the set of footprints appeared on the horizontal line adjacent to the
top boundary of a rectangle, say R;[(a;, b;), (c;, d;)], is denoted as FP(R;).

The staircase graph is formed with the set of footprints as vertices. For a pair of footprints i €
FP(R;) and j, € FP(R};), corresponding to two rectangles R;[(a;, b;), (¢;,d;)] and R;[(a;, b)), (cj,d;)],
a directed edge (i, jo) is present in the staircase graph, if the upper stair of a maximal empty
L_polygon[(ck, bi), (aj, b;)] passes through j,, where (c, b;) and (a;,b;) are the coordinates of iy
and the top-left corner of the rectangle R;, respectively. The unweighted staircase graph for the above
example is shown in Fig. 20(d). The weight of an edge in this staircase graph is the area of the
corresponding L _polygon. It can be easily verified that all the three important geometric properties, i.e.,
dominance, footprint propagation, and inheritance, defined for the largest MESP problem among point
obstacles, hold for this problem. Thus, the earlier algorithm also works in this case with the same time
and space complexities. The same technique is applicable to isothetic polygonal obstacles.

6. Conclusion

We have reported an algorithm for identifying the largest empty staircase polygon on a rectangular
floor containing a set of n point obstacles. The worst-case time and space complexities of the algorithm
are both O(n?). Novel geometric concepts, namely dominance, footprint propagation, and inheritance
are employed for designing the algorithm. A modified version of the same algorithm can be used for
identifying the MESP of maximum width with the same time and space complexities. The algorithm is
then generalized for finding the largest empty staircase polygon among rectangular or isothetic polygonal
obstacles. Identification of empty staircase polygons has manifold applications to VLSI physical design
and other areas. The paradigm, described here, may be used for searching other classes of empty zones,
for instance, the largest empty orthoconvex polygon of general shape. An open problem is to show
whether or not the MESP problem is 3SUM-hard [15].
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Appendix A

Algorithm MESP
Input:  The point set P.
Output: The two stairs of the MESP.
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1. Create an array P* by sorting the points in P U {b, t} in increasing order of their x-coordinates;

Next, sort the points in P* with respect to their y-coordinates in another array P;
This helps in attaching to each point in P its self-indicator in P*;

2: (* Initialize *)
FP(b) < {b}; A(f)) < 0; FP(p;) < ¢,V p; € P — {b};
3: (* Forward Pass: Location algorithm *)
fori =1,...,n do (* Perform complete processing for each point p; € P in order *)
(* pi = (x;, y;) be the point under complete process *)
3.1 Perform Phase I(p;) (input: FP(p;), output: stack S);
3.2 Perform Phase 2(p;) (input: FP(p;), stack Sy, output: the augmented data structure);
endfor
4: Perform Recognize stair (input: the final data structure, output: the two stairs);
end.

Procedure Phase 1(p;) (* Phase 1 of complete processing *)
Input:  FP(p;)
Output: stack Sy; its each element is (p,, B(py), fy) where B(p,) and f, are defined in the text
1: active_span = [0, x;]; S| = ¢;
initialize o = in(p;) (* it is used for the right to left traversal of FP(p;) *);

2: for¢=1i,i+1,...,ndo (* point p, is under processing of Phase 1 *)

if x, € active_span then
2.1 if S| # ¢ then

(* let TOP(S1) = (pr, B(pr), fo) *) B(pe) = B(pi) + Area(rectangle[(x, yi), pel);
2.2 (* Scan FP(p;) starting from o *)

while not x, < x, do
TEMP = A(f,) + Area(rectangle| f,, pi]);
if TEMP > B(p,) then B(p,) = TEMP;

a=a—1;
endwhile
2.3: push (pe, B(pe), fo) in stack Sy;
endfor

end (* of Phase 1(p;) *).

Procedure Phase 2(p;) (* Phase 2 of complete processing *)
Input: the data structure P, and stack Si;
Output: the updated data structure P;
intermediate data structure: a stack S,.
(* It contains a path in G from p; to the point whose processing has just completed. *)

1: use self indicator of p; € P to reach p; € P*;

2: for j = (index of p; € P*) ..., n do (* Process the elements in left to right order *)
2.1 pop the elements of stack S, until a point p; is observed such that y; < y;;

2.2 if no such element is found then (* (p;, p;) € Er *)

2.2.1: pop elements from stack S; until a point py is observed such that y; < y;;

(* The triplet corresponding to py is (px, B(pr), ) *)
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2.2.2: add ji in FP(p;) (* ji is a footprint in FP(p;) *);

2.2.3: A(jx) = B(py) + Area(rectangle|(x, i), pj1);

2.2.4: set pred field of j; to point the foorprint f,.; € FP(p;);
2.2.5: (* eliminate foorprints from /P(p;) using dominance rule *)

scan elements in F/P(p;) from left towards right to eliminate all gg € FP(p;)

such that A(gs) < A(ji)

2.2.6: set @ = 1; (* propagate footprints of /'P(p;) whose x-coordinates are
less than xy, in FP(p;) *)
repeat
2.2.6.1: if xz, > x; then
2.2.6.2: TEMP = A( fy) + Area(rectangle[ fo, p;);
2.2.6.3: if TEMP > A(j;) then
2.2.6.3.1: add projection of f,, say g, in FP(p;) with A(g) = TEMP;
2.2.6.3.2: scan the elements in F'P(p;) from gg towards right to eliminate
all the footprints g* € FP(p;) such that A(g*) < TEMP;
endif
endif

2.2.7: a=a+1;

until x, < x;
2.3: else (* (pi, pj) ¢ Er—the popped element is p; *)
2.3.1: if ji ¢ FP(p;) then add j; in FP(p;);

(* apply inheritance rule to calculate A(ji) *)

2.3.2: TEMP = A(t) + Area(rectangle[(xy, yi), p;1), where 7 be the rightmost element in FP(py);
2.3.3: if TEMP > A(j;) then assign A(ji) = TEMP;
2.3.4: set pred pointer of (j) to point the footprint T € FP(py);

endif

end (* of Phase 2(p;) *).

Procedure Recognize_Stair (* Backward pass *)
1: (* T is the rightmost element in FP(t) *)
output A(t) as the area of the largest MESP;

(* Reporting of staircase: this pass starts from t and proceeds through the pred field

of the footprints until the bottom-left corner b is reached. *)
for all edges on the path from 7 to b in SG do
(* Let the pred field of i, points to jg *)

2.1 report L_path(i, j) as a downward step in the lower stair;
2.2 sweep a horizontal line segment [x;, , x;,] to recognize the upper stair in
downward direction;
endfor

end Recognize Stair.
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