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Abstract

The Salton Sea which is located in the Southeast desert of California is becoming a dangerous habitat for birds. It is supposed
that elevated salinity, accelerated eutrophication, blooms of Avian botulism and dramatic water quality fluctuation are the key
factors for massive die-off of Tilapia (prey) and Pelican (predator) in the Salton sea. Chattopadhyay and Bairagi [Ecol. Model.
136 (2001) 103] proposed and analyzed a three-component eco-epidemiological model consisting of susceptible fish population,
infected fish population and their predator, the Pelican population. We modify their model from more biologically realistic point
of view and then analyze it. The main objective of the work is to find out conditions for which the modified system becomes
disease free. Numerical simulations for a hypothetical set of parameter values are presented to illustrate the analytical findings.
It is observed that if the initial value of the system is contained in the invariant set which contain the disease-free equilibrium, the
solution will approach the disease-free equilibrium under suitable parametric conditions. If the initial value of the system is not in
the invariant set, impulsive harvesting strategies can be used to change the initial state to the desired disease-free equilibrium state.
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1. Introduction

The Salton Sea has become a dangerous habitat of
wild migratory birds. Each year millions of birds are
paralyzed or die after exposure to a toxin produced by
the botulism bacterium. Avian botulism is most likely
to occur due to elevated salinity of the water, acceler-
ated eutrophication, algal blooms, reduced dissolved
oxygen and dramatic water quality fluctuation. In the
Salton Sea, the level of dissolved salt is around 43 ppt

(parts per thousand) whereas the normal salinity of the
sea water is around 35 ppt. Colorado River while trav-
elling through Imperial and Coachella Valley picks up
salt and nutrient and eventually drains into the Salton
Sea. Moreover, the Salton Sea has no outlet and hence,
the salt and nutrient remain in the lake, continue to
increase year after year, causing massive algal blooms
in the Sea. These algae die almost as quickly as it
grow. When it dies oxygen is pulled from the sea wa-
ter to help the algae decay causing oxygen depletion
in the Sea water. This usually happens during the late
summer when there is little dissolved oxygen in the
water and becomes a suitable medium for botulism
bacteria to grow and produce toxin (for details, see
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There are four types of sport fish in the Salton Sea,
namely, Tilapia (Oreochromis mossambicus), Corvina
(Cynoscion xanthulus), Croaker (Bairdiella icistius)
and Sargo (Anisopremus davidsoni). Out of these
four types of fish, Tilapia is the most abundant in the
Salton Sea probably because of its stunning repro-
duction rate. It is well known that Tilapia is infected
by a vivrio class of bacteria, which is very common
in salt water fish. Due to this vivrio infection millions
of Tilapia die off every year. The Tilapia which are
infected by the disease develop some oxygen-free
portions in their body, making good habitat for bo-
tulism. As fish affected with vivrio tend to rot from
the inside out while they are alive. Frank Shipley,
Director of Northwest Biological Science Center in
Seattle, remarked that the Tilapia while dying of
vivrio infections, would also be harboring fatal doses
of botulism when they were eaten alive by the Pelican.
As the fish struggle in their death they tend to rise to
the surface of the sea and become more vulnerable
as well as attractive to fish-cating birds, like Pelican.
Thus, a unique interaction occurs between Pelican
and sick Tilapia having botulism in their tissues and
serves as a source for toxication of birds that feed
upon them. Also Vivrio is passed from one infected
fish to another susceptible fish; the more fish that are
in the sea, the more chance that a large number of
them will become affected by the disease. This causes
terrible bird mortality events at the Salton Sea. It has
been observed that over 14,000 water birds, mostly
white Pelican, died during the summer of 1996. The
similar events also happened in 1992 and 1994 when
15,000 and 20,000 Eared Grebs (water birds) died.

Chattopadhyay and Bairagi (2001) proposed and
analyzed a three dimensional eco-epidemiological
model consisting of susceptible fish population, in-
fected fish population and their predator the Pelican
population. Where they assumed that the predator pop-
ulation preys infected fish population only. They stud-
ied the local stability, global stability and persistence
of the system around the positive interior equilibrium.
They observed that if the level of the search rate of
predator is low, the system around the positive interior
equilibrium is stable. But the instability sets in with
the increase of search rate level of predator. Sarkar
et al. (2001) modified the model of Chattopadhyay
and Bairagi (2001) by introducing an additive color
noise in the infected Tilapia population and studied

the dynamical behavior of the system. They also con-
cluded that for the persistence of Tilapia and Pelican
in the Salton Sea, reduction of Tilapia population in
considerable amount is required and hence a suitable
harvesting strategy should be implemented.

In this paper, we first modify the eco-epidemio-
logical model proposed by Chattopadhyay and Bairagi
(2001). We assume that Pelican feeds not only on in-
fected fish but on susceptible fish also. Feeding on
infected fish enhances the death rate of Pelican and
is considered to contribute negative growth where as
feeding on susceptible fish enhances their growth rate
and is considered to contribute positive growth. We
believe that above assumptions make the model bio-
logically more realistic. One of the basic goals for the
study of eco-epidemiological model is to find condi-
tions for which the system becomes disease free. So we
have tried to establish conditions for which the modi-
fied system eventually becomes disease free. Numeri-
cal solutions for a hypothetical set of parameter values
are presented to illustrate the analytical findings.

The organization of the paper is as follows: Motiva-
tion of the present study has been given in Section 2,
Section 3 deals with the basic model and some basic
results. Local stability analysis of the system around
various equilibrium points are studied in Section 4,
the geometric configuration of the model has been
discussed in Section 5 and finally a discussion in
Section 6.

2. Motivation of the present study

Ecology and epidemiology are major fields of
study in their own right. But there are some common
features between these two fields. Unfortunately, lit-
tle attention has been paid so far to see the effect of
epidemiological parameters in ecological systems. To
the best of our knowledge, Hadeler and Freedman
(1989) were the first who described a predator—prey
model where the prey is infected by a parasite, and
the prey in turn infects the predator with the para-
site. They dealt with two different, though closely
related problems, persistence of a parasite in a given
prey—predator system and parasite mediated coexis-
tence of prey and predator. But the paper was mainly
theoretical and did not address any specific situa-
tion. Beltrami and Carroll (1994) observed the roll of
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viral disease in recurrent phytoplankton blooms by
proposing a three species model consisting of sus-
ceptible phytoplankton, infected phytoplankton and
their grazer. They showed that introduction of virus
contaminated cells, even in very small numbers, has
the effect of destabilizing. They also observed that the
model displays aperiodic or even chaotic fluctuation in
bloom outbreaks levels from year to year that mimics
the recurrent pattern seen for Noctiluca scitillans in a
remarkable data set of cell counts over a consecutive
twenty-one years span. Venturino (1995) proposed
a two-dimensional prey—predator model and studied
how the presence of the disease among the prey af-
fects the behavior of the model. They concluded that
under suitable assumptions the disease acts as a con-
trol for the system. Chattopadhyay and Arino (1999)
proposed a three species eco-epidemiological model,
namely, sound prey (susceptible), infected prey (in-
fective), and their predator. Making an assumption on
the growth rate of the susceptible prey populations,
they converted the three-dimensional model to a two
dimensional one and studied the local stability, ex-
tinction and hopf-bifurcation in a two-dimensional
system. By applying a Poincare map, they observed
the connection between the reduced and the original
system. Xiao and Chen (2001) used the model of
Chattopadhyay and Arino. They considered only the
susceptible prey population is capable of reproduc-
ing. Incidence and interaction rates between prey and
predator follow the simple law of mass action and
the predator mainly eats the infected prey. They also
assumed the reproduction of predator after predating
the prey would not be instantaneous, but mediated
by some discrete time lag required for gestation of
period. They conclude for large time delay the oth-
erwise unstable positive equilibrium can be stable
again. Chattopadhyay and Pal (2002) considered a
model by merging the model of Venturino (1995) and
Beltrami and Carroll (1994). They observed that there
is a possibility for the coexistence of the system when
the contact rate follows the law of mass action. This
observation is similar to Venturino. But if the contact
rate follows the law of standard incidence a minute
amount of infection can destabilize the system. This
result is similar to Beltrami and Carroll (1994). They
concluded that the behavior of such systems is very
much model dependent and progresses of this burning
issue depends on the responsibility of the researchers.

Use of viruses as biological control agents has
not been tested in the field or in the laboratory due
to insufficient information on viral-host interactions.
Environmental concerns by the public and regulatory
agencies presently limit the potential application of
the control method. Reviewing all such studies, we
may conclude in this stage, it is quite impossible to
draw a general conclusion whether the virus/parasite
acts as a biological control. As such we feel that re-
searchers should concentrate on how the overall sys-
tem can be made disease free. In this study we have
tried to establish conditions for which the considered
prey—predator system with disease in the prey species
will eventually become disease free. We have observed
that to achieve this goal suitable impulsive harvesting
strategies may play a crucial role (see Sections 5 and 6
for details). We do not want to claim that our model
is the best one, but somehow is nearer to the reality.

3. The basic assumptions and the
mathematical model

We have two populations:

1. Tilapia fish whose population is denoted by N([N]:
number of Tilapia per unit designated area).

2. Pelican bird whose population is denoted by P([ PJ:
number of birds per unit designated area).

The following assumptions are made for formulat-
ing the basic differential equations.

Assumption 1. In the absence of bacterial infec-
tion, the fish population grows according to a logistic
fashion with carrying capacity K(K € R4), with an
intrinsic birth rate constant r(r € Ry) such that

dN N

Assumption 2. In the presence of bacterial infection
we assume that the total fish population N is divided
into two classes, namely, susceptible fish population,
denoted by S, and infected fish population, denoted
by I. Therefore, at any time ¢ the total number of fish
population is

N = S0) + 1(D). )
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Assumption 3. We assume that only susceptible fish
population, S, is capable of reproducing with logis-
tic law (Eq. (1)) and the infective fish population, 7,
does not reproduce. However, the infective fish, 7, still
contributes with S to population growth towards the
carrying capacity.

Assumption 4, The mode of disease transmission fol-
lows the simple law of mass action. Therefore, the
evolution equation for the susceptible fish population,
S, according to Eq. (1) and Assumptions (3) and (4),
can be written as

ds S+1
— =rS{1——|) —ASI 3
dr r< K) ’ )

where L(A € R;) is the rate of transmission (or force
of infection).

Assumption 5. The disease is spread among the prey
population only and the disease is not genetically in-
herited. The infected population does not recover or
become immune. Since prey population are infected
by a (lethal) disease: infected preys are weakened and
become easier to catch. Also they are present in the
Salton Sea in considerable number, so we assume that
predator’s functional response to the infective prey fol-
lows simple law of much action and included in the
predator’s growth equation with a negative sign. While
susceptible preys casily escape and predation becomes
difficult, so we assume that predator’s functional re-
sponse to the susceptible prey follows Holling type
1I predation form which is included in the predator’s
growth equation with a positive sign (Holling, 1965).
From the above assumptions, we can write down the
following modified set of differential equations as our
model:

1 P
d—Ser(l—Sj; )—MS— 015 ’

dr a+ S

A ads — mtp — i

R

o 1P — 1

dP  6,8P

=2 PSP, )
dr a+ S

where 61, m are the search rates, 6,(<6) represents
the conversion factor, m, represents the death rate of
the predator per unit consumption of the infected fish,
a is the half saturation constant, u and § are the natural

death rates of infected prey population and predator
population, respectively.

We observe that the right hand-side of Eq. (4) is a
smooth function of the variables (S, I, P) and the pa-
rameters, as long as these quantities are non-negative,
so local existence, uniqueness and continuation prop-
erties hold in the positive octant.

Lemma 1. A/l the solutions of (4) which initiate in
Ri are uniformly bounded.

Proof. We define a function
(%

w=S+1+—P. 5)
&)

The time derivative of (5) along the solutions of (4) is

dw s(1 S+1 1P I
do o1 _STI\_, p_
dr K ! "
9 015 P
_Am 297 (6)
0 0

For each n > 0, the following inequality holds:
dw S

— < 1—— S — i
dt+nw_<r< K>+n> + (0 —w

r+n)?

0
—8)—~P<K
@ )92 - 4r

01 P
+(U—M)I+(TI—5)0—-
2

Now if we take n < min(u, §) then the right hand side
of (6) is bounded. Then we can find a constant / > 0
(say), such that

do | I
—_ w < (.
dt g

Applying a theory of differential inequality (Birkhoff
and Rota, 1982), we obtain

l
0<w(S LP)<—(1—¢
n
+ w(8(0), 1(0), P(0))e™ ",
and for r — 00, we have

/
0<w< —. 7
n
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Hence, all the solutions (S(7), I(f), P(t)) of (4) that
initiate at (S(0), 1(0), P(0)) € Ri are confined in the
region

forany ¢ > 0},
(3)

for all + > T, where T depends on the initial values
(S(0), 1(0), P(0)). Thus, the set B is an invariant set
which contains the §2-limit set of all the paths of the
system (4) that initiate in the positive octant. O

l
B:{(S,I,P)ERi;wz54_@-7

4. Existence of equilibria and variational analysis

The following observations are necessary before
we investigate the existence and nature of admissible
equilibrium of system (4). As mentioned in Section 3,
in the absence of the predator and infection in the
ecosystem, the susceptible population follows the
logistic growth with carrying capacity K. Hence,
from Lakshmikantham and Leela (1969), we have
0 < S(t) < K for the system (4) and without loss
of generality we assume that S(0) < K. Thus, the
infected population /(#) decreases to 0 for any initial
value 7(0) > 0 if

LK — < 0. ©)
Similarly the predator population also approaches 0 if

h K
a+ K

—§<0. (10)

Thus, we observe that if the parameters of the system
(4) satisfy the condition (9) then the infection auto-
matically gets washed away from the ecosystem and
only the susceptible fish population and the predator
survive in the environment eventually. Similarly if the
parameters satisfy the relation (10), the predator pop-
ulation goes to extinction leaving only the susceptible
and infected fish population in the ecosystem eventu-
ally. Now we shall examine the dynamics of the sys-
tem restricted to the boundary planes of the domain
of the system. That is we wish to study the dynam-
ics of the state when the considered ecosystem is free
from one of the species, viz. susceptible, infective or
predator. This study reveals the nature and dynamics
of the paths of the system (4) if the initial value of one

of the components of the state (i.e. S(0), 1(0) or P(0))
is zero. Considering the ecosystem which is free from
infection we have,

ds o1 S 01SP dpP 6,SP
—_— =7, —_ — _——, _—=
dr K a+ S dt a+S§

— 6P

This system admits three equilibrium points, viz. (0,
0), (K, 0) and an interior equilibrium point (§a/(6; —
8)), (r/61 K)(K — (8a/(62—0))(a+8a/(62—9))) in the
SP-plane. Here points (0, 0) and (K, 0) are saddles and
the interior equilibrium point may be globally stable
or this system may admit a unique stable limit cycle
around the interior equilibrium point in the interior of
the SP-plane (Kuang and Freedman, 1998; Srinivasu
et al., 2001).

Now considering the dynamics of the ecosystem in
the absence of the predator we have

A5 _o(1-3E s Y _uso
— =7 _ — —_ s —_= — .
ar K ar H

This system also admits three equilibrium points with
(0, 0) and (K, 0) on the boundary and (u/A), r(K —
(u/A)/(r+1K)) in the interior of the S/-plane. It can
be verified that the interior equilibrium point is glob-
ally stable while the other two boundary equilibrium
points are saddles.

The system (4) restricted to PI-plane is given by

df P 1 dp IP —§P
— =—-m —pul, — =-m —oP.
dt ! " dt 2

Here it is clear that (0, 0) is the only asymptotically
stable equilibrium point. And all paths initiating in the
PI-plane will approach (0, 0).

Now we investigate the existence of equilibrium
points admitted by the system (4) in the positive octant
Ri. Ey(0, 0, 0) is the trivial equilibrium, E1(K, 0, 0)
is the axial equilibrium, E>(u/A, r(AK — p)/A(r +
1K), 0) and E3(S, 0, P) where S = 8a/(6, — 6), and
P = (/61 K)(K — 8a/ (62 — 8))(a + 8a/ (62 — 9)) are
the boundary equilibria. A unique interior equilibrium
is E*(S*, I'*, P*) where

I 1 0, 8* s P*_)»S*—/L
" my \a+ S* ’ T
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and S* is the positive root of is a saddle with S-axis as its unstable manifold and
IP-plane as its stable manifold. Thus, no path initiating
in the positive octant can approach Ej.

rmyS*% — | moKr — amar — 6ar L . .
2 |: 2 2 2 The variational matrix of system (4) at E is

K
+5r—KA92+5KA—m]S* s —r_yg DK
mi a+ K
Oma K Vi=| 0 AK—p 0
— | maKra + éra + §aKh + ———— ) =0, (11) 0K
mi 0 0 2 —
a+ K

and must satisty the inequality
The eigen values of the variational matrix are & } =

S*-i—i < 628* —8) < K. (12) —r, g; =AK —p and 531 = 6,K/(a+ K) —§. Hence,
my \a+ §* the solution E is stable if
The condition (12) is due to the fact that S(¢) + I(r) < 0 < K < min < H as )
K forall t > 0. L6 —8)°
We see that equilibria Eg, Eq1 always exist. Also
observe that the existence of the interior equilibrium
point E* guarantees the existence of E; and E3. Ex-
istence of E; or E3 or both implies the instability of
E1. These facts can be observed by studying the vari-

ational matrices of the system evaluated at each of the
above equilibrium points. as we have d//dt < 0 and dP/dt < 0 whenever (13)

It is to be noted here that if K = /A and holds. Thus, local stability of E; implies its global
K = 6a/(0, — §) then E; and E3 will approach E; stability. | 1 .
which biologically means eventually eradication of Suppqse §y> 0and & <0. .In this case the sys.tem
infected Tilapia and Pelican population. But to pre- (4) admits Eo, E) and E as its equlhbrlum points.
serve the ecosystem we require the stability of E3 Clearly, Eo and Ey are saddles with SP-plane and

which biologically means coexistence of susceptible [-axis as S,tal?le and un.stable manifolds of £ L
The variational matrix of system (4) at E; is

(13)

ie. 521 < 0 and 531 < 0. Infact, in this case the E
becomes globally stable. For, condition (13) eliminates
the existence of E5, E3 and E*. All solutions initiating
on the /P-plane approach Eq and all other solutions
with initial values in Ri\{IP—plane} will approach E;

—Ti u(r + AK) O1u
2K MK Cak+p
r(AK — ) 0 _rmi(AK — )
r+AK A(r+ AK)
0 0 b mar(AK —p)
ar+p A(r + AK)
fish population and Pelican population. So we con- Observe that the eigen value of the variational matrix
centrate more on the stabilization of the disease-free in the P-direction is given by
equilibrium Ej. ) O mar(AK — 1)
The variational matrix of system (4) around Ej is & = ah+ p - A+ AK) — . (14)
r 0 0 and the remaining two eigen values £2, E% are the roots
Vo=10 —u 0 |. of the equation
0 0 -3 § 4 ot (K — ) = 0. (15)
The cigen values of the variational matrix are E(l] = Clearly both roots of the above equation have negative

r>0, 5(2] = —u < 0and sg’ = —§ < 0. Therefore, Eg real parts. Therefore, E» is local asymptotically stable
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(LAS) if 5% < 0. But 5% > 0 and $31 < 0 implies that
f;‘% < 0. Thus, in this case E; is locally asymptotically
stable. Since 531 < 0 implies that dP/d¢ < 0. Hence,
all solutions initiating in the interior of the positive
octant will approach S/-plane. Infact E, is globally
stable in this case.

Suppose éé < 0 and gé > 0. In this case the
system (4) admits Ey, Ey and E3 as its equilib-
rium points. Clearly, Eo and E; are saddles with
SI-plane and P-axis as stable and unstable manifolds
of Ej. Thus, only solutions with initial values in
Sl-plane approach E; and those with initial values
in the interior of the SP-plane will either approach
E3 or a stable limit cycle surrounding E3 depend-
ing on whether E3 is stable or unstable in the SP-
plane.

The variational matrix of system (4) at E3 is

2rS  ab P S(r+1K) 1S ]
K  (a+5)? K a+S§
Vi = 0 AS—miP—pu 0
a@zf’ -
—_— —ma P 0
L @+ S5)? _

The eigen values of the above matrix in the /-direction
is

3 Ma mr da
H=———-— (K-
6, —68 KO 6 —§

T (16)
x |a — U,
6, — 6 H
and it will be negative if
3
@ "o (17)
) A

The other two eigen values éf, Eg are the roots of the
equation

2 [ 2rS a@lp ]
—|r——=- _
K (a+ S?)

ab16,SP 0
(a+53
(18)

Clearly, real parts of Ef and Sg have same sign. If this
sign is negative then E3 will be locally asymptotically
stable if 5; is negative else the SP-plane becomes sta-
ble manifold for E3. If this sign is positive along with

Eg > 0 then E3 will be unstable. Incase Sg < 0 then
the SP-plane becomes unstable manifold for E3. In
this case the system will admit a unique stable limit
cycle on the unstable manifold. Since 521 > 0 we have
dI/dt < 0. Hence, all solutions initiating in the interior
of the positive octant will be drawn towards SP-plane
and eventually approach ecither E3 or a stable limit
cycle surrounding Ej3.

Now let us consider the case 55 > 0 and 531 >
0. In this case the system admits all the equilibrium
points Eg, E1, E>, E3 and E*. Clearly, Eq and E; are
saddles. From (4), we have

d(s I 01SP
AS+D _ (| SEIN 6
dr a+S§
S+1
—nl S 1——).
ul<r(S+1D ( X )
Hence, from Lakshmikantham and Leela (1969), we
have lim;_, o (S(?) + 1(¢)) < K. Moreover, if S(0) +
1(0) < K then we have S(7) + I(r) < K for all r > 0.
Thus, we have §*+ I* < K. Therefore, condition (12)

is always satisfied for our system.
The variational matrix of system (4) around E* is

—rS* n 0, S* P* S*(r + 1K) 0, 5*
K a—+ S* K a -+ S*
V¥ = AT* 0 —m I*
6, P*
(a+ 5%)2

The characteristic equation of the variational matrix is
given by

3 —rS*  01S*PY ,
5‘1‘( K +a+S* s

A a0, S* P*

+ P — —(r4+AK)S* [ ——————

(mlmZ % HAK) @t 53
ST P am16(r + AK) O1ma
K(a+ $*)2 a+ S*

—mymy (-% + (ff;))] — 0. (19)

We know that, if €7, &5 and &7 represent the three eigen
values of the above variational matrix, then we have
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am16(r + AK)
K(a + §%)2

Ormar

e =51 |

A
£185 + 581 + 58 = (mmal"P = L0+ AKOS'T -

—rS* 65" pP*
si*+s§+s§“=< += )

K a+ S*

We have the following observations. If £7£567 < 0
then Eq. (19) admits one positive real root. The other
two roots may be real with both being either positive
or negative, or complex with positive real parts or
negative real parts. From the above relations we see
that if £ + &5 + &5 < 0 then §[£5&7 > 0.

5. Geometrical configuration of the system

In this section we describe the geometry of the paths
of the system (4) under various assumption on the sys-
tem parameters. The following are the three isocline
of the considered system. S-isocline surface is

%1-%) —u—ffs =0. (20)
I-isocline is the plane

AS—mP—pu=0. 21
P-isocline is the surface

aeiss —mal —8=0. (22)

The surfaces (20)—(22) are represented in Fig. 1
by their numbers. S-isocline intersects the SP-, SI-,
Pl-planes in the curves

S 6P
r(1-2)- 22— =o, (23)
K a+ S
K
S:K—(l—i——)l, (24)
r
r 91P
r—<E+A)I—7—O, 25)

respectively. These isoclines intersect the positive S-,
I-, P-axes in the points (K, 0, 0), (0, 7K/(r + 1K), 0)
and (0,0, ra/0y), respectively. [-isocline intersects
SP- and SI-planes in the lines

AS —
p="2"F (26)

mji

r 0, P*

+ 9
K a+ S*
af16, S* P*

(a+ 83 )"

and
m
S=—, 27
x )
respectively. The P-isocline intersects SP-plane in the

line

da
S=—, 28
6 s (28)
and intersects S/-plane in the curve
628
—mal —6=0. 29
a+S " (29)

The curves (23)—(29) are represented in Fig. 2 by their
numbers. Now let us consider the lines (26) and (28).
Their slopes in the SP-plane are

0< L < oo andoo,

mj
respectively. Their intersection with the S-axis are
(u/X,0,0) and (6a/(0; — 6), 0, 0). These lines inter-
sect the curve (23) in the points (8,0, P) and E3, re-
spectively, where S is the positive root of the equation

rSz+ ra O\ +91u+
- r——— — — +ra=0,
K K m K1

and

. AS—

p= "

Consider the curves (27) and (29) on the Si/-plane.
Slopes of these two curves are given by

oo and 0 < L < 00,

ma(a+ S)?

respectively. These curves intersect the S-isocline in
the points E; and (S,1,0) where (S, 1) is the inter-
section of (14) and (29) in the SI-plane. We observe
that order and proximity of the values of w/A and
da/(0, — &) play crucial role in determining the be-
haviour of the equilibrium points of the system (4).
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(20)

(22)

207

9]

Fig. 1. The figure represents the S-, I-, P-isocline surfaces given by the Eqs. (20)+22), respectively. Note that the S-isocline touches all
boundary planes, viz. SI-, IP-, SP-planes while the /- and P-isoclines touch only S/- and SP-planes in the positive octant of the (S, 1, P)

space.

Below we illustrate the dependence of the above terms
on the existence and nature of the equilibrium points.
Let us consider the case

da
0 — 6

=

(30)

> =

Note that the curves (27) and (29) do not interact in
the interior of the S/-plane in this case. We have the
following three subcases:

(a) The lines (26) and (28) do not intersect below (23)
on SP-plane.

(b) The lines (26) and (28) interact on (23).

(¢) The lines (26) and (28) interact below (23).

It is easy to observe that % < 0 holds good in
this case. Hence, E» is locally stable. Also we ob-
serve that é; is positive in case (a), it is zero in
case (b) and negative in case (c). Hence, we infer
that E3 is stable in the /-direction and E; is locally
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v

(iv, viii)
E2

Fig. 2. The figure represents the division of the positive octant of the (S, I, P) space into ¢ight regions by the S-, I-, P-isocline surfaces
characterized as (i) (+, —, —), (i) (+, —, +), (i) (+,+, +), (V) (+,+, —), (V) (—, —, =), (vi) (—, —, +), (vii) (—, 4, +), and (viii)
(—, 4+, —). Here the first entry in the ordered pairs represents the region below the S-isocline surface and the second one represents the

region above the S-isocline surface.

asymptotically stable whenever (30) holds and E*
exists.

Now consider the case

da "

B 31
b —5 S

Notice that, in this case the curves (26) and (28) do not
interact in SP-plane and we have the following three
sub cases.

(d) The curves (27) and (29) interact in SI-plane below
(24).

(¢) The curves (27) and (29) interact on the curve
(24).

(f) The curves (27) and (29) interact outside (24).

In this case the sign of gg remains negative. Whereas
the sign of 5% is negative in case (d), zero in case
(¢) and positive in case (f). This implies that, E3
remains stable in /-direction and E, also remains
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stable if the system parameters satisfy (31) and E* ex-
ists. It becomes unstable in the P-direction if sub case
(f) holds.

In the light of these observations let us look at the
eigen values of the interior equilibrium E*. Notice that
we always have S < §* and P > P* (refer (Fig. 2)).
Hence, we have 1 P/(a+S) > 61 P*/(a+ S*). There-
fore, from (18), whenever the boundary equilibrium
points E> and E3 are such that E is locally stable and
Ej3 is stable in the I-direction, we have E* to be a hy-
perbolic saddle with two-dimensional stable manifold
and one-dimensional unstable manifold. This stable
manifold divides the positive octant into three invari-
ant regions. Hence, B also gets divided into three
invariant sets, say B, By and B3 where B3 = {BN
stable manifold of E*}. The invariant sets B; and
B, lie on either side of Bz. From the nature of E;
and E3 we see that they can not belong to B3 hence,
these two points must belong to B\ B3. The unstable
manifold of E* is made up of two (branches) paths of
the system (4) who have a common «-limit point as
E*. These paths being off the stable manifold region,
move away from the stable manifold monotonically
as time progresses (Coddington and Levinson, 1995;
Farkas, 1994) but will be completely contained in
B. This follows from the invariance of B. Clearly,
one branch of the unstable manifold is contained in
B and the other is contained in Bj. Thus, these two
branches, say /7 and /> must approach a limit point
in the respective invariant regions in which they are
lying. Hence, By and B; must contain a §2-limit point
each of the system. These points can not be Ey and
E as they can not be approached from interior of the
positive quadrant. Hence, the eligible limit points are
E; and E3. Therefore, let us assume that E; € By and
E3 € B;. The unstable manifold of E* connects the
points E> and E3 through E*. The stable manifold
intersects the positive octant along S-axis which con-
tains the remaining equilibrium points of the system,
Eq and E|. It also intersects the Pl-plane along a path
of the system on P/-plane. Hence, if a path initiates
in the set By it will move away from B3 under the in-
fluence of '] and approach E; eventually. If the path
is initiated in Bj it also moves away from B3 under
the influence of I'> and eventually approaches E3 or a
stable limit cycle surrounding E3 depending on E3 is
stable or unstable in SP-plane, respectively. If the path
is initiated in B3 it eventually approaches E*. Now

viii

iv

Fig. 3. The figure represents the journcy of the state through
various regions as time progresses. Note that there are only three
alternative ways for any path moving through the positive octant.
These alternatives are shown in (32)—(34).

we discuss the journey of the paths in the positive
octant.

Whenever interior equilibrium is admitted by the
system (4), the isocline surfaces given by (20)—(22)
divide Ri into eight regions denoted by i, ii, . . ., Viil.
Each region is characterized by a combination of the
growth patterns of the state variables S, 7 and P. (i) =
{(S,,P):S >0, <0, P < 0} where the prime
(") denotes the derivative of the state variable it is asso-
ciated with. We denote this region by (i) = {+, —, —}.
Similarly (ii) = {+, —, +}, (iii)) = {+, +, +}, (iv) =
++ -1V = {-—--}Lv) = {——-+}h
(vii) = {—, +, +}, and (viii) = {—, +, —}. These re-
gions are represented in Fig. 2 using ordered pairs.
In each ordered pair the first entry represents the
region below the S-isocline and the second one rep-
resents the region above the S-isocline surface. The
journey of the state as time progresses is described in
Fig. 3.

If S(0), 1(0), P(0) is in (i), the evolution from this
initial value may approach any one of the equilibrium
points Ep, E3, E* directly as if the equilibrium ap-
proached is a node or it may go through the cyclic
paths indicated in Fig. 3 and eventually approach the
corresponding equilibrium point depending on posi-
tion of its initial state. The journey through various
regions traced out by the paths initiating in By, By and
B3 are respectively given by

(i) = (iv) — (iii) — (vii) > (vii)) > (v) > (i),
(32)

1) — (i) = (vi) = (v) = (1), (33)

(1) — (iv) — (i) = (vi)) = (vi) = (v) = (1).  (34)
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6. Discussion

Chattopadhyay and Bairagi (2001) proposed and
analyzed an eco-epidemioligical model on Salton
Sea. In this paper, we have modified their model by
taking into consideration that Pelican population feed
on both susceptible and infected fish population and
feeding on infected fish enhances the death rate of
Pelican. The main objective of this work is to find
out the conditions for which considered system will
become eventually discase free.

To establish our results we first showed that all the
solutions which initiate in R;" are uniformly bounded.
System admits four boundary equilibria and one inte-
rior equilibrium under some suitable parametric con-
ditions. We observed that under suitable conditions
the interior equilibrium becomes a hyperbolic saddle
with stable manifold of dimension two. It is also ob-
served that this stable manifold separates the solution
space of the system into two disjoint invariant subsets.
Hence, if the initial value of the system is contained in
the invariant set which contains the equilibrium point
E3, then the solutions will eventually approach E3 un-
der suitable conditions on system parameters. If the
initial value is not contained in the invariant set, then
the feedback control can be used to change the initial
state to a new state (contained in the invariant set con-
taining E3), so that the state eventually will approach
E5. This change of the initial state may be achieved by
suitable impulsive harvesting strategies which may be
positive harvesting or negative harvesting (i.e. adding
new population) or combinations of both.

To validate our analytical findings the following
hypothetical parameter values have been considered:

Infectives

r = 3 per day, K = 45t, . = 0.006, m; = 0.05 per
day, a = 15t, u = 0.24,d = 0.09, 6; = 0.5, 6, =
0.2, my = 0.04 per day. With the above parameter
values we find that the system admits the following
equilibrium points £y = (0,0,0), E; = (45,0, 0),
E; = (40,4.5871559633,0), E3=(12.272727273, 0,
119.00826446) and E* = (43.351788387, 1.4646923
501, 0.40221460646). We observed that for these
set of parameter values E* becomes saddle with
two-dimensional stable manifold and E3 unstable in
the SP-plane. Also we observed that the states with ini-
tial values d1 = (30, 5, 125),d2 = (9, 5, 125),d3 =
(9,10, 60) eventually approach a limit cycle sur-
rounding E3 in the SP-plane indicating that the initial
states are in the required invariant set. While the so-
lution with initial data d4 = (5, 35,5) approaches
the equilibrium point E; indicating that the initial
state is not in the required invariant set. Time eval-
uations of the three species and corresponding tra-
jectories for the above initial values are depicted in
Fig. 4. Now by taking the value of @ to be 50 and
retaining the values of the other parameters as above
we observed that the system admits the following
equilibrium points Ey = (0,0,0), E; = (45,0, 0),
E; = (40,4.5871559633,0), E3 = (40.909090909,
0,49.586776860) and E* = (44.830214848,
0.11370944219, 0.57962578171). In this case we ob-
served that E* remains saddle with one-dimensional
unstable manifold and E3 locally stable. Moreover,
the states with initial values b1 = (39,4, 55), b2 =
(34, 10, 60), b3 = (5, 20, 55) eventually approach E3
and the solution with initial data b4 = (5, 35, 5) ap-
proach E;. Time evaluations of the three species and
corresponding trajectories for the above initial values

Fig. 4. Labels 2, 3, * represent E; = (40, 4.5871559633, 0); E3 = (12.272727273, 0, 119.00826446); E* = (43.351788387, 1.4646923501,
0.40221460646), respectively. Solution initiating at d4 approaches E, and those initiating at d1, d2, d3 approach the limit cycle on the

SP-plane surrounding E3.
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Fig. 5. Labels 2, 3, * represent E2 = (40, 4.5871559633, 0); E3 = (40.909090909, 0, 49.586776860); E, = (44.830214848, 0.11370944219,
0.57962578181), respectively. Solution initiating at b4 approaches E; and those initiating at b1, b2, b3 approach E3.

are depicted in Fig. 5. It is also interesting to note that
S-value of E* is greater than the S-value of E3 while
the P-value of E* is less than the P-value of E3. The
reason is the presence of infected Tilapia population
in the Salton Sea. In the case of E* Pelican popula-
tion consumes infected population also, resulting in
enhancement of death rate of the Pelican population
following the dynamic equation of Eq. (5). But for E;3
the P-value is higher than that of E* as in this case
Pelican population consumes only susceptible fish
population which enhances their growth rate. In case
of E; where there is no Pelican in the environment,
we observe that the number of infected fish popula-
tion is much higher than that of susceptible one. This
is because the absence of Pelican in the environment,
increase the interaction between infective and suscep-
tible resulting in enhancement of infective population.
Thus, we may finally conclude that the Pelican popu-
lation plays a crucial role in keeping the environment
healthy and disease free.
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