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EXPANSION OF BAYES RISK IN THE CASE OF
DOUBLE EXPONENTIAL FAMILY

By 8. N. JOSHI
Indian Statistical Institute

SUMMARY, Foriid. random variabloa with a double oxponential density and a smooth
prior expansion of the Bayea risk upto o(n™*/) is obtainod. Unlike tho cass of smooth density,
the term after O(n-?) torm is of order O(n—2/) inatead of order O(n-2).

0. InTBODUOTION

Expansion upto o(n~?) for the Bayes risk was obtained by Ghosh, Sinha
and Joshi (1981) under certain regularity conditions which include differer-
t.ability of log likelihood function (and some of its derivatives). Urder
very genersl conditions (such as LAN condition) the limit of Bayes risk (w.r.t.
bounded loss functions) has been obtained (see Strasser, 1978, Proposition 2).
So & natural question to ask is whether, under such genersl conditions as
LAN, it is possible to get an expansion of Bayes risk.

In this paper we consider a family of distributions (viz. double exponential
with location parameter) which satisfy LAN condition but for which condi-
tions of Ghosh, Sinha and Joshi (1981) do not hold and show that the Bayes
risk has expansion but now the term after the n~! term is not of order n-*
(as was the case earlier) but is of order n~¥/%. This indicates that under
suitable strengthening of the LAN condition, it may be possible to get sn
expansion of the Bayes risk. In the following paragraph we sketch the
method of proof which we followed in our special case and which is likely to
succeed in the general case too.

A sequence of family of distribution ie said to satisfy LAN condition if
the log likelihood function

Al6y, 65+ 8n712) = log L{fo+8n~112|zy, ..., 2a)—log Iby| zy, ..., z4)
oan be approximated in the following way

"
1 AlGy Oy an0)— . & o, Z—staeafe) 2 0
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where M8, ;) is normalized r.v. and A(6,) = ""oo(h("o» X)). Now if we
have following type of approximation

Ppo( | A(B Bp+8n~1)—BZR(By, z4)[ /7

—824(6)[2—n 2V (O)} < 7%} > 1-0(n™")
for some suitable &, # and y all positive then it is likely that by plugging in
both, the numerator and the denominator of

Ba(6,) = B[nM{0—6)|2,, ..., 74]

(w.r.t. some suitable priov for 8), the above approximation for the likelihood
function onc can get an approximation for B,(6,) upto some suitable order
(vide (2.9)). This in burn vide (2.11)) gives the desired expension of the Payves
visk in the present case; to extend it to the gereral LAN case may require
non-trivial modifications. Tt may he observed that one of the main differences
hetween the present investigation and Ghbosh, Sinha and Josbi (1981) is that
kerc we expand the likelihood around 6, rather than vhe ml.e. 3,.. Techni-
caiities regarding the delicate nature of approximation of B,(f,) near the
end points of the support of prior can be handled in a way similar to that of
Gbosh, Sinha ana Joshi (1981); see also in this regard Burnasev (1981).

1. MAaN mEgULT
Let X, X,, ..., X, be i.i.d. with p.df.

1
flz,6) = 3 exp(— |z—0]), —0 <z <, BeR.

Iet p be the prior density of 4 w.r.t. Lebesgue measure. Let p be twice
continuously cifferentiable and let for some 75 > 0 (j = 1 to 4) p satisfy (i) to
(iv) below.

(i) pl0)> 0ior 0 ¢ (ay,by) and plf) =0 on [ay, bJ¢ for some
—0 < 25 < by < 0,
@ o)) oN"™ db < oo

where
. dal
(p)B) = b log p(6), (LD
(i) [ pl6)ds = O(e™*™) us £ >0
Dy
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where
D)= [8: sup [(P)MO+2)] > e1+m),
inl <e

(iv) ) p(6)dh = O+ 85 8 — 0,
(30, a+8) U (=1, b)
Remark 1 :  p satisfies (i) to (iv) if e.g. p satisfies (i) and for some k> 2
and £ =0,1,2
PNB) = (@—an)t~i(es+o(l)) for 6 near a,
= (by—0)%~!{(c;+0(1)) for 6 near b,
where ¢¢ and ¢, are nonzero constants and
. a
PG) = 25 p(B), P6) == plO).
Theorem : Bayes risk, R(p), w.r.l. squared error loss funciion hes the
following expansion

R(p) = n~) +bn-324o(n"3/2) o (12
where

b = 24 [ D(w)pYw)dw+4 [ (| —O(w)D(w)dw— \76”_—

2. NoraTrons
For a set A let I(A) denote the indicator function of 4 and let
I8 =1 if |8] <ilogn)?
=0 otherwise.
Let
V1a(8) = nV4I(8 > 02z —0p—0n1 R0 < 24—y < Sn~)+-6%2,
V3n(8) = nVAI(8 < 0){S2(fy+8n~12—zq)I(8n12 < 24—8, < 0)+08%/2).
Fori=0und 1,8ndj =1 and 2 let
WP = [ 100873, 0)60+8)38
Wiy = I 1(8)8YV4,(0)°@(t+8)dd,

where ¢ denotes the p.d.f. of standard normal variable; ® will denote it's
df. Let

and

= 2L 0y € 0)—nf2), o = 5 (W i)
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and let P(}) be & generio notation for polynomial in ¢ of finite degree and with
bounded (nonrandom) coeflicients.

Let Y be o r.v. having pd.f. dexp(—|y|), —0 < ¥ < @ and let fer all
npl
Yin=(Y=2"4 J(0 < ¥ < én—1y,

Yoo = (a7 Y) [(§—nn Mt C ¥  8n71),
Let p be as in Section 1.2. Define

D= [o: sup [(P(O+2)| < Vi, | (p)1(8)] < n""']
n

18] < n™28 log?
(A8 > 27") [V (ag+n~"tlogn, b—n~"tlogn) 2n
then using (i) to (iv) of Section 1.2 we have for some 3> 0 and 4’ > 0
| p0)dO = O(n"). e 12.2)
Dy

Hence forward 4 and g° will be used as generic notations for positive constants,

In the rest of the paper we fix a 0, ¢ D; all probability statements and
orders hold good uniformly in 8, ¢ D5,

Let Aq denote common part of events of (2.56) and (2.11); we have for
every L and A, both positive,

Py(dn) 2 1-0(n4). . (23)
Note that as §, ¢ Dy we have
mun(log?a, \/n(by—6y), va(By—aq)) = logtn. . (24)
z, will denote (z,, ..., zy).

2.2. Some lemmas: 'The following Lemma is a consequence of Lemma
3.1 of Reiss (1976).

Lemma 2.1: Let 5,‘ be median of sample of size n from f(=,6,). For
each k> O there exisls a constant ¢ > 0 such thal

Py (n2]6,—Po] < clogtn) = 1—0(n~).
Following lemma is a well known result (vide e.g., Serfling, 1980, page
95, Lemma A).
Lemma 2.2 :
Pyl] < (a1 log mp%) 3 1—0(w4) for s> 0,
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Lemma 2.3: For each posilive A and !

Py (§ Ilog*n, n!/2(by—6,))34(+-8)expIn 14V (8)]d8 < n~S,

J I(—n'6,—ay), log*n)ég(i+8)exp[n-1/4V,,(8)]d8 < a3,
|4 <((A+4-4)log n)4 > 1 —0(n2). . (25)

Proof: Step 1: For each €, > 0 and log®n < § < n!/3(by—B,)log-'n

Py [n7147 14(8) +(&1—1)8/2 > 0] K exp[— &1 —e, +O(log'nh)/4). ... (2.6)
To get (2.6) note that LHS of (2.6)  exp(8,8%/4)E% exp(Y,,). Hence LAS
of (2.6) < expfe,d%/4+n log(l —82n~1/44-0(8*-32))}.

Step 2: For nVHby—Byllog™'n < 8  n%(by—0,) and €,> 0 LHS of
(2.8) with e, replaced by e,

< oxp{e,8%/4 —n(by—0p)¥(log2n)(1 +-O(log~1n))/4}. 2
To get (2.7) note that
LHS of (2.6) < explsd¥fd-+n logll+¢ " 1 gn1* ) 1oy
< exple8*/4+n log(1 +exp[—(by—Ay)log 1]+ (by—b,)log—1n.
exp[—(by—Oy)log~1n]—n log?].
Step 3: For logi < & < nl/%(b,—6,)

P, inf -14[ Y —V.8 ~log —
% [(H-n-l)né ret wV (8 —V)a(8)] < ~log ] < exp[—log?n).

. 128
To get (2.8) note that

inf 2V, 08)— Vi8]
—nl ¥

T e l<nfa' <2 [25(24—8y—8n~ 1 (E'nV* < 24—0,  Bn77)

~2AB-8 IO < 20, & E'n Y —(B—8)E+8)2)
> 25(m--8y—Sn (S & wy—y € S
— 2012 pAi2(h; — Bt

Now (2.8) can be obtained by using exponential probability inequality for
the first term of the last expression.

Step 4: Note that
Py, [ J I(logtn, nt/2(by—Bo))6¢(t4-8)expln 14V, (8))d8 > n-4,
I <(A+d)lognp*1< B Py e (29)
1,
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where
Jy={fomm+ L= 0,1, = 8141 logen) ),
[g] = integer part of g,

and
Py = P"a[ fIE—n < 8 <i)8plt+8)exp[n 14V, ()8 > nar- |

Jt] < ({A+4)log n)V%].

Now choosing &, of step 1 to be 3/4, ¢, of step 2 to be n~'/¢ in view of step 3
and Lemma 2.2 it is easy to see that

Py & O(n~2-%/%) uniformaly in 1eJ,.
Hence

LHS of (2.8) < O(n~). . (210)

A statement analogues to (2.10) for the part containing V,.(5) can be proved
in a similar way; this completes the proof of the lemma.
Lemma 24 : For A > 0 we have
Py sup | Vinld)] < 2log2a] » 1-0(n~%) for i =1,2.
% 0< 131 < logtn
(2.11)
Proof: Step 1: For 08 < login

Po{I Vid8)] <loghn) > 1—exp(—lognli+o(1)2). .. (212)

To prove (2.12) first note that
Py (V1,(8) > log*n)
<Py [25{ri—Oy—bn~VAI(0 < 0y & 85 %)+ 812 > n~dlogn]
< exp[d%h/4 —n~V4(log*n)k/2]E® exp[Y k]
< exp[—log2n{1-+0(1))/2] by choosing b = n'/tlog~'n.
Renaining part of (2.12) can be proved in a similar way.

Step 2: For 0 & & login

Py [, 3m, 17— Fuld)] > login] < oxpl—logtaiz)

d-nigy

(2.13)
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To prove (2.13) first note that for a1 3 < login

sup | Vy,(8)— V(8]
S—AIC¥ S

= sup |2E(2y—By—dn~ V(8’012 L 2y—0, € Sn113)
FEL R £

—(8—8')(6+8")/2—28—8" M EEI(0 < 7g—B, K &'a7 1Y) nisd
& nn logn+ 25(6, +En V1 —z) [((—nNn 11 < 5g—B, € SnI).
Hence LHS of (2.13)
< exp[n~V¥logn)h/2 —n~V4(login)h[2]E® exp[Y g k]
< exp[—loga/2] by choosing k = 2Y4log n.
For 0 € 8§ < n~! (2.13) can be proved in & similar way.

Step 3: Proof of (2.11) for = 1 is completed by combining steps 1 and
2; for i =2 (2.11) can be proved anzlogously, completing the proof of the
lemma.

The following lemma will be used to simplify the coefficient of 2~%2 in
R(p). The proof of the lemma is straightforward and we will give only &
sketeh of it.

Lemma 2.5: Fori=1,2

EgoE[ﬂ W[4 = 2(f;-+f3 +/5)+0(n~")

Ej EUWOR|4 = 2, +0(n™)
EgELWPOWEN = - (2 +f)+0(n)
B BRI = 1 futy firt O™
E(WP|1) = nV414P) for j =0,
PAEQ BIOWID |1 = o4t fot Ofa~")
Ey BUWRA0 = 3 f, 400~

By BOWR 1) = & fo+-0n-")



where
£y = 1] [t — 1 —0(a) st

£y = 1 [ 00wt
fo=1 [ 200wl () ~g(w) g 0wt

fu= 1 ] to—tpeguipiiduds
fs=1 ‘f Ko—b)'giw)d(t)dwdl

fo=1 j' Ha—tPPladt)dwd.

Sketch of the proof: First note that for gy, g, meseurable functions;
¢ :R-> R, g,: R*— R conditionsl joint distribution of

E as—001z—0, <0
and

z gulzi— 00\ (240,  0)

given & is same o8 tho joint distributions of

4,

o ()
gy and I gam)
(=1 =1

where y¢'s and z’s are independent of each other and of X, ..., X,: y's are
iid. with p.d.f. e¥, y < 0 and z's are i.i.d. with pdf. ¢*, 2> 0. Thus we
have

W
Ey BUWP 1) = By 5| z (e Bl +nmp)} L g
where

o =2 f 1,880z — 0 ) iz < Sn-Ve)B(L+ 3G,

R.HS. of (2.14) can be simplified and be found to be equal to 2(f,+fy+fa)+
O(n). Other relstions of Lemmax 2.6 are proved in a similar way.
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3. PROOF OF THR THEORNM
Note that the likelihood ratio
exp[A(6y, 6o +8n11%))

L) »
—axp| £ |a—6,]— % |u—0,—tn) |
=1 =1

=oxp[—(8+4)}/2+12+ 04V (8)+ Vanl8))]
(vide Section 2.1 for definitions of ¢, V1,(8) and V,,(8)).
Let
B,(0,) = E(ya(8—0,)|2,) and for i =0,1
NG) = | 8I{— /alBy-—10), viba—6p))p(8+1).
exp[n YV 1,(8)+ Vanl6))+log p(By+8n~272) —loy plUly)Jd8.

Hence,
B(0,) = N(1)[N(0). . (31

Step 1: We fust approximate B(0,). Let

V(g0

)
RO =" " I{8] > logtmdexpln XV, (8)+ Va,(8))
(Go—0o)

+loi p(6y+8n7")—log p(Bo)Jp(1-+6)ds.
Then in view of (2.4) and definition of I,(8) (vide Section 2.1) we bave tor
1=0,1
Nii) = [ 1(8)8'exp[n=VY(V,,(8)+ Voi(8))+log pl6y+n71%)
—log p(0o)1g(t+6)dd+ R
= [ L(8)8ig(t+8){1 +n7V4V 1 (8)+ Veo(8))

A0V (8)+ Vi (83240, (8)+ Vo (8213 1}
{07138 p) (B} + () (6} 8% ™ 2)
{10788 ) 0(0,)"™2)d8-+ R

where z,, i3 between 0 and n~VY(V,(8)+ V,,(8)), z,, is between O and
n1(pII(Ay), 2y, is between O and n~18%p)(6,)/2 and 6, is between #, and
Oy+0n7t (vide (1.1) for definition of (p)!X(8)). Now let R{} be such that
(vide Beotion (2.1) for definitions of Wf® and W{},)

NG) = Z0)3ig-+ 8)dd
FTPL WP+ 5 2 W )

Fn7Hp)(0y) [ 1 (88 H4(8-+6)dd+ 2+ REY).
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Let for £ =0,1

o) = [ 1,(0)'(t+8)db
o =(FP+W)
and
of) =5 (WO TOI(0)(0) [ 1(818410-+ 8)d.
Note that on A, (vide (2.3)) we have by Lemmas 2.1 to 2.4 and (2.1) for
i=0lsndj=12
of =(—1jit'+0(a=t1t"),
o = 3 (WO WOHEIGI -+ =D+ D+ +0B D), ... (32)
a) = WP+ WP and |BY| = O
Absorbing O(n~1/2-%) terms of aff) in R and writting
oy = ofd+of),
‘oo = oo o~ (G +0f2,
Ry, = {B{2+ B — (R + REN— 0oyt n7Vey,)
—n3i4(a ey ,+afde, ) —n~aflesn}
{407+ R R

and
By{fg) = —t4orm Moy, o (3.3)

we have, in view of (3.1) and (3.2), on 4,
B,(0p) = Ba{0o)+ Ry
As 6, € D¢ (vide (2.1)) we have in view of (3.3) on 4,
BR(B,) = 13—210, VA (chy — ey, )n V2 O(n"1/2-1),

Step 2: We can now approximate the Bayes risk. Note that by using
arguments similar to those given to prove claim 2 (Section 8) of Ghosh, Sinha
and Joshi (1082) (here we use Lemma 2.1 in place of their Lemma 4.3 and
(2.2) in place of their (D.8)) we have

JI(D)Ey { BXBa))P(00)d0y = O(n~111"),
21-10
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Hence
Rip) =n~! I.E%(Bv’-(ou))l’(on)doo

=n"1 [ 1(D3)Eg ( BXO)M (A ,)p(0c)d86+O(n>) (vide 2.3))
=07 [ D75 — 2y, + a2y, m14)

- (A )P0+ O(n~32-7).

Now RHS of the above expression can be simplified (by first expressing c;,'s
in terms of W{"'s (vide (3.3) and (3.2)) sud then using Lemma 2.5) nnd found
to be equal to RHS of (1.2).
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