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Estimation of Life with Piecewise Linear-Quadratic Hazard Rate
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ABSTRACT

Bladder is an important accessory in the curing operation for tire manufacturing.
Failure of bladder, during its use, results in scrap of a large amount of tire under
curing. This leads to heavy financial loss to the company. In this article, we deal
with estimation of life and determination of replacement plan for bladder. The life
of bladder has been modeled using a piecewise linear-quadratic hazard function.
A computational procedure is proposed for estimation of life. Finally,
a replacement plan for bladder is denived.

Key Words: Replacement plan; Linear-quadratic hazard rate function;
Wear-out point estimation; Bootstrap.

INTRODUCTION plan is drawn using the information on its life. This
leads us to the problem of life estimation. It 1s aiso
In many manufacturing processes, the output required for a reliability improvement program. In
quality largely depends on a few critical machinery this article, we deal with such a part, called bladder,
parts. Such parts are required to be replaced to estimate its life for the derivation of replacement
periodically on completion of their useful hfe. For plan.
example, grinding tools play a major role in main- Bladder is a shaper medium for the manufacture
taining proper dimension and surface finish of of tires. It is used to shape the green tire onto the tire
components that are processed during grinding. mould during the curing process as follows. Hot
When the tool wears out, it must be replaced water/steam at specified temperature and pressure is
immediately. Otherwise, the process will generate circulated through bladder. Bladder transfers heat to
undesirable output. Therefore, it is quite important to the surrounding green tire, similar to an exothermic
determine a replacement plan for such parts in order process. It is therefore essential that a bladder possess

to maintain high quality of output. A replacement good physical properties and high impermeability.
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A bladder is expected 10 perform its intended
function for a certain number of curing cycles. The
life of a bladder is designated by the number of such
cycles it has performed. Failure of bladder during
the curing process results in scrap of the whole tire
that is put for curing. On the other hand, an carly
replacement of bladder leads to under-utilization
(and hence additional bladder cost). In the absence of
proper knowledge on the life of bladder, the operators
carry out inspection (in between cycles) for possible
defect{s) in order 1o artive al the decision for its
replacement. This has resulted in a substantial scrap
of tire due to bladder failure during curing. A suitable
replacement plan will thus help in (1)} reducing
inspection cost through lesser inspection, (2) bringing
down scrap of tire during curing process, and (3)
arriving at a decision on inventory of bladder.
Further, as these bladders are produced in-house
(using a single facility), reliability assessment of the
same is also important.

A plausible approach to the development of a
replacement plan is based on the estimate of the wear-
out point of the corresponding hazard rate function.
Wear-out point of the hazard rate function is defined
as a change-point. Generally, a change-point refers to
the time point when hazard rate pattern changes
abruptly. The literature on estimation of change-
point is quite rich. For reference, see Gombay (2000),
Loader (1991), Nguyen et al. (1984). Rukhin (1997).
Motivation for this problem can be found in various
applications. For instance, Mathews and Farewell
(1982) studied the effectiveness of a new therapy in
terms of reduction in relapse rate, Basu et al. (1988)
(hereafter referred to as BGJ) deal with change-point
estimation in the context of optimal burn-in strategy
in reliability engineering. Girler and Yenigiin (2002)
proposed a method for detection of AIDS {acquired
immune deficiency syndrome) in HIV-infected
patients. A large majority of these articles consider
piecewise linear hazard rate function (with or without
a jump at the change-point). The solution procedures
are developed using likelihood method or bayesian
approach. A common feature of these articles is the
assumption that hazard rate is well known. On the
contrary, a practical problem generally calls for
modeling and estimation of hazard rate.

This article is organized as follows. We discuss
the basic dala on bladder life and study the pattern of
empirical hazard rate function. Lifetime is modeled
using a piecewise linear-quadratic hazard function.
We propese a computational procedure for the
estimation of associated parameters and for deriva-
tion of replacement plan of bladder. We also discuss
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the results of maximum likelihood method and the
procedure of BGJ and contrast them with thay of
the proposed method.

DATA COLLECTION AND
PRELIMINARY ANALYSIS

It is customary to maintain a life-history card for
every bladder. This contains information on its life
(i.e., the cumulative number of completed cycles),
in addition to other particulars such as dates of
mounting and failure, failure mode, e1c. Failures have
been largely attributed to design or manufacturing
deficiency. Also. local contirols in usage such as
handling, pressure, and temperature are technically
expected to have bearing on bladder life, A defective
(failed) bladder is not repairable.

Depending upon the extent of usage (number of
cycles) per day, a bladder lasts only a couple of days.
The basic data on observed life correspond to 257
bladders that failed during three months in the recent
past. Therefore, these constitule a random sample
without censoring. Among these failures, 251 bladders
correspond 1o leakage failure mode. The remaining
six failures are due 1o bladder cut, weak bladder, or
bladder impression. Let +; be the life (in cycles) of
bladder i. That is, we have the observations r,,
i=1,...,257. The first step in life data analysis is to
estimate the hazard rate (failure rate) that leads us to0
guess fairly well about the underlying distribution of
life. See Lawless (1982), Meeker and Escobar (1998),
Nelson (1982) for reference.

The hazard rate for bladder is estimated in
Appendix A, and is plotted in Fig. 1. We observe that
the values of six #/'s corresponding to the non-leakage
failure modes are spread over the entire range of
remaining ¢’s, and hazard rate function remains
almost wunaltered even when they are dropped.
Therefore. we decide to retain them for all subsequent
computation and discussion.

It is evident that (empirical) hazard rate is more
or less constant up to a certain time point and then
increases very rapidly. This time point is referred o
as wear-out point or change-point. On comparison of
Fig. 1 with a typical bath tub curve that generally
describes failure rate over the whole life-span of a
product, we conclude that

e The infan: mortality phase is absent, _
o The pericd indicating constant failure rate is
useful life, and
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Figure 1. Hazard rate plot.

» The last phase describes wear-out period
starting from the change-point (or wear-out
point).

ESTIMATION OF LIFE

In this section, we try to identify a suitable
distribution that describes the life of bladder. We
refer to the hazard rate plot of the last section and
the conclusions drawn therein. It may be observed
that standard probability distributions, like Weibull
distribution, log-normal distribution, or extreme-
value distribution are not well suited to describe
this life pattern. Therefore, we look for a function
that closely resembles the observed hazard rate
function.

We consider a piecewise linear-quadratic hazard
tate function A{#) given by Eq. (1), where ¢ denotes
the life and A is the constant failure rate up to the
change-point 7. Beyond 7, A(f) is quadratic in form.

ift<t

k(1) = 5 .
A+Bli—-D+ /(-1 ift=2t
Hence, it is expected to represent our data well.
However, we note that unless both £, and B, are
positive, the corresponding distribution function need
not be nondecreasing. In fact, it is found that
the least-square estimates ate §; <0 and B2 > 0.
(The estimation procedureis discussed later). Although
the function given by Eq. (1) represents our empirical
hazard rate extremely well, the corresponding dis-
tribution function of life is not well defined due to
the signs of B; and B;. Therefore, we resort to the
following modified form of hazard rate function:

h(t)-—il ifter @

A+ﬂ(t—r)2 if t>1.

The corresponding density function f(f) and
distribution function F(r) are obtained by using the
following relationship (Kapur and Lamberson, 1977):



f(f)=h(t)exp[- fo Hoo) dx] @
and
10
1-F()= )" %

The explicit form of f(1) and F(r) are
G

ALexp(—Ai1) ifr<rt
=1 A+ B —1) (5
expl—{a+ B0 —oY/3)) i ez,
1 40))
1 — exp(—Af) ift<cz
= [ | expl-Gt+ -3 if1me O

The graphical forms of 7(¢) and F(f) are shown
in Appendix B, along with the moments of the
distribution.

In order to estimate the parameters involved, we
fit the hazard rate function given by Eq. (2) to our
data by method of least squares. Note that besides
the usual parameters A and B, the change-point 7 is
also required to be estimated. In this context, we
propose the following procedure.

1. Suppose £y be a trial value of r. Divide the set
of all 257 bladders into two groups, namely,
Gi={bladder i <1y}, G,={bladder i
42 7o}-

2. Obtain LSE (least-square estimate) of A,
say A, from G, and let ESS{G,) be the
corresponding error sum of squares. Use this
estimate of A in G, and obtain §, the LSE
of 8. Let ESS(G;) be the error sum of squares
in G,

3. Denote the estimate of 7 by £. Select £ = 1,
when the sum ESS(G;)+ESS(G,) is mini-
mum for 7= 7,. Further, the corresponding A
and B are taken as the estimates of ) and 8,
respectively.

This yields the estimates as
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Table 1. Test for goodness of fit.
Class interval Observed Expected Estimated
of life (cycles) frequency frequency x?
0-10 7 6.400 0.056
10-20 7 6.241 0.092
20-30 9 6.086 1.395
3040 4 5934 0.630
40-50 5 5.786 0.107
50-60 4 5.642 0478
60-70 7 5.502 3,408
T0-80 4 5.365 0.347
80-90 4 5231 0.290
90-100 6 5.101 0.159
100110 4 4974 0.191
110~120 15 8.921 4.142
120-130 3 41.165 2.510
130-140 60 73.366 2435
140-150 73 54.035 6.656
Above 150 17 17.251 0.004
Total 257 257.000 15.900

At 5% level of significance, tabulated value of
x5 = 21.026.

The mean (%) and standard deviation (o) of life
are then estimated as fi=116.20 cycles and
& = 40.20 cycles. (See Appendix B for the formulae).
The corresponding observed values in the sample are
116.94 cycles and 41.63 cycles, respectively.

Subsequently, the adequacy of f(1), given in
Eq. (5), is evaluated with a x’-test (sce Table 1.
We conclude that f(r) describes the data quite satis-
factorily. The graph for the associated reliability
function R(f) is given in Fig. 2.

REPLACEMENT POLICY

It is evident that a safe replacement policy is to
withdraw the bladder when it has reached the wear-
out point t. However, the true value of r is unknown;
we have merely an estimate of it. In such case, we
depend on its confidence interval. This is derived
using the bootstrap methodology (Efron and
Tibshirani, 1993). One thousand bootstrap samples
are drawn from our basic data set, and change-point
is estimated (following the procedure presented
earlier) for each of these samples. The percentiles
of 7, thus obtained, are presented in Table 2.

It is to be noted that in order to decide on the
replacement time of bladder, we are interested in the
lowest possible value of 7. That is, a lower confidence
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Figure 2. Reliability function.

Table 2. Percentiles of 7.

Probability 0.05 0.10 0.50 0.90 0.95

Value of © 94 101 113 123 125

interval for t is of interest. A 95% lower confidence
interval for r is given by

T = 94 cycles,

that is, a bladder should be replaced when it has
completed 94 cycles.

DISCUSSION

The method of maximum likelihood can also be
applied for estimation of the parameters. It may be
observed that the corresponding likelihcod func-
tion is not differentiable; therefore, we obtain the
estimates numerically.

As we have mentioned earlier, most researchers
deal with piecewise linear hazard rate functions.
However, the procedure of BGJ (Basu et al., 1988)
is quite relevant here for the estimation of change-
point, but it does not address the problem of life
estimation. Minor trivial modifications are made to
this procedure to suit the present problem. See
Appendix C for a brief description. The estimate of
t by BGJ is obtained as T = 110 cycles, and the 95%
lower confidence interval for t (estimated through
bootstrap method using 1000 bootstrap samples) is
given by: ¢ > 97 cycles. Hence, we find that there is

almost ne discrepancy in replacement plan obtained
from these two methods.

Based on the findings, namely, (1) high failure
rate during useful life and (2) low wear-out point, the
concerned management promptly initiated action to
thoroughly review the design and manufacturing
aspects of bladder for improvement. The manage-
ment has also taken note of the fact that about 21%
of the bladders will fail prior to the proposed
replacement time of 94cycles. After analyzing the
associated cost components, it has been decided to
implement this replacement time of bladder with
immediate effect.

CONCLUSION

We have studied the problem of life estimation
and replacement policy for bladder. It is observed
that the hazard rate is a piecewise linear-quadratic
function. We have proposed a procedure for estima-
tion of life in this situation. Subsequently, the
replacement plan for bladder is derived using the
confidence interval of the wear-out point.

As in the present case of bladder, there can be
many situations where life distribution may not be
easily visualized as one of the standard probability
distributions. Under such circumstances, we rely
heavily on the underlying hazard function. The
advantage of the proposed procedure over existing
ones is that it makes direct use of the empirical
hazard function in order to identify the distribution
of life. This estimation procedure is primarily based
on the least square method and is applicable to
general piecewise hazard function. However, utmost



care must be taken in estimation of proper distribu-
tion function of life while dealing with quadratic
hazard function.

We treat the proposed procedure as a new
alternative for estimation of life. We intend to carry
out a detailed study to evaluate its performance in
comparison with the established methods for both
complete as well as censored data.

APPENDIX A
Estimation of Hazard Rate

Hazard rate during an interval =(number of
failures during the interval) = (Average number of
bladders exposed to the risk of failure at the midpoint
of the interval) x (length of the interval) (Srinath,
1975). The calculations are shown below (Table 3).

APPENDIX B
Graphs of Ar) and F(?)

Depending upon the values of x and 8, both f(¢)
as well as F(¢) take different forms. They are
displayed in Figs. 3 and 4, respectively. Given 1, a
larger value of 8 increases the peak of f(¢). Whereas,
the value of i (for fixed B) decides its shape. The

Table 3. Estimation of hazard rate.

Class interval Number of Number Hazard
of life (cycles) failures survivors rate
0-10 7 250 0.00276
10-20 7 243 0.00284
20-30 9 234 0.00377
3040 4 230 0.00172
40--50 5 225 0.00220
50-60 4 221 0.00179
60-70 7 214 0.00322
70-80 4 210 0.00189
80-50 4 206 0.00192
90-100 6 200 0.00296
100-110 4 196 0.00202
110-120 15 181 0.00796
120130 31 150 0.01873
130-140 60 90 0.05000
140-150 73 17 0.13645
150-160 16 1 0.17778
160-170 1 0 0.20000
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value of T mainly gives the time-point after which f(z)
starts increasing (see cases b and ¢ of Fig. 3).
The mean (z) of life can be computed as follows:

7
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and, it may be observed that p > (1 -e™**)/A. In
general, the rth raw moment of life is given by
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APPENDIX C
BGJ Procedure

Suppose that F(1) is the empirical distribution
function of life, and y{f} = — log[l — £ ). Let pp>0
be very small and p, be a good lower bound for
F(7) (<1), where F() is the true distribution function
of life.

Then, the estimate of A is given by
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Figare 3, Graphs of f{{) for t=112 and (a} A=0.05, 5=0.0001 (i.e., 2 »5), (b) A=0.0001, =0.0001 (i.c., A very small},
¢} A=0.005, g=0.0001.
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Figure 4. Graphs of F(z) for =112 and (a) 1 =0.05, $=0.0001 (i.e., A>>8), (b) A =0.0001, =0.0001 (i.e., A very small),
(e} 2=0.005, =0.0001.



X ty(tn)/ (ke + 1)
~Q /e A/ + D) g

Tt (ke + 1) — (T g/ + DY

where 14 is the ith ordered life, k =[np,]~{npq], n is
the total mumber of observations, and all the
summations range over i={npp] +1 to [np1].

Then the BGJ estimator for t is estimated as

f=sup[::"-’(-’-i9£-"—yﬂ<£]. @)

A=

At>0 and X is obtained from Eq. (7).

In order to derive the estimates, we have n=257,
F(ty) = (i — 0.3)/(n + 0.4) (average ranks are used
for tie cases), and set py=0.004, p;=0.20, Ar=1.
Using Eqs. (7) and (8), we get

A = 0.002445 per cycle, and
T = 110 cycles.
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