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Abstract

Adaptive allocation designs are used in phase III clinical trials. Sometimes, from ethical considerations,
the goal may be to skew the allocation pattern in favour of the better treatment. Bandyopadhyay and
Biswas (Biometrika 88 (2001) 409) studied such allocation designs for two competing treatments, when the
patients heterogeneous with respect to some prognostic factors and the response from each patient was
continuous. In the present paper, we extend the work to the case of missing responses. Under missing at
random assumption, we impute for the missing data at every stage depending on the data available at that
point in time. We obtain the conditional and unconditional allocation probabilities and the standard error
of the estimated treatment difference at each stage. Through simulation, we show that imputation for
missing responses under this adaptive design set-up has a clear gain over the method that uses only
complete data. The gain is in the sense that the power is larger and the standard error of the estimated
treatment difference is smaller.
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1. Introduction

Patients arrive sequentially, perhaps for a two-treatment phase III clinical trial, and are to be
allocated to one of two treatments. Sometimes, from ethical considerations, the goal may be to
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skew the allocation pattern in favour of the better treatment by using available responses to
determinie the next allocation, using an adaptive allocation design. Bandyopadhyay and Biswas
(2001) studied such allocation designs for two competing treatments when the patients were
heterogeneous with respect to some prognostic factors and the response from each patient was
continuous. They presented an allocation design, assuming a normal theory model. They also
evaluated the expected limiting proportions of allocation and studied associated inferences.

Often, in practice, not all the responses may be available. In this case, a common method is to
use only complete data at each stage, assuming that the responses are missing at random.
However, this method is inefficient as it fails to make use of the prognostic factors associated with
the missing responses. The information in the prognostic factors may be utilized through
imputation for missing responses; in particular, using regression imputation.

The main purpose of the present paper is to study adaptive allocation designs under imputation
for missing responses. We assume a normal theory linear model relating a continuous response, Y,
to prognostic factors, x, and treatment effect. We also assume that the probability of response
depends only on x and the treatment indicator.

Section 2 provides our adaptive allocation design under regression imputation for missing
responses. The associated conditional allocation probability is derived in Section 3, as well as the
exact and limiting proportions of allocation. Section 4 gives the standard error of the estimated
treatment difference at each stage. Finally, Section 5 reports simulation results on the power of
the test of no treatment difference and the standard error of estimated treatment difference, after
the completion of the sequential allocation.

2. The allocation design

Suppose patients in the clinical trial arrive sequentially and are assigned to one of two
competing treatments A and B, using an adaptive design 2. Also, suppose that a predetermined
number of patients, v, are to be treated by the trial. Initially, the first 2m patients are to be
allocated at random to the two treatments, with m patients to each treatment. This ensures that at
least m patients are allocated to each treatment. We choose m to ensure that the model parameters
can be estimated from the initial sample of size 2m. We also assume that none of the initial 2m
responses are missing.

The responses of the patients are assumed to be instantaneous and follow a normal linear
model. The model for the response of the ith patient is given by

Yi=&pa+ (1 — EJpp + x] B+ &, 2.1

where ¢;’s are independent and identically distributed N(0, %) random variables, u, and up are
the treatment effects and &; is an indicator variable taking the value 1 or 0 according to whether
the ith patient is treated by A or B. We focus on the case where some Y-values may be missing but
x is completely observed for all the patients. In the presence of missing responses, the data for the
ith patient may be represented as {Y, x;, £;, 8;}, where Y; denotes the response that may or may
not be available, x; is a p x 1 vector of covariates or prognostic factors, and §; is another indicator
variable that takes the value 1 or 0 according to whether the response of the ith patient is available
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or missing. Note that we assume é;, =1 for i=1,...,2m. Model (2.1) may be validated in
practice, using standard linear regression diagnostics on the initial complete sample.

Adaptive allocation is carried out from the (2m + 1)st patient onwards. The allocation of
(n + 1)st patient, 2m<n<v — 1, depends on all the previously observed responses, all the previous
allocation indicators {&,,...,&,}, all the previous covariate history {x;,...,x,}, and all the
previous response indicators {d,,...,d,}. Denote the estimator of treatment difference, p, — ug,
at the (n + 1)st stage, after imputation for all the previous missing responses and eliminating the
effects of prognostic factors x, as iy, — 7ig,. We use a suitable cumulative distribution function
G(-), which is symmetric about 0, to implement the allocation of (n + 1)st patient. Allocate to
treatment A with probability G(ii}, — fiy,) and to treatment B with probability 1 — G(jiy, —
Hgn) = G(iig, — Ha,)- A natural choice for G(-) is the probit link G{a) = ®(a/T), where ®(-) is the
standard normal cumulative distribution function and T is a tuning constant.

We assume that Y is missing at random, that is P(6 = 1|Y, &, x) = P(6 = 1|£,x) or  and Y are
conditionally independent given ¢ and x. This assumption is reasonable in many practical
situations; see Little and Rubin (1987, Chapter 1) for some discussion.

3. Allocation probabilities
3.1. Conditional allocation probability

Let Na, =3 ;¢ and Q,, = 3.1 &6 denote the number of allocations and the number of
available responses to treatment A, respectively, based on the first » patients. Similarly, let
Ne. =3 (1 = &) and Qg, = 3, (1 — &)9; for treatment B. Further let

5 ;&6:1’; 5 __;:(l £)6:Y,
An ™ Oy O’ Ban — Ogn

Y &dx; S (-8
=C _ =l =C __ =1
xM - O ° xB" - Ogn 4
\ Z &1—6)x, " Z(‘ &3
v p— )|
=N =T Moy

Here YA,, is the sample mean of the available responses to A, %5, and X}, are the sample mean
vectors of the covariates corresponding to the A-treated patients whose responses are available
and whose responses are missing, respectively. Similar interpretations are for B-treated patients.

Now, based on the available responses and associated covariates from the first » patients, define

=C=cT
S(n) - Z 6 x; xAnxAn QanB”xBn y

Sg'y) = Z 0:Yix; — Qa, YA,, - Og, YanBn
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Bstimates of f, i, and uy are then given by
By=s07's),

~ oC = 2
Ban = YAn - (xgn)'rﬁm

" 5C = !
ipy= Yg,— xg,,)Tﬁn-
For any missing Y;, we unpute it by jia, + xTB,, if the ith patient is treated by A, and by

gy + X; ﬁ,, if the ith patient is treated by B. Thus, after imputation at the nth stage, the imputed
ith observation is

Z0 = 5¥i+ (1 - 5} Fan+ (i — FS)B,),
if the ith patient is treated by A, and it is
ZP = 5,Y;+ (1 = 8){Fpa + O — 75)7B,),

if treated by B. We write the imputed estimator of u, — ug, after eliminating the effects of the
covariates, as

P — g = ﬁ—)j]: &2Zy) - ——Z;u - 8)Z ~ (%3, — %) By

where

7 Qanfln+ Nar = Qan)iy,
An = NAn

is the mean of all the x;’s corresponding to the A-treated patients. Similarly, X}, is defined. The
estimator of § based on the imputed data is given by

ﬁ S(u)* -1 S(n)*

xy ?
with

SO = Z Exix! — Nans, %45, T — Np x5, %8 T, (3.1)

and

SO =Y Ex(Yi— P+ (1 = E)xYi - T, (.2)
=i =i



A. Biswas, JN.K. Rao [ Statistics & Probability Letters 70 (2004) 59-70 63

OanYan+ (Nan— Qa) Fan+ { > Elxi— ’-an)T}ﬁn

ii5;=0

Y*All = NAn
= Tan+ (M2 s - 55,

We have a similar expression for ¥j,.
It is easy to show that

B, = Bn 3.3)

Result (3.3) implies that the covariates associated with the missing responses provide no
additional information in estimating 8. However, those covariates contribute to the imputed
estimators i, , and Jig, of p, and ug, respectively.

We have

P o = 3 6280~ 373 (1= 8025 = B = 5B G4

Bn

Now, conditionally given {&,,...,&,;01,...,0n X1,...,X,), We write

20 ~ N(ua + 8,02 51+ 0 - ip{ g+ (= TS - 550 ])
under missing at random assumption. Further, conditionally

colZP, ZP) = (1 = 8:8))” [@L + O — 7, TS0 (g - iﬁ,.)],
An

noting that

_C ~
conY 5, ,) =0,
and

Qan
Consequently, the conditional variance of 37, &ZY is given by

Var (Z 5:'2(&],)) =) o [5:' +(1-8) {61— + (i — 35,807 (o, - J_‘An)}]
An

i=1 !‘:éf=l

con(¥s, 5, + (x; — 3$)TB,) = o [— + (= 55 T8O (- xg,,)]

+ > - 5,-5,«){& + (= %5, YIS0 oy - %S, }

Lii#jl=14=1

=0ud 4 T (- g+ = NS ;-CA,,)}_

if:&=14=1 Oan
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A similar expression for the conditional variance of 37 ,(1 — E)Z2 is obtained and the
conditional variance of B, is S®o2. Now noting that the three components of &3, — fig, in (3.4)
are conditionally independent, we obtain the conditional variance of %, — fig, as

V= Var(ih, = )

== _Nl_%; {QMU’z + 0'2 Z (l - 5,'5j)[—Q—i—"~+ (xi — iAn)TSS;?-_l(Xj _ .ig")] }

ij:f,=1.&1=l

1
+E{QB,,02+62

iW:6=0,4=0

(1 — 8:3) [é‘; + 0~ F5 TS0 (s - iﬁ,.)] }
+ O — BT SE T Ry — )
Or " Do
+(1-20) @ - s @ - %,
o(1- Y - s ot - 0.

=:o’%, (3.9

= 02{ o (B, — B)TSE E — B)

noting that

3:80x; — X$)TSO (%, — 2y =0
W=5=1

and

3 b0 — 2580 o - 35,) =0.
H:dy=0,5=0

Thus, conditionally we have
Ban — Bbw ~ N(pp — pip, 032). (3.6)

If the responses are not missing, then §; = 1 for i = 1,...,n, and (3.5) reduces to expression (4) of
Bandyopadhyay and Biswas (2001).
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At this stage, we assume that x;’s are independent and identically distributed as N,(s,, Z). Then,
conditionally, 632 has the same distribution as

1 1 1 1 /
az[(QAn+QBn)+(NAn+NBn)Q,,-—p-—lWl
_QA;: 2( 1 1 ) J /]
+(l NAn) QAn+NAn—QAn Qu‘P“le
_QBn):z 1 1 ) P
+(1-%2) (o mran Q,,—p—l"”"

where O, = Q,,, + Op, and W,, W; and W have an F-distribution with degrees of freedom p and
Q, — p — 1. Note that (Q, —p — 1)"'W; — 0 in probability as n — o0, i =1,2,3.

3.2. Unconditional allocation probability

Let yi(n) = P({,,.1 = 1) be the unconditional probability that the (n+ 1)st patient will be
allocated to treatment A. Clearly,

¥(n) = E{P({,,; = 1| data based on the first n patients)}

_ Btpy — Pipy
-£{o (7))

= E[E{¢(w&) 61’« --géu; Cl’---’ém WI, Wls W3}]
_ Pan — By
o<t )]

where U follows a standard normal distribution. Thus, using (3.6), the unconditional probability
reduces to

ym) = E{ o FAZER_| L (3.7

VT +022

It follows from (3.7) that y(n) = 1 when pu, = py. If treatment A is better than B, that is p, > ug,
then the unconditional probability is skewed in favour of the better treatment, A.
Now, following the proof of Theorem 1 of Bandyopadhyay and Biswas (2001), we get

vm<o(PAH),
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and it is enongh to study the limiting behaviour of {y(n), n>2m + 1} only at Wy = Wy = W, =
0, i.e. to study the limiting behaviour of

2 2f_L 4 1
1/7‘ +o (QM+QBn)

The sequence {y*(n)} is non-decreasing and bounded, as in Bandyopadhyay and Biswas (2001),
and hence the sequence converges to a number 7* in the interval (0, 1). Similar to Bandyopadhyay
and Biswas (2001), we can show that

Further,

h—)n"
n

in probability, as n — oo.

4. Gain in precision

If we ignore the missing observations completely and proceed with the Q, = Q,,+ Oy,
complete observations, we get the conditional variance of the estimator of u, — ug, the treatment
difference, as

. o 1 1 - _ -1, _
Var(fia, — figy) = al{E *ont (xS, = X5 )TS0 (=, - xg,,)}. (4.1)

Note that

%o = %50 = Gha = 5+ (1 - 220 55, - )+ (1~ )t - 550
Hence,
(5 — #0787 6, - 55

2
e o -, ) _ N -1, _
= (R4, — &) SO (%, — %) + (1 - ——'gz) (N, = XSSO @ — x5

2
- - -1, _ -
+ (I - KQ)%) G — XSSO (&M — 25 )Y+ R,
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Table 1

Exact expectations and standard deviations, SD, of the proportion of allocation to treatment A, and standard
errors of the estimated treatment difference based on the imputed data, SE (Z:), and only on the available responses,
SE(d): T=2

4 E (Nav/v) SD (Nav/v) SE (4}) x100 SE (4,) x100 SE (39
SE (4,)

Missing type A

0.5000 0.1405 0.825 0.900 1.09
1 0.6527 0.1409 1.023 1.124 1.10
2 0.7674 0.1484 1.745 1.862 1.07
3 0.8294 0.1482 2.711 2.838 1.05
Missing type B
0 0.5000 0.1402 0.872 1.016 1.16
1 0.6552 0.1406 1.143 1.294 1.13
2 0.7648 0.1412 1.872 2.082 1.08
3 0.8258 0.1403 2902 3.065 1.06
Missing type C
0 : 0.5000 0.1412 0.910 1.106 1.21
1 0.6472 0.1411 1.211 1.409 1.16
2 0.7529 0.1430 1.924 2.125 1.10
3 0.8282 0.1450 2957 3.177 1.07
where

Q - _ -1, -
Ri= 2{ (1 - Bon)s3, — sh TS 5, - )
1-— QBH (-t _= )TS(")_I(.iM - )
Noa XBn — XBn) ®xx ¥Bn ~ XBn
Q Q = =M T =1 -
(1-22) (1- o) g, - Btymse' el - 550 42)

It follows from (3.5), (4.1) and (4.2) that we get benefit from the imputation in terms of
efficiency if R,>0. But it is difficult to determine R, for each n. We, therefore, conducted a
simulation study in Section 5 to evaluate the gain in efficiency due to imputation for missing
responses; see Table 1.

§. Simulation study
We conducted a small simulation study to evaluate the expected proportion of allocation to

treatment A and the power of a two-sided test of the null hypothesis 4 = p, — pug = 0 after
completion of the experiment with v patients. The two-sided test is based on the imputed estimator
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A = H,, — Hp,» and the condxtlonal distribution of A is given by (3.6) with n = v. We alg
eva}uated the standard error of A

We studied three missing types denoted by A, B and C, under the missing at random
assumption, using a single covariate generated from N(2,4). We followed Wang and Rao (2002)
to specify the missing types A, B and C.

Type A: P1(x) = P(6 = 1|x) = 0.8 + 0.2|x — 1| if |x — 1{< 1, and Pj(x) = max{]l — 0.05|x — 1],0}
otherwise.

Type B: Pi(x) = P(6 = 1|x) = 0.9 — 0.2|x — 1] if |x — 1]<4.5, and P|(x) = 0 otherwise.

Type C: Py(x) = P(d = 1|x) = 0.6 for all x.

Note that, EP, (x) 0.9, EPy(x) ~ 0.74 and EP3(x) =~ 0.6. Thus, missing type A has the lowest
missing rate and missing type C has the highest missing rate.

For each missing type, we generated R = 10,000 simulated samples, each of size v = 40 from
model (2.1) with ug = 0, 8 = 2, ¢ = 1 and specified u,, using the single covariate x ~ N(2, 4). We
used the probit link G(a) = $(a/T) with T = 2 and initial complete sample of size 2m = 8. The
simulated samples were used to evaluate (i) the expected proportion of allocation to treatment A,
ENav/v) = Ja and the standard deviation of Na,/v; (ii) the standard error of the imputed
estimator A,,, (tii) the power of the two-sided test: 4 =0 versus 4#0 based on A We also
calculated the standard error of the estimated treatment difference and the power of the two-sided
test based only on the observed responses. Tables 1 and 2 report the above values for y, = 0,1,2
and 3.

Table 2
Exact and approximate powers of the two-sided test based on the imputed data and only on the available responses:
T=2

4 Imputed data Available responses only Ratio of powers
M3

Exact power (1)  Approximate power (2)  Exact power (3)  Approximate power (4)

Missing type A

0 0.050 0.061 0.050 0.062 1.00
1 0282 0.302 0.247 0.264 1.14
2 0.796 0.825 0.759 0.783 1.05
3 0900 0.930 0.830 0.857 1.08
Missing type B

0 0.050 0.060 0.050 0.062 1.00
1 0221 0.245 0.179 0.190 1.23
2 0.683 0.701 0.662 0.641 1.10
3 0784 0.806 0.720 0737 1.09
Missing type C

0 0.050 0.063 0.050 0.061 1.00
1 0193 0.212 0.130 0.157 1.48
2 0616 0.633 0.551 0.568 1.18
3 0726 0.742 0.672 0.689 1.08
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The limiting proportion n* = &((us — pg)/T} for T = 2 is given by 7* = 0.50 for 4 =0, n* =
0.69 for 4 = 1, =* = 0.84 for 4 =2, and n* = 0.93 for 4 = 3. Comparing the 7*-values with the
corresponding exact (simulated) values E(N,,/v) in Table 1, we see that the exact values are
always smaller than the corresponding limiting values. We also note that as 4 increases, the
expected proportion E(Nja,/v), and the limiting proportion =*, of allocation to the better
treatment increases from % Table 1 shows that the standard deviation of N,,/v is not dependent
on either 4 or the missing type, while the expected proportion, E(Na,/v), increases with 4 but is
not dependent on the missing type.

Turning to the standard error of A‘,, SE(A ), We see from Table 1 that SE(A ) increases with 4
and the missing rate. Further, comparing SE(A‘,) to SE(4,), the standard error of the estimator,
4,, based only on the available responses, we see that the 1mputed estimator A leads to significant
reduction in Standard error, especially for higher missing rate and smallcr A. For example,
SE(AV)/SE(A ) =1.16 for 4 = 1 and missing type C.

To calculate the exact power based on the imputed estimator A we first obtained the 5% level
cut-off point ¢},s from the null distribution of |4;| such that the proportion of |4, |-values,
obtained from the 10,000 simulation runs, exceeding c},s equals 0.05. We then generated |4, |
from the alternative distributions specified by 4, and computed the exact power as the proportion
of |A |-values exceeding cjos. We also calculated the apprommate power using the critical value
dg s based on the normal approximation, A ~ N(0, 6*2), under the null hypothesis 4 = 0, using
o = 1 specified in the simulation model. In practlce 02 1s estimated by the residual mean sum of
squares based on the @, observations with no missing responses. The normal approximation will
be valid if Q, is sufficiently large. Otherwise a t-distribution with (v — p — 2) degrees of freedom
will work. For comparison, we also calculated the corresponding exact and approximate power
values using only the available responses. Table 2 reports the power values.

The use of dj o5 as the critical value leads to a slightly inflated size of the test. As a result, the
approximate power based on dj is also larger than the corresponding exact power. For larger
sample sizes, v, the use of normal approximation critical value dj ;s should be satisfactory. Note
that in practice cj o5 is not available. It is clear from Table 2 that the exact power increases with 4
and it decreases as the missing rate increases. We compared the power based on the imputed data
with the corresponding power based only on the available data. The ratio of powers, given in the
last column of Table 2, indicates that the test based on the imputed estimator 4, leads to
significant increase in power for smaller 4 and larger missing rates. For example, the rat10 i1s 1.23
for 4 =1 and missing type B and 1.48 for 4 = 1 and missing type C.

All in all, our simulation study indicates that the use of imputed data can lead to significant
reduction in standard error of the estimated treatment difference and significant increase in
power,

6. Concluding remarks

The present paper has demonstrated that imputation for missing responses at each stage in
adaptive allocation designs can lead to significant gain in terms of standard error of estimated
treatment difference and power of two-sided test, relative to the method that uses only available
responses. We used a normal linear model in this paper. We propose to study linear models
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without the normality assumption by using empirical likelihood methods. We are also extending
the results to the case where auxiliary information on X in the form Eg(X) = 0 is available.
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