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1. Introduction

Recently, real large-scale network data have been analyzed in various fields,

and the corresponding random graphs have been studied. Many of these

graphs exhibit the power-law form of the degree distribution, with the

power-law exponent typically between 2 and 3. In view of this, physicists

have proposed stochastic algorithms for generating growing networks. The

underlying assumption of these growing networks is that a vertex with a certain

fixed number of edges is added to the graph one by one at each discrete time

step. To obtain a power law, the growth mechanism is usually supplied by

so-called preferential attachment, which stipulates that each newly introduced

edge is more likely to be connected to a vertex (which already exists in the

graph) that has a larger degree. For a review of the studies on such models see

[1, 2].

However, not all real networks are growing; algorithms for generating

nongrowing realistic graphs could be more appropriate for real situations in

which the number of vertices does not change rapidly. In this regard, a type

of random graph in which each of n vertices is assigned a random variable

(weight) was proposed and its mean behavior has been analyzed [3, 4, 5, 6].

Interestingly, the power-law degree distribution can emerge even with a weight

distribution that is not equipped with a power-law. For example, mean-field

analysis suggests a power-law degree distribution with scaling exponent −2

when the vertex weights are independent and identically distributed (i.i.d.)

random variables obeying the exponential distribution.

Our first study is regarding such graphs. Formally, our model consists of n

vertices labeled 1, . . . , n and an i.i.d. sequence of random variables X1, . . . , Xn

with F denoting their common distribution function. We associate the random

variable Xi with the vertex labeled i. Given a fixed threshold value θ > 0, we

connect the vertices i and j by an edge 〈i, j〉 if and only if Xi + Xj > θ and

i 6= j. Let Gθ be the random graph thus produced. A simple coupling argument

shows that P{〈i, j〉 ∈ Gθ′} ≤ P{〈i, j〉 ∈ Gθ} whenever θ′ ≥ θ.

Let Dn(i) := #{j : 〈i, j〉 ∈ Gθ}, i.e. the degree of the vertex i in the

graph Gθ. Note {Dn(i) : i ≥ 1} are identical in distribution and let Dn denote

a random variable with this common distribution. The distribution Dn can be

obtained as follows: given (n + 1) vertices, conditioned on the event X1 = x,

vertices j ∈ {2, . . . , n+1}, will connect to the vertex 1 if and only if Xj > θ−x.
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Therefore, for 0 ≤ k ≤ n, we have

P(Dn+1 = k) =

∫ ∞

−∞

(

n

k

)

[1− F (θ − x)]k[F (θ − x)]n−kF (dx). (1)

Here F (dx) represents the probability measure on the real line representing the

law of X1. Equation (1) allows us to obtain the following asymptotic result:

Theorem 1 As n →∞,

Dn

n
=⇒ 1− F (θ −X1). (2)

Here =⇒ stands for convergence in distribution.

In data-analysis context, we are often concerned with the degree

correlation between a pair of vertices [1, 2]. Here we discuss the asymptotic

properties of the graph. Our first result is

Theorem 2
Dn(1)

n
and Dn(2)

n
are asymptotically independent.

This asymptotic independence breaks under the condition that the vertices

1 and 2 are connected. However, we need to be careful about this statement,

in the sense that we will need some conditions on the distribution function F

of the weight of a vertex. In particular we assume that

Assumption 1: There exists u and v in the support of the distribution function

F (i.e. for any ε > 0, F (u + ε) > F (u− ε) and F (v + ε) > F (v− ε)) such that

u < θ/2 < v and u + v > θ.

Theorem 3 Given that the vertices 1 and 2 are connected, under the above

assumption Dn(1)
n

and Dn(2)
n

are not asymptotically independent.

The importance of the assumption can be understood by looking at the

situation when the assumption does not hold. In that case, the vertices can

be classified into two groups: those which have weights θ/2 or less and those

which have weights more than θ/2. In the random graph constructed, each of

the vertices of the former group remain isolated, whereas the vertices of the

latter group form a complete graph among themselves. Also, by the strong law

of large numbers, the probability that a vertex belongs to the former group

converges to F (θ/2) and the probability that a vertex belongs to the latter

group converges to 1 − F (θ/2). Moreover, given two vertices (1 and 2 (say))

are connected, they must belong to the latter group and then we have

P

[

lim
n→∞

Dn(1)

n
= 1− F (θ/2), lim

n→∞

Dn(2)

n
= 1− F (θ/2)

∣

∣vertices 1 and 2 are connected

]

= P

[

lim
n→∞

Dn(1)

n
= 1− F (θ/2)

∣

∣vertices 1 and 2 are connected

]

= 1. (3)
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Thus we obtain conditional asymptotic independence.

A remarkable characteristic of real graphs is the clustering property [1, 2].

The clustering property means an abundance of connected triangles in the

random graph. The threshold model exhibits such a clustering property as

shown exactly in [5, 6].

To formalize this, let h : R3 → R be given by

h(x1, x2, x3) := 1{x1+x2>θ,x2+x3>θ,x3+x1>θ}. (4)

Also let

Tn := #
{

(i, j, k) : 1 ≤ i < j < k ≤ n,

Xi + Xj > θ, Xj + Xk > θ, Xk + Xi > θ
}

, (5)

F3(θ) := E [h(X1, X2, X3)]

=

∫

R

∫

R

∫

R

F (dx1)F (dx2)F (dx3)h(x1, x2, x3)

= P(X1 + X2 > θ, X2 + X3 > θ, X3 + X1 > θ), (6)

ζ1(F ) := E

[

(
∫

R

∫

R

F (dx2)F (dx3)h(X1, x2, x3)

)2
]

−
(

F3(θ)
)2

> 0. (7)

Note that Tn counts all triangles in the graph with n vertices.

The asymptotic results are

Theorem 4 As n →∞,

(a)
Tn
(

n
3

) → F3(θ) almost surely;

(b)
√

n
[ Tn
(

n
3

) − F3(θ)
]

⇒
√

3ζ1(F )Z where Z is a standard normal random

variable.

The method used to show the above results may be generalized easily to obtain

a count of not only triangles but subgraphs in Gθ isomorphic to a fixed graph.

In data-analysis contexts, a fixed subgraph is called a motif of the graph.

Depending on the types of real networks (e.g. Internet, gene networks, neural

networks, social networks), there are some sorts of small motifs that appear in

an entire graph significantly more than in the random graphs. These motifs

are relevant to functional roles such as signal transduction and information

processing apposite to each application [8, 9]. Our results, Theorems 8 and 9

in Section 4, obtain limit theorems for the motifs of the threshold model.
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Besides the extension to general graphs, the above theorem may be

extended for local triangle counts, i.e., the number of triangles containing a

specified vertex. The clustering coefficient, which is a quantity often used to

evaluate the degree of clustering property, is defined as the normalized number

of locally counted triangles averaged over all the vertices. Our local results

below show that the vertex-wise clustering coefficient satisfies the central limit

theorem, which validates the use of expectation in physics community.

We fix the vertex 1 and define Tn(1) as the number of triangles in the set

of vertices {1, 2, . . . , n, n + 1} of which the vertex 1 is a site. In other words,

Tn(1) := #{2 ≤ i < j ≤ n + 1 : h(X1, Xi, Xj) = 1}. (8)

Theorem 5 As n →∞,

Tn(1)
(

n
2

) ⇒
∫

R

∫

R

F (dx1)F (dx2)h(X, x1, x2) (9)

where X is an independent random variable identical in distribution to X1.

Besides the above dimensionless random graph model, a spatial model

has been proposed in [7]. Consider a homogeneous Poisson point process of

intensity λ on R
d. We insist that the origin, 0, is a point of the process. Let

{0 = ξ0, ξ1, ξ2, . . .} be an enumeration of the points of the process. Associated

with each point ξi is a random variable Xi. We assume that {X0, X1, X2, . . . }
is an i.i.d. sequence of random variables with common distribution function F .

The random graph Gθ,β is obtained by connecting ξi and ξj by an edge if and

only if (Xi +Xj) > θ|ξi− ξj |β where θ and β, the parameters of the model, are

real numbers.

Define the degree of the origin in a sphere of radius r as

∆r := #{i ≥ 1 : (X0 + Xi) > θ|ξi|βand |ξi| ≤ r}. (10)

Given a fixed x ∈ R, let

f(r; x) = f(|r|; x) := 1− F (θ|r|β − x). (11)

Define

Cr(x) :=

∫ r

0

r̃d−1f(r̃; x)dr̃, (12)

and consider the two following cases:

(i) As r →∞, Cr(x) → C(x) :=
∫∞
0

r̃d−1f(r̃, x)dr̃ < ∞ for every x ∈ R.



Rigorous results on the threshold network model 6

(ii) There exists a sequence {Cr} and a function g(x) such that Cr →∞ and
Cr(x)−Cr√

Cr
→ g(x) as r →∞ for every x ∈ R.

For the first case, we have

Theorem 6 If Cr(x) → C(x) <∞ for every x ∈ R as r →∞, then we have

∆r ⇒ ∆ (13)

where the characteristic function of the random variable ∆ is given by φ∆(t) =
∫

R
F (dx) exp

(

−λcdC(x)(1 − exp(it))
)

where cd represents the volume of the

(d− 1)-dimensional unit sphere.

Remark The random variable ∆ represents the degree of the origin in the

random graph.

For the second case, we have

Theorem 7 Suppose that there exists a sequence {Cr} such that Cr →∞ and
Cr(x)−Cr√

Cr
→ g(x) as r →∞ for every x ∈ R. We have

∆r − λcdCr√
λcdCr

⇒ Z +
√

λcdg(X0) as r →∞ (14)

where cd is as defined in Theorem 6.

We end this section with an example of F satisfying the condition in Theorem

7. Fix β = 1 and d = 2. Define F : [0,∞)→ [0, 1] by

F (x) := 1− Cx−α (15)

where 0 < α < 2 and C > 0, and

Cr := Cθ−αr2−α/(2− α). (16)

Simple computations can be carried out to verify that the conditions of

Theorem 7 are satisfied in this case with g(x) = 0 for all x ∈ R. In the

next few sections we prove our results.

2. Degree Dn of a vertex

To prove Theorem 1 observe that, since (n + 1)/n → 1, it is enough to show

that Dn+1/n converges weakly to the required random variable. For ξ ∈ R, we
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have from equation (1)

E

[

exp
(

itDn+1

n

)]

=

n
∑

k=0

exp

(

itk

n

)
∫ ∞

−∞

(

n

k

)

[1− F (θ − x)]k[F (θ − x)]n−kF (dx)

=

∫ ∞

−∞

n
∑

k=0

(

n

k

)

exp

(

itk

n

)

[1− F (θ − x)]k[F (θ − x)]n−kF (dx)

=

∫ ∞

−∞

[

(1− F (θ − x)) exp

(

it

n

)

+ F (θ − x)

]n

F (dx)

=

∫ ∞

−∞

[

(1− F (θ − x))

(

1 +
it

n
+ o

(

1

n

))

+ F (θ − x)

]n

F (dx)

=

∫ ∞

−∞

[

1 +
it

n
(1− F (θ − x)) + o

(

1

n

)]n

F (dx)

→
∫ ∞

−∞
exp(it(1− F (θ − x)))F (dx) as n→∞, (17)

where the limit follows from dominated convergence theorem because
∣

∣

∣

∣

(1− F (θ − x)) exp

(

it

n

)

+ F (θ − x)

∣

∣

∣

∣

2

= [(1− F (θ − x)) cos(t/n) + F (θ − x)]2 + (1− F (θ − x))2 sin2(t/n)

= (1− F (θ − x))2 + 2F (θ − x)(1− F (θ − x)) cos(t/n) + (F (θ − x))2

≤ 1. (18)

This proves Theorem 1.

3. Pair correlation

Now suppose there are n + 2 vertices labeled 1, 2, . . . n, n + 1, n + 2 with

corresponding random variables X1, . . . , Xn+2. Define

Dn,1 := Dn+2(n + 1) = #{j : 1 ≤ j ≤ n + 2, j 6= n + 1, Xj + Xn+1 > θ} (19)

Dn,2 := Dn+2(n + 2) = #{j : 1 ≤ j ≤ n + 2, j 6= n + 2, Xj + Xn+2 > θ}.(20)

We have, for 0 ≤ k, l ≤ n + 1,

P [Dn,1 = k, Dn,2 = l] = P [Dn,1 = l, Dn,2 = k] . (21)



Rigorous results on the threshold network model 8

For k > l

P [Dn,1 = k, Dn,2 = l]

=

∫ ∞

−∞

∫ ∞

−∞
1{a>b}F (da)F (db)P

[

#{1 ≤ j ≤ n : a + Xj > θ}+ 1{a+b>θ} = k,

#{1 ≤ j ≤ n : b + Xj > θ}+ 1{a+b>θ} = l
]

=

∫ ∞

−∞

∫ ∞

−∞
1{a>b}1{a+b>θ}F (da)F (db)P [#{1 ≤ j ≤ n : a + Xj > θ} = k − 1,

#{1 ≤ j ≤ n : b + Xj > θ} = l − 1]

+

∫ ∞

−∞

∫ ∞

−∞
1{a>b}1{a+b≤θ}F (da)F (db)P [#{1 ≤ j ≤ n : a + Xj > θ} = k,

#{1 ≤ j ≤ n : b + Xj > θ} = l]

=

∫ ∞

−∞

∫ ∞

−∞
1{a>b}1{a+b>θ}gn(θ; a, b; k − 1, l − 1)F (da)F (db)

+

∫ ∞

−∞

∫ ∞

−∞
1{a>b}1{a+b≤θ}gn(θ; a, b; k, l)F (da)F (db), (22)

where, for a ≥ b,

gn(θ; a, b; k, l)

:= P [#{1 ≤ j ≤ n : a + Xj > θ} = k, #{1 ≤ j ≤ n : b + Xj > θ} = l]

= P [#{1 ≤ j ≤ n : Xj > θ − a} = k, #{1 ≤ j ≤ n : Xj > θ − b} = l]

= P [#{1 ≤ j ≤ n : Xj > θ − b} = l, #{1 ≤ j ≤ n : θ − a < Xj ≤ θ − b} = k − l]

=

{

n!
l!(k−l)!(n−k)!

[1− F (θ − b)]l [F (θ − b)− F (θ − a)]k−l [F (θ − a)]n−k if k ≥ l ≥ 0

0 otherwise.

(23)

For k = l similar calculations show

P [Dn,1 = k, Dn,2 = k]

=

∫ ∞

−∞

∫ ∞

−∞
1{a>b}1{a+b>θ}gn(θ; a, b; k − 1, k − 1)F (da)F (db)

+

∫ ∞

−∞

∫ ∞

−∞
1{a>b}1{a+b≤θ}gn(θ; a, b; k, k)F (da)F (db)

+

∫ ∞

−∞

∫ ∞

−∞
1{a≤b}1{a+b>θ}gn(θ; b, a; k − 1, k − 1)F (da)F (db)

+

∫ ∞

−∞

∫ ∞

−∞
1{a≤b}1{a+b≤θ}gn(θ; b, a; k, k)F (da)F (db). (24)

Now let

dn(1) := #{j : 1 ≤ j ≤ n, Xj + Xn+1 > θ} (25)
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and

dn(2) := #{j : 1 ≤ j ≤ n, Xj + Xn+2 > θ}; (26)

then

Dn,1 ≥ dn(1) ≥ Dn,1 − 1 (27)

and

Dn,2 ≥ dn(2) ≥ Dn,2 − 1. (28)

Thus the asymptotic distributions of
(

Dn,1

n
,

Dn,2

n

)

and
(

dn(1)
n

, dn(2)
n

)

are

identical, and we work out pair correlation with dn(1) and dn(2) instead of

Dn,1 and Dn,2.

Now, for all 0 ≤ k, l ≤ n,

P [dn(1) = k, dn(2) = l] = P [dn(1) = l, dn(2) = k] , (29)

and, for k > l

P [dn(1) = k, dn(2) = l] =

∫ ∞

−∞

∫ ∞

−∞
1{a>b}gn(θ; a, b; k, l)F (da)F (db), (30)

while, for k = l

P [dn(1) = k, dn(2) = k] =

∫ ∞

−∞

∫ ∞

−∞
1{a>b}gn(θ; a, b; k, k)F (da)F (db)

+

∫ ∞

−∞

∫ ∞

−∞
1{a≤b}gn(θ; b, a; k, k)F (da)F (db)

= 2

∫ ∞

−∞

∫ ∞

−∞
1{a>b}gn(θ; a, b; k, k)F (da)F (db)

+

∫ ∞

−∞

∫ ∞

−∞
1{a=b}gn(θ; a, b; k, k)F (da)F (db). (31)

Now let −∞ < s, t <∞. To derive pair independence, let us consider the

characteristic function. We have

E [exp(isdn(1) + itdn(2))] =

n
∑

k=0

n
∑

l=0

exp(isk + itl)P [dn(1) = k, dn(2) = l] .

(32)

We break the above double sum into three parts, when (i) k > l, (ii) k < l and

(iii) k = l.
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For (i) we have
∑

k,l:0≤l<k≤n

exp(isk + itl)P [dn(1) = k, dn(2) = l]

=
∑

k,l:0≤l<k≤n

exp(isk + itl)

∫ ∞

−∞

∫ ∞

−∞
1{a>b}gn(θ; a, b; k, l)F (da)F (db)

=

∫ ∞

−∞

∫ ∞

−∞
1{a>b}F (da)F (db)

∑

k,l:0≤l<k≤n

exp(isk + itl)gn(θ; a, b; k, l). (33)

The term
∑

k,l:0≤l<k≤n

exp(isk + itl)gn(θ; a, b; k, l)

=
∑

k,l:0≤l<k≤n

exp(isk + itl)
n!

l!(k − l)!(n− k)!

×
[

1− F (θ − b)
]l[

F (θ − b)− F (θ − a)
]k−l[

F (θ − a)
]n−k

=
∑

k,l:0≤l≤k≤n

exp(is(k − l) + il(s + t))
n!

l!(k − l)!(n− k)!

×
[

1− F (θ − b)
]l[

F (θ − b)− F (θ − a)
]k−l[

F (θ − a)
]n−k

−
∑

k,l:0≤l=k≤n

exp(is(k − l) + il(s + t))
n!

l!(k − l)!(n− k)!

×
[

1− F (θ − b)
]l[

F (θ − b)− F (θ − a)
]k−l[

F (θ − a)
]n−k

=
[

exp(i(s + t))
(

1− F (θ − b)
)

+ exp(is)
(

F (θ − b)− F (θ − a)
)

+ F (θ − a)
]n

−
n

∑

k=0

exp(ik(s + t))
n!

k!(n− k)!
[1− F (θ − b)]k[F (θ − a)]n−k

=
[

exp(i(s + t))
(

1− F (θ − b)
)

+ exp(is)
(

F (θ − b)− F (θ − a)
)

+ F (θ − a)
]n

−
[

exp(i(s + t))
(

1− F (θ − b)
)

+ F (θ − a)
]n

. (34)



Rigorous results on the threshold network model 11

Thus
∑

k,l:0≤l<k≤n

exp(isk + itl)P [dn(1) = k, dn(2) = l]

=

∫ ∞

−∞

∫ ∞

−∞
1{a>b}F (da)F (db)

(

[

exp(i(s + t))(1− F (θ − b)) + exp(is)(F (θ − b)− F (θ − a)) + F (θ − a)
]n

−
[

exp(i(s + t))(1− F (θ − b)) + F (θ − a)
]n
)

. (35)

Similarly, for (ii),
∑

k,l:0≤k<l≤n

exp(isk + itl)P [dn(1) = k, dn(2) = l]

=

∫ ∞

−∞

∫ ∞

−∞
1{a>b}F (da)F (db)

(

[

exp(i(s + t))(1− F (θ − b)) + exp(it)(F (θ − b)− F (θ − a)) + F (θ − a)
]n

−
[

exp(i(s + t))(1− F (θ − b)) + F (θ − a)
]n
)

. (36)

For (iii),
∑

k,l:0≤k=l≤n

exp(isk + itk)P [dn(1) = k, dn(2) = k]

= 2

∫ ∞

−∞

∫ ∞

−∞
1{a>b}F (da)F (db)

(

n
∑

k=0

exp(isk + itk)
n!

k!(n− k)!
(1− F (θ − b))k(F (θ − a))n−k

)

+

∫ ∞

−∞

∫ ∞

−∞
1{a=b}F (da)F (db)

(

n
∑

k=0

exp(isk + itk)
n!

k!(n− k)!
(1− F (θ − b))k(F (θ − a))n−k

)

= 2

∫ ∞

−∞

∫ ∞

−∞
1{a>b}F (da)F (db)

[

(1− F (θ − b)) exp(i(s + t)) + F (θ − a)
]n

+

∫ ∞

−∞

∫ ∞

−∞
1{a=b}F (da)F (db)

[

(1− F (θ − b)) exp(i(s + t)) + F (θ − a)
]n

.(37)
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Combining the above and taking s = u/n and t = v/n, we have

E [exp(iu(dn(1)/n) + iv(dn(2)/n))]

=

∫ ∞

−∞

∫ ∞

−∞
1{a>b}F (da)F (db)

{[

exp
(

i(u+v)
n

)

(1− F (θ − b)) + exp
(

iu
n

) (

F (θ − b)− F (θ − a)
)

+ F (θ − a)
]n

(38)

+
[

exp
(

i(u+v)
n

)

(1− F (θ − b)) + exp
(

iv
n

) (

F (θ − b)− F (θ − a)
)

+ F (θ − a)
]n}

+

∫ ∞

−∞

∫ ∞

−∞
1{a=b}F (da)F (db)

[

exp
(

i(u+v)
n

)

(1− F (θ − b)) + F (θ − a)
]n

=

∫ ∞

−∞

∫ ∞

−∞
1{a>b}F (da)F (db)

{[(

1 +
i(u + v)

n
+

O(1)

n2

)

(1− F (θ − b))

+

(

1 +
iu

n
+

O(1)

n2

)

(F (θ − b)− F (θ − a)) + F (θ − a)

]n

+

[(

1 +
i(u + v)

n
+

O(1)

n2

)

(1− F (θ − b))

+

(

1 +
iv

n
+

O(1)

n2

)

(F (θ − b)− F (θ − a)) + F (θ − a)

]n}

+

∫ ∞

−∞

∫ ∞

−∞
1{a=b}F (da)F (db)

[(

1 +
i(u + v)

n
+

O(1)

n2

)

(1− F (θ − b)) + F (θ − a)

]n

.(39)

Letting n →∞, we see that

lim
n→∞

E [exp(iu(dn(1)/n) + iv(dn(2)/n))]

=

∫ ∞

−∞

∫ ∞

−∞
1{a>b}F (da)F (db) {exp [i(u + v)(1− F (θ − b)) + iu(F (θ − b)− F (θ − a))]

+ exp [i(u + v)(1− F (θ − b)) + iv(F (θ − b)− F (θ − a))]}

+

∫ ∞

−∞

∫ ∞

−∞
1{a=b}F (da)F (db) exp [i(u + v)(1− F (θ − b))]

=

∫ ∞

−∞
exp(iv(1− F (θ − b)))F (db)

∫ ∞

−∞
exp(iu(1− F (θ − a)))F (da). (40)

Thus combining with the result in Section 2 we see that

lim
n→∞

E [exp(iu(dn(1)/n) + iv(dn(2)/n))]

= E [exp(iu(1− F (θ −X1)))] E [exp(iv(1− F (θ −X1)))]

= lim
n→∞

E [exp(iu(Dn(1)/n))] lim
n→∞

E [exp(iv(Dn(2)/n))] , (41)

i.e. we obtain the asymptotic independence as enunciated in Theorem 2.

Now we obtain Theorem 3. The joint conditional probability distribution

of the weights of two fixed vertices, provided that these vertices are connected
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by an edge, is given by

H(da, db) =
1(a + b > θ)

αF (θ)
F (da)F (db) (42)

where αF (θ) :=
∫ ∞
−∞

∫ ∞
−∞ 1(ã + b̃ > θ)F (dã)F (db̃) is the normalizing constant.

It is actually the probability that two vertices share an edge. Consequently,

the conditional probability distribution of weight of a vertex provided that it

shares an edge with another vertex is given by

G(da) =

∫ ∞

−∞
H(da, db)

= F (da)

∫∞
−∞ 1(a + b > θ)F (db)

αF (θ)

=
1− F (θ − a)

αF (θ)
F (da). (43)

In order to study the asymptotic dependence of dn(1)/n and dn(2)/n, we

need to consider the difference between the expressions in the left and right

sides of equation (40). Using equations (42) and (43), the asymptotic limit of

this difference is

lim
n→∞

E [exp(iu(dn(1)/n) + iv(dn(2)/n))]

− lim
n→∞

E [exp(iu(Dn(1)/n))] lim
n→∞

E [exp(iv(Dn(2)/n))]

=

∫ ∞

−∞
(H(da, db)−G(da)G(db)) eiu(1−F (θ−a))eiv(1−F (θ−b)). (44)

If the resulting conditional random variables are asymptotically independent,

then for all u, v ∈ R, the right hand side of equation (44) must vanish. Now

we claim that this will imply that the probability measures H(da, db) and

G(da)G(db) on R2 are identical. Indeed, let (M1, M2) and (R1, R2) be two

random vectors on R2 whose distributions are given by the probability measures

H(da, db) and G(da)G(db), respectively. Consider the map f̃ from R2 → R2

defined by f̃ : (a, b) → (1−F (θ−a), 1−F (θ− b)). Then, the supposition that

equation (44) vanishes implies that the characteristic function of f̃(M1, M2) is

same as that of f̃(R1, R2). Hence their distributions are also same. Therefore,

P[M1 ≤ β1, M2 ≤ β2]

= P [1− F (θ −M1) ≤ 1− F (θ − β1), 1− F (θ −M2) ≤ 1− F (θ − β2)]

= P [1− F (θ −R1) ≤ 1− F (θ − β1), 1− F (θ −R2) ≤ 1− F (θ − β2)]

= P [R1 ≤ β1, R2 ≤ β2] ; (45)
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i.e. H(da, db) and G(da)G(db) are identical.

Now, we claim that, because of Assumption 1 (of Section 1), the

probability measures H(da, db) and G(da)G(db) cannot be the same. Indeed, if

the measures H(da, db) and G(da)G(db) are same, then for any subset A ⊆ R
2,

∫

A
H(da, db) =

∫

A
G(da)G(db). Using the equations (42) and (43), we have

∫

A

[

1(a + b > θ)

αF (θ)
− 1− F (θ − a)

αF (θ)

1− F (θ − b)

αF (θ)

]

F (da)F (db) = 0. (46)

This will imply that

1(a + b > θ)αF (θ)− (1− F (θ − a))(1− F (θ − b)) = 0 (47)

F × F almost surely.

Now fix u and v as in Assumption 1 and let ε be such that u + v− 4ε > θ

and u + 4ε < θ/2 < v − 4ε. Let a, b ∈ (u− ε, u + ε]. Then

1(a + b > θ)αF (θ) = 0. (48)

However, θ − a < θ − u + ε < v − 3ε < v − ε, so 1− F (θ − a) ≥ 1− F (v − ε)

≥ F (v + ε)− F (v − ε) > 0. Similarly, 1− F (θ − b) > 0. Thus

(1− F (θ − a))(1− F (θ − b)) > 0. (49)

Hence, on a set of probability at least (F (v + ε)− F (v − ε))2 > 0 we have

1(a + b > θ)αF (θ)− (1− F (θ − a))(1− F (θ − b)) < 0. (50)

This contradiction completes the proof.

4. Triangles

Now we study the number of triangles in the graph. The number of triangles Tn

can be represented as a U-statistic (see [11]). The kernel function h : R3 → R

defined in equation (4) is clearly a symmetric function of x1, x2, x3. Then, we

have

Tn =

(

n

3

)

× 1
(

n
3

)

∑

(i,j,k)∈C

h(Xi, Xj , Xk) =

(

n

3

)

Un (51)

where C := {(i, j, k) : 1 ≤ i < j < k ≤ n} is the collection of all possible

triplets and Un := 1

(n

3)

∑

(i,j,k)∈C h(Xi, Xj, Xk) is the U-statistic obtained from
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the kernel h. Theorem 4(a) can be easily derived from Theorem A of [11]

(1980), page 190.

Next define h1 : R → R as follows:

h1(x) := E [h(x, X2, X3)]

= P [X2 > θ − x, X3 > θ − x, X2 + X3 > θ]

= P [min{X2, X3} > θ − x, X2 + X3 > θ] . (52)

Noting that

E [h1(X1)] = E [E [h(X1, X2, X3)|X1]] = E [h(X1, X2, X3)] = F3(θ), (53)

we have

ζ1(F ) = Var(h1(X)) > 0 (54)

unless F is degenerate. The asymptotic normality of Tn/
(

n
3

)

, i.e. Theorem 4(b)

follows from Theorem A of [11] (1980), page 192.

As an aside, we note that the method of U-statistics employed above is

more versatile. It may be applied to configurations involving any subgraph

composed of finitely many vertices.

Let G be a graph on k vertices (k ≤ n) and suppose V := {v1, . . . , vk}
and E be the vertex and edge sets of the graph, respectively. For a permuta-

tion σ : V → V, let us consider the graph Gσ with vertex set V and edge set

Eσ := {〈σ(vi), σ(vj)〉 : 〈vi, vj〉 ∈ E}. Let l := #{σ : Eσ = E}. Thus l counts

the number of symmetries of G. To illustrate this, consider the graph with

vertex set as V = {1, 2, 3, 4} and edge set E = {〈1, 2〉 , 〈2, 3〉 , 〈3, 4〉 , 〈4, 1〉}.
For this graph l = 8; indeed any of the eight permutations

(1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2), (4, 1, 2, 3), (1, 4, 3, 2), (4, 3, 2, 1), (3, 2, 1, 4) and

(2, 1, 4, 3) result in a graph which is equivalent to the original graph.

Now given a graph G on the vertex set V := {1, 2, . . . , n} with edge set E

consider the subgraph G(i1, . . . , ik) on the vertex set V (i1, . . . , ik) = {i1, . . . , ik}
and edge set E(i1, . . . , ik) = {〈it, is〉 : 〈it, is〉 ∈ E and 1 ≤ t 6= s ≤ k}. Let

Lk be the set of all ordered k-tuples from {1, 2, . . . , n} and f : Lk → {0, 1} be

defined as follows:

f(i1, i2, . . . , ik) =

{

1 if 〈is, it〉 ∈ E(i1, i2, . . . , ik) for all 〈vs, vt〉 ∈ E

0 otherwise.
(55)

Thus, the number of subgraphs in G isomorphic to G is given by l−1Tn(G),

where

Tn(G) :=
∑

(i1,i2,...,ik)∈Lk

f(i1, i2, . . . , ik). (56)
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For the graph Gθ, the vertices is and it are connected by an edge if and

only if Xis +Xit > θ. Thus the function f in the definition (56) may be replaced

by the kernel function h : Rk → {0, 1} defined by

h(Xi1 , Xi2, . . . , Xik) =

{

1 if Xis + Xit > θ for all 〈vs, vt〉 ∈ E

0 otherwise,
(57)

and we have

Tn(G) =
∑

(i1,i2,...,ik)∈Lk

h(Xi1 , Xi2, . . . , Xik). (58)

This function h need not be symmetric in its argument. Even if it were so, since

the sum is over all ordered k-tuples (i1, . . . , ik) and not on k-tuples (i1, . . . , ik)

such that i1 < i2 < · · · < ik, Tn need not be a U-statistic.

To overcome these, we first define a symmetrized version of the kernel h.

Let,

hsym(x1, x2, . . . , xk) :=
1

k!

∑

σ̃∈P (k)

h(xσ̃(1), xσ̃(2), . . . , xσ̃(k)) (59)

where σ̃ : {x1, x2, . . . , xk} → {x1, x2, . . . , xk} is a permutation, and P (k) is

collection of all such permutations. We note that, even if x1 = x2, we take

(x2, x1, x3, . . . , xk) to be a permutation of (x1, x2, x3, . . . , xk). Clearly, hsym is

a symmetric function of x1, x2, . . . , xk, and we obtain

Tn(G) =
∑

(i1,i2,...,ik)∈Lk

h(xi1 , xi2, . . . , xik) =
∑

(i1,i2,...,ik)∈Lk

hsym(xi1 , xi2 , . . . , xik).

(60)

The statistic Tn(G) is not a U-statistic. Thus we consider the statistic

T ′
n(G) =

n
∑

i1=1

n
∑

i2=1

· · ·
n

∑

ik=1

hsym(xi1 , xi2 , . . . , xik)

= Tn +
∑

1≤i1,i2,...,ik≤n
not all distinct

hsym(xi1 , xi2 , . . . , xik)

= Tn(G) + Rn(G) (say). (61)

Since T ′
n(G) is a von Mises’ statistic (see [10], page 39), the asymptotic results

about T ′
n(G) can be read off from the results about the von Mises’ statistics

with the kernel function hsym. To relate the statistics Tn(G) and T ′
n(G) we

observe that the number of terms in the sum defining Rn is of the order of

nk−1; thus noting that hsym ≤ 1, we have Rn = O(nk−1) as n →∞. Let

F (G) := E [h(X1, X2, . . . , Xk)] . (62)
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Then, by the i.i.d. nature of {Xi : i ≥ 1}, we have E [hsym(X1, X2, . . . , Xk)] =

F (G).

Theorem 8 As n →∞,

Tn(G)

nk
→ F (G) almost surely. (63)

Proof: From Theorem 3.3.1 of [10], page 102, we have T ′

n(G)
nk → F (G) almost

surely. Our observation that Rn = O(nk−1) as n → ∞ completes the proof of

the theorem.

To obtain the central limit theorem, as in (52) let

h1(x) := E [hsym(x, X2, X3, . . . , Xk)] (64)

and ζ1(G) = Var(h1(X)) where X is an independent random variable identical

in distribution to X1. Then, from Theorem 4.2.5 ([10], page 134) we have the

central limit theorem for T ′
n(G). Now Rn(G)/nk → 0 in probability as n →∞.

Thus we obtain

Theorem 9 As n →∞,

√
n
[Tn(G)

nk
− F (G)

]

⇒
√

kζ1(G)Z. (65)

5. Local Properties

In this section we study Tn(1) as defined in equation (8).

For fixed x ∈ R, the kernel h(x, x1, x2) as defined in equation (4) is a

symmetric function of x1 and x2. Define a U-statistic based on the kernel

h(x, ·, ·) by

Tn(1; x) :=
∑

2≤i6=j≤n+1

h(x, Xi, Xj). (66)

We have by the strong law for U-statistics (Theorem A, [11] page 190)

Tn(1; x)
(

n
2

) → E [h(x, Xi, Xj)] almost surely, as n →∞. (67)

The random variable Tn(1; x) may be easily identified as the number of triangles

of Gθ with a fixed vertex 1 and X1 = x. Formally, we may write, for any t ∈ R

E

[

exp

(

it
Tn(1)
(

n
2

)

)]

=

∫

R

F (dx)E

[

exp

(

it
Tn(1)
(

n
2

)

)

∣

∣

∣

∣

X1 = x

]

→
∫

R

F (dx) exp (itE [h(x, X2, X3)]) (68)
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as n → ∞, because Tn(1; x)/
(

n
2

)

→ E [h(x, X2, X3)] almost surely and hence

also in distribution. The limit is justified by the usual application of dominated

convergence theorem since the integrand, being a characteristic function, is

bounded by 1. The right hand side of (68) is the characteristic function of the

random variable
∫

R

∫

R
F (dx1)F (dx2)h(X, x1, x2). This proves the Theorem 5.

As in the previous section we may generalize Theorem 5 for the subgraph

G defined earlier.

6. Spatial model

Consider the Poisson spatial model as elaborated in Section 1. We first thin

the underlying Poisson process. Fix x ∈ R. For i ≥ 1, each point ξi of

the original process is included in the thinned process with a probability

f(|ξi|; x) independently of the other points. The thinned process is an

inhomogeneous Poisson process with intensity function g(y) for y ∈ R given

by g(y) = λf(|y|; x), where f(r; x) is as defined in equation (11). For ∆r as

defined in equation (10), we have

Proposition 1 The conditional distribution of ∆r given that X0 = x, is

Poisson with parameter λr(x) where

λr(x) := λ

∫

|r̃|≤r

f(r̃; x)dr̃. (69)

We first prove Theorem 6 where Cr(x) → C(x) < ∞ (see Section 1 for

the relevant definitions). Because t →
∫

R
F (dx) exp

(

−λcdC(x)(1− exp(it))
)

is

indeed a characteristic function, it is enough to prove that the characteristic

function of ∆r converges to the above quantity. By Proposition 1, the

conditional distribution of ∆r given X0 = x is Poisson with parameter
∫

|r̃|≤r
λf(r̃, x)dr̃ = λcd

∫ r

0
r̃d−1[1 − F (θr̃β − x)]dr̃ = λcdCr(x) where cd is the

volume of the (d− 1)-dimensional unit sphere. Therefore, we have

φ∆r
(t) := E [exp(it∆r)]

=

∫

R

F (dx)E [exp(it∆r)|X0 = x]

=

∫

R

F (dx) exp
(

−λcdCr(x)(1− exp(it))
)

. (70)

Now, since Cr(x) → C(x), the usual dominated convergence theorem assures

φ∆r
(t) → φ∆(t) as r →∞. (71)
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This completes the proof of Theorem 6.

Remark Assuming θ > 0, we may re-write C(x) in the following way:
∫ ∞

0

rd−1[1− F (θrβ − x)]dr

=

∫ ∞

0

rd−1

∫ ∞

−∞
1
(

x̃ > θrβ − x
)

F (dx̃)dr

=

∫ ∞

−∞

∫ ∞

0

rd−11
(

r < max{0, [(x̃ + x)/θ]1/β}
)

drF (dx̃)

=
1

d

∫ ∞

−∞

[

max{0, [(x̃ + x)/θ]d/β}
]

F (dx̃)

=
1

dθd/β

∫ ∞

−∞

[

max{0, (x̃ + x)d/β}
]

F (dx̃)

=
1

dθd/β
E
[

max{0, (X0 + x)d/β}
]

. (72)

Thus C(x) < ∞ if E[|X0|d/β] <∞.

To show Theorem 7, it is enough to prove that the characteristic function

of (∆r−λcdCr)/
√

λcdCr converges to the product of the characteristic functions

of a standard normal random variable and
√

λcdg(X0).

E

[

exp

(

it
∆r − λcdCr√

λcdCr

)]

=

∫

R

F (dx)E

[

exp

(

it
∆r − λcdCr√

λcdCr

)
∣

∣

∣

∣

X0 = x

]

=

∫

R

F (dx) exp(−it
√

λcdCr)E

[

exp

(

i
t√

λcdCr

∆r

)
∣

∣

∣

∣

X0 = x

]

=

∫

R

F (dx) exp
(

−it
√

λcdCr − λcdCr(x)(1− exp(it/
√

λcdCr))
)

(73)

using the fact that the conditional distribution of ∆r given X0 = x follows a

Poisson distribution with parameter λcdCr(x). Consider the logarithm of the

integrand:

−it
√

λcdCr − λcdCr(x)

[

1− exp

(

it√
λcdCr

)]

= − it
√

λcdCr − λcdCr(x)

[

− it√
λcdCr

− 1

2

(

it√
λcdCr

)2

+ o

(

(

it√
λcdCr

)2
)]

= it
√

λcd

[Cr(x)− Cr√
Cr

]

− t2

2

Cn(x)

Cr

− λcdCr(x)× o
( 1

Cr

)

. (74)
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Under our condition, the first term converges to it
√

λcdg(x). The condition

also implies that Cr(x)/Cr → 1 as r →∞, and thus the second term converges

to −t2/2. The third term can be written as
[

Cr(x)/Cr

]

×
[

Cro(1/Cr)
]

→ 0 as

r →∞. Applying the dominated convergence theorem, we now obtain that

E

[

exp

(

it
∆r − λcdCr√

λcdCr

)]

→ exp

(

−t2

2

)
∫

R

F (dx) exp(it
√

λcdg(x)). (75)

Now note that exp(−t2/2) is the characteristic function of a standard normal

random variable and
∫

R
F (dx) exp(it

√
λcdg(x)) is the characteristic function of√

λcdg(X0). This completes the proof of Theorem 7.
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