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ABSTRACT

A robust procedure is developed for testing the equality of means in the two
sample normal model. This is based on the weighted likelihood estimators of
Basu et al. (1993). When the normal model is true the tests proposed have
the same asymptotic power as the two sample Student's t—statistic in the
equal variance case. However, when the normality assumptions are only
approximately true the proposed tests can be substantially more powerful
than the classical tests. In a Monte Carlo study for the equal variance case
under various outlier models the proposed test using Hellinger distance based
weighted likelihood estimator compared favorably with the classical test as
well as the robust test proposed by Tiku (1980).
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1. INTRODUCTION

Let Xil’ sy Xi,na’ i= 1, 2, be independent random samples from
populations with mean I and variance ai2. Testing equality of I and I is a
common statistical problem. Under the assumption of normality and equal
(and unknown) variances one can use the classical Student’s two sample t
test. But, in practice, the population distributions may not be exactly
normal. Usually, the Student’s t test is sensitive to the departures from
normality. As stated by Tiku et al. (1986, p. 120): the Student’s "t test is

asymptotically robust, and for finite n, and n, it possesses type 1 error

robustiness if n,= n, or if the distributién is symmetric; if nlaﬁ n, and the
distribution is skew, the effects of departure from normality may be
considerable". Tiku (1980) proposed a robust test statistic based on modified
maximum likellhood (MML) estimators of the parameters. Tiku's test
statistic {Tiku et al. 1986, equation (4.3.1)) has considerably higher power
than the Student’s t test under nonnormal distributions while having only
slightly lower power under normal distributions. Tiku et al. (1986, pp.
122—-130) discuss how this test compares to other robust tests available in the
literature.

If the underlying population distributions are normal with unequal
(and unknown) variances, the Welch’s t—statistic (Welch 1937) is usually
used. This test statistic is nonrobust under most nonnormal distributions
{Yuen 1974, Table 1). Tiku and Singh (1982, equation (7)) proposed a test
statistic analogous to Welch’s statistic based on the MML estimators of the
parameters i, ji,, 0, and ¢, The test of Tiku and Singh has generally higher
power than the Welch’s t test under nonnormal distributions with a little
loss in asymptotic power (compared to Welch’s t) under normal
distributions. For details on this and a literature review on robust tests see
Section 4.5 of Tiku et al. (1986).

In this paper we present robust alternatives to the two sample t tests
based on minimum disparity estimators (MDEs) of Basu and Lindsay (1994)
and weighted likelihood estimators (WLEs) of Basu et al. (1993). While the
MDEs are asymptotically fully efficient at the model, their efficiency depends
on the choice of transparent kernels (see Section 2.1 below) which may not be
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available for a nonnormal model. The WLEs, on the other hand, have
efficiency and robustness properties similar to those of the MDEs but their
efficiency does not depend on the availability of a transparent kernel. In
addition, the WLEs are considerably simpler to compute than the MDEs,
Thus, in practice, one can use test statistics based on the WLEs rather than
MDEs. Under normal distributions the tests of Tiku (1980) are
asymptotically slightly less powerfu] than the Student’s t statistic {Tiku et
al. 1986, p. 122) but our proposed test statistics are asymptotically as
powerful as the Student’s t statistic (Lemma 1 below). For the equal
variance case we have conducted a Monte Carlo study for different sample
sizes under various outlier models, i.e., where the data are generated by a
mixture distribution with a large proportion of the normal distribution and a
small proportion of a heavier tailed distribution. The simulation results show
that the empirical powers of our proposed test using the Hellinger distance
based WLE compare favorably with those of Tiku's test (1980). Investigation
of the robust alternatives in the unequal variances case is an ongoing project
and will be reported in a sequel paper.

The remainder of this paper is organized as follows. In Section 2 we
give a brief review of the MDEs and WLEs. In Section 3 we define robust t
statistics based on MDEs and WLEs and discuss their properties. Monte
Carlo results are presented in Section 4. Concluding remarks are given in
Section 5.

2. MINIMUM DISPARITY AND WEIGHTED LIKELIHOOD
ESTIMATION

2.1. Minimum disparity estimation

Minimum disparity estimation (Lindsay 1994, Basu and Lindsay
1994) is an efficient and robust estimation method in parametric models. Let
m ﬁ(x) represent the density of a continuous parametric family of models,
indexed by an unknown parameter vector #. Given a sample of n independent
and identically distributed observations Xl,...,Xn, construct a nonparametric
kernel density estimator f*(x), as f*(x) = [k(x;y,h)dF (y), where F_is the
empirical distribution function and k is the kernel function with mean y and
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standard deviation h. Let M 8 be the cumulative distribution function of the
model. Next applying the same smoothness to the model, we get m}a(x) =
fk(x;y,h)dMﬁ(y). Now we can construct a density based distance between
f¢(x) and m"é(x), like the squared Hellinger distance

HD = [[(8:(x))"/* — (mgfx)) /P, (2.1

which may be minimized to obtain the minimum Hellinger distance
estimator.

Define the Pearson residual, a standardized version of the residual as
5(x) = [I*(x) — mfj(x}] /mﬁ,(x). For an arbitrary real valued thrice
differentiable convex function G with G(0) = 0, define a disparity measure p

between f*(x) and mE(x) as

plf+, m3) = J G(#+(x))my(x)dx. (2.2)

The value of # which minimizes the above disparity is called the MDE of A
If G is strictly convex the MDE is Fisher consistent. The obvious analog of
the maximum likelihood estimator in this case is the "MLE*", which is the
value of f that minimizes the likelihood disparity

LD = If*(x) Tnffe(x)fm3(x)]dx (2.3)

Both (2.1) and (2.3) can be written in the form of (2.2).

The approach of smoothing the model (i.e., using mg in place of m ﬂ)
has several advantages over the conventional methods which do not smooth
the model before the disparity is constructed. It does not require consistency
or rate of convergence results for the nonparametric density estimators. Also,
the MDEs are consistent and asymptotically normally distributed for any
fized bandwidth h. In some situations a kernel can be chosen so that the
MLE=* equals the ordinary maximum likelihood estimator regardless of the
bandwidth, such kernels being known as the {ransparent kernels. Therefore,
under transparent kernels all other MDEs are asymptotically equivalent to
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the MLE* and are first order efficient. See Basu and Lindsay (1994) for more
details on transparent kernels.

Under differentiability of the model, minimization of the disparity
measure p with respect to f corresponds to solving a set of estimating
equations of the form:

_g_z=J'A(5x(x))ﬁﬁ_dx= 0. (2.4)

The function A(8) = (1+6)] g—;G(&)] — G(6), 6 € R, is unique to the particular
disparity measure and can be centered and rescaled so that it takes the value
zero at § = 0 and its derivative at § = 0 is one. A(f) is called the residual
adjustment function of the disparity. For the squared Hellinger distance

G(§) = [(6+1)/2 - 112, A(8) = 2((5+1)"/7 1),

For robust disparities like the Hellinger distance the residual adjustment
function can severely downweight observations with large Pearson residuals.
In this respect it is almost exactly like the ¥ function of the M—estimation
approach. For the likelihood disparity A(§) = § and the estimating equation
has the form

J%ﬁ‘% g_ﬁmff(x) dx =J [rigtﬁ - 1} g_ﬁ’“é(x) dx =0 (2.5)

Computation of the MDE is done using numerical evaluation of
integrals and iterative techniques. We next describe a modification of the
above estimation method which is computationally much simpler and which
does not sacrifice efficiency or robustness properties. For more details on this
see Basu et al. (1993).

2.2. Weighted likelihood estimation
Note that the estimating equation (2.4) can be expressed as

[ LI (5 (x)+1) (2 my] dx = 0
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% myx)

Jw(é*(x)) [% } dF=*(x) = 0, (2.6)

where w(é(x)) = [A(&{x))+1]/[6*(x)+1] and F* is the distribution function
corresponding to f+. Equation (2.6) is a weighted version of the estimating
equations (2.5) of the MLE» with weights w{é*(x)). By replacing the
smoothed model. density m* and the smoothed empirical distribution F» in
equation (2.6) with their corresponding unsmoothed versions mg and F
respectively (except in the weight part), one can define the following
estimating equation for A

9 m (x)
w(d(x)) | LL—L | dF (x) =0
| [ wistwn [ty | e,
ie.,
2% W(H(X) u(X,6) = 0 (2.7)
j=1 . :

where u(x,f) = g—ﬂln mﬂ(x) is the usual maximum likelihood score function
and Fn is the empirical distribution function for the data Xl,...,Xn. Note that
the kernel smoothing appears in equation (2.7} only through the weight part
w(ﬁ*(Xj)) and not through the score part u(XJ.,ﬂ) of the equation. As in the
case of iteratively reweighted least squares estimation method (Beaton and
Tukey 1974; Holland and Welsch 1977), the WLE of §is obtained by solving
equation (2.7) iteratively. For a given set of initial estimates of § one can
construct weights w(ﬁ*(Xj)), then solve equation (2.7) for an improved
estimate of f, this is then used to construct new weights and this iterative
procedure is continued until a suitable convergence criterion is met.

From the results of Basu et al. (1993) it follows that the WLEs are
asymptotically fully efficient at the model. Under the model as the sample
size increases the weights w(é*(Xi)) tend to one and the equation (2.7)
behaves like the maximum likelihood score equation for all the disparities. In
addition, WLEs generated by disparities like the Hellinger distance have
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good robustness properties since the weight w(*(X,)) = [A(é*(X.l}) + 1]/
(6+(X,) + 1) will be significantly downweighted from 1 for an observation X,
with a large Pearson residual. Unlike the MDEs, the WLEs do not require a
transparent kernel to achieve full asymptotic efficiency. Note that the
estimating equation (2.7} of the WLE is a sum over the data points XX
rather than an integral over the entire support of mg as in the estimating
equation (2.6) for the MDE. Consequently, the evaluation of the WLE
requires no numerical integration and becomes computationally much

simpler.

3. ROBUST TESTS

For a random sample X, , ..., X, _from N(,ui,o?), i=1,2, let ﬁ‘i be the
IEE ]
corresponding empirical distribution function. We are interested in testing
the null hypothesis
Ho: b= py. (3.1)

Basu and Lindsay (1994) showed that for the univariate normal problem a
transparent kernel for the model is given by k{x,y,h) = N(y, h?) density. Let
mﬁi(x) represent the N(ui,a"’) density, and f = (,u,i,cr?)’, i=1,2. Let f* be the
kernel density estimates for the i—th sample and let m;i be the corresponding
kernel smoothed version of the model density. For a given disparity measure
p, let p(f'!l‘,mza)_) be the disparity constructed over the i—th sample. Then, the
minimum disparity estimation procedure of the one sample case can be
extended in a straightforward manner to the two sample case with the

overall disparity

po = (myFn) " [np(fymy ) + np(fsms )] (3.2)

playing the role of the disparity to be minimized. For the specific case of the
Hellinger distance, (3.2) is the form of overall disparity that was considered
by Simpson (1989) for the two sample problem. Sarkar and Basu (1995) also
used this form of the overall disparity to construct tests of hypothesis
involving multiple discrete populations. In the two sample normal case the
MLE#s (i.e., the minimizers of the above overall disparity when p is the
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likelihood disparity) of Bys by g% are again equal to the corresponding
ordinary maximum likelihood estimators.

In the two sample case the estimating equations of the WLE can
again be obtained by replacing the smoothed model and the smoothed
empirical distributions by their corresponding unsmoothed versions in the
score part of the estimating equation of the MDE. This yields the three
estimating equations

(xh .
» 5 i ﬁ) - - j=
J (& {xn[ LS ( 3 ]dFi(x) ? }w(é (X ))u ( ij,ﬂi)k 0, i=1,2

2 2 nj
o Jw.(ﬁ.‘( ))[@""’ ﬁ’]dF(x) 3 wi(B(X, ) o(X, ) = 0
=1 1

i= ﬂ, i=1lj=

where

wi(8:(x)) = [A(G(x)) + 1/[&(x) + 1, &i(x) = [fz(x) —m (x)}/m} (x),

and u_and u_, are the score functions with respect to p and o2 respectively
in the normal N(g,0?) model. The above equations can be simplified to give

lewl(é’;(xun (Xu = ﬂ'l) =0, i=12,

(3.3)

3 n_w(&*(x N Ix; - ) - ol =0.

i=1

The three equations in (3.3) are solved iteratively by creating new weights
wi(:S;(Xij)) at every stage. Following Basu et al. (1993} one can verify that
these estimators are first order efficient independently of the choice of the
kernel and the smoothing parameter.
For testing {3.1) the classical Student’s t statistic is defined as
T = X -4

1 1/2

s(1/n+ 1/n,)
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where % = [(nl—l)sf + (nzfl)sg]/(n1+n2f2), )—(i and sf are respectively the
i—th sample mean and variance for i = 1, 2. Next we define Tiku’s (1580)
test statistic. Let (uif, cr.li), i=1,2, be the MML estimators of (“i’ o) based on
the symmetric type II censored i—th sample with IDOxri% censoring on each
side where r.= [0.5 + 0.In] denotes the integer part of (0.5 + 0.1n,). These
estimators are known as the MMLI10 estimators (Tiku 1980). Let the
combined estimator of ¢2 be

2 ) 2
ot* = [(A-1)o" + (A,~1)a} )/ (A +A,~2)
where A, = n, — 2r,. Then Tiku’s (1980) test statistic 1s defined as

Hl-H
at(1/m + 1/m,)

2 i/2

where m =n — r + 2riﬁi, i=1,2, and ﬂi is a constant given by Tiku (1967,
Table 1). Finally, let (g, f,, 5°) and (i, i, 5°) denote the MDEs and the
WLEs of the parameters (”1’ Py o) respectively. Let T, = (ﬁl— ﬁzj/[&(l/nl

1/2 A e ygra 1/2
+1/n,)"/? and T, = (- 1,)/(5(1/n, + 1/n,)'/?)

Next we present a result which states that under the assumption of
normality T, T, and T, are slightly more powerful than T, when a large,
equal sample size n is used. The result follows from the arguments of Tiku et
al. (1986, p. 122) and the asymptotic equivalence of the maximum likelihood

estimator, MDE and WLE (Basu et al. 1993).

Lemma 1. Suppose the population disiributions are normal and n,= ny= 1

Letd = Iy o, and A = nllzd/[Zlfza]. Then for testing HO: d = 0 against
Ha: d # 0 at level o the power of the test statistics Tl, Ts and Tq are
approzimately equal to P(|Z2 + A 2 zo) for large n, where 7 is the standard
normal random variable end z is its 100(1— f2)—th percentile point. The
power of T, is given by P(|Z + 0.983A] » zo) so that the other 3 tests are
asymptotically slightly more powerful than T,.
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To carry out the above test procedures we need the distributions of
the test statistics under the null hypothesis. Let t{v) denote a central t
distribution with v degrees of freedom. Under the normality assumption, it is
well known that the null distribution of Tl is t(n1+n2f2), and by Theorem
4.3.1 of Tiku et al. (1986) the null distribution of T, in large samples is
approximately l(AI+A2—2), where A, A2 are as defined above. Lemma 1
above motivates us to approximate the null distribution of T3 and T 4 by the
t(n,+1n,-2) distribution.

4. MONTE CARLO STUDY

We conducted a Monte Carlo experiment for the equal (and unknown)
variances case and compared the performance of Tl, Student’s t test, Tz,
Tiku's robust test, and Tq(HD), the T, statistic using the Hellinger distance,
and T ,(LD), the T, statistic using the likelihood disparity. Note that T,(LD)
is exactly like Tl except that in the pooled estimator of o2 the divisor is
(n,+n,) instead of (n,+n,—2).

The tests were computed for nominal levels 10%, 5% and 1% and for
7 = n) 20, 40, 50 and 75. In each case five
thousand pairs of independent pseudo random samples were generated. The
pairs of population distributions considered are:

equal sample sizes (n, = n

Distribution (4.1): Ny, 02 = 1), i=1,2;
Distribution (4.2): (1-€)N(g,02=1) + ¢N(p,64), i=1,2;
Distribution (4.3): (1—¢)N(p,02=1) + €t(1), i=1,2;
Distribution (4.4): (1-¢)N(u,0?=1) + ¢[N(,,02=1)/U(0,1}], i=1,2,

where ¢, and €, are the contaminating proportions for the first and second

1
population  distributions respectively. Distribution (4.1) generates
uncontaminated data, distributions (4.2) — (4.4) create heavier tails relative

to the true population distributions. The empirical levels of the tests were
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computed by setting the true parameters #y and [ equal to zero, and the
empirical powers of the tests were computed for p =10 and fy = 0.5. We did
the computations for the one sample contamination case using (el, 52) =
(0.1, 0) as well as for the two sample contamination case using (e €)=
(0.1, 0.1).

In the computation of the test statistics T (HD) and T, (LD) the

o s : 2 « :
initial estimates of fys oy 07 WeLE defined as by = median (Xn""’xln)’

,&2(0) = median (Xn,...,in), 62(0} = 148 xM where M = median

(Jxll—'al(ﬂ)] pice! lxln_ﬁi(ﬂ)lj }le_p?(m] 1000 lxzn—ﬁz(oﬂ } For Sample i
we chose the bandwidth h of the N(O,hz) kernel function to be 0.5xM, where

1
The simulation results are presented in Tables I — VIII. Tables I-IV

present the empirical powers and levels for the one sample contamination
case, and Tables V—VIII present the empirical powers and levels for the two

]\/11 = Median (|X'1_ﬁi{0)g ¥ooa |Xin—'ﬁi(0)|)'

sample contamination case. In all the tables the levels are given in
parentheses beside the corresponding powers. Note that the empirical powers
of the T,(HD) are higher than those of Tiku’s test for all the sample sizes
considered. We have to be cautious about our conclusions, however, since the
empirical levels of the T 4(HD) in small samples are a little higher than the
nominal levels. We have deliberately chosen the bandwidth h to be suitable
small multiple of Mi to get good robustness properties. The WLEs are
asymptotically efficient estimates so that the empirical levels of T 4(HD) do
converge to the nominal levels for large n. However, for n as large as 75,
where the empirical levels of T 4(I-ID) are very close to the nominal levels, the
T,(HD) has significantly higher powers than Tiku's test. Note also that both
the Student’s t test and T 4(LD) lose power rapidly under contamination.

5. CONCLUDING REMARKS
Testing equality of two normal means is a well known problem in

statistics. In this paper we have presented a test statistic with good power
robustness. The statistic based on the Hellinger distance has comparable
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TABLE 1
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Empirical powers (levels) of the test statistics under one sample

contamination {i.e.,
level o and for n, = n, = 20

€= 0.1, €,= 0) for different values of nominal

172
Test statistic a=0.10 a=0.05 a=0.01

Distribution {4.1)

T, 0.457 (0.099)  0.325 (0.051)  0.138 (0.009)

T, 0.464 (0.104)  0.332 (0.053)  0.137 (0.014)

T ,(HD) 0.495 (0.116)  0.365 (0.061)  0.175 (0.015)

T,(LD) 0.475 (0.111)  0.346 (0.056)  0.152 (0.011)
Distribution {4.2)

T, 0.293 (0.085)  0.181 (0.033)  0.057 (0.004)

T, 0.414 (0.118)  0.293 (0.058)  0.115 (0.012)

T,(HD) 0.485 (0.125)  0.367 (0.065)  0.173 (0.017)

T,(LD) 0.309 (0.095)  0.199 (0.038)  0.066 (0.004)
Distribution (4.3)

T, 0.402 (0.084)  0.283 (0.041)  0.115 {0.006)

T, 0.438 (0.100)  0.315 (0.050)  ©0.131 {0.010)

T,(HD) 0.493 (0.127)  0.376 (0.065)  0.179 (0.016)

T,(LD) 0.406 (0.092)  0.293 (0.047)  0.126 (0.008)
Distribution (4.4)

T, 0.369 (0.081)  0.256 (0.039)  0.102 (0.006)

B, 0.404 (0.118)  0.289 (0.062)  0.106 (0.013)

,(HD) 0.486 (0.121)  0.373 (0.083)  0.174 (0.015)

T,(LD) 0.384 (0.089)  0.272 (0.043)  0.114 (0.007)
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TABLE II
Empirical powers (levels) of the test statistics under one sample
contamination (ie., ¢,= 0.1, €,= 0) for different values of nominal

level « and for n,o=n,= 40

Test statistic a=0.10 a=0.05 a=0.01
Distribution (4.1)
T, 0.731 (0.108)  0.609 (0.057)  0.355 (0.011)
T, 0.703 (0.100)  0.582 (0.051)  0.336 (0.009)
T,(HD) 0.744 (0.113)  0.633 (0.057)  0.388 (0.014)
T4(LD) 0.736 (0.113)  0.618 (0.060)  0.366 (0.012)
Distribution (4.2)
Ly 0.379 (0.101)  0.278 (0.047)  0.116 (0.005)
T, 0.644 (0.114)  0.526 (0.055)  0.298 (0.010)
T4(HD) 0.717 (0.121)  0.606 (0.062)  0.358 (0.015)
T4(LD) 0.385 (0.105)  0.286 (0.051)  0.122 (0.005)
Distribution (4.3)
T, 0.562 (0.094)  0.447 (0.041)  0.241 (0.008)
a1 0.673 (0.102)  0.556 (0.051)  0.306 (0.013)
T4(HD) 0.720 (0.114)  0.606 (0.058)  0.371 (0.014)
T4(LD) 0.564 (0.097)  0.445 (0.044)  0.249 (0.008)
Distribution (4.4)
T, 0.534 (0.092)  0.418 (0.042)  0.211 (0.007)
B, 0.637 (0.117)  0.503 (0.062)  0.264 (0.014)
T ,(HD) 0.723 (0.116)  0.607 (0.060)  0.360 (0.015)
T,(LD) 0.541 (0.095)  0.428 (0.045)  0.221 (0.007)
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TABLE III
Empirical powers (levels) of the test statistics under one sample
contamination (i.e., ¢ = 0.1, ¢,= 0) for different values of nominal

level @ and for n,=n,= 50

Test statistic a=0.10 a=0.05 a=0.01

Distribution (4.1)

T, 0.794 (0.099)  0.696 (0.048)  0.455 (0.010)

T, 0.784 (0.161)  0.681 (0.051)  0.442 {0.010)

T (HD) 0.802 (0.116)  0.713 (0.057)  0.478 (0.011)

T,(LD) 0.797 (0.103)  0.704 (0.051F  0.463 (0.011)
Distribution (4.2)

1] 0.406 (0.096)  0.306 (0.038)  0.137 (0.006)

T, 0.719 (0.116)  0.603 (0.057)  0.377 (0.013)

T,(HD) 0.788 (0.118)  0.693 (0.067)  0.458 (0.014)

T (LD) 0412 (0.100)  0.311 (0.040)  0.144 (0.007)
Distribution (4.3)

T 0.603 (0.086)  0.497 (0.039)  0.296 (0.007)

T, 0.771(0.111)  0.671 (0.058)  0.418 (0.011)

T,(HD) 0.789 (0.116)  0.685 (0.068)  0.458 (0.012)

T,(LD) 0.609 (0.088)  0.504 (0.041)  0.299 (0.007)
Distribution {4.4)

i 0.580 (0.080)  0.477 (0.038)  0.275 (0.007)

TZ' 0.715(0.120)  0.601 (0.058) 0.343 (0.014)

T,(HD) 0.795 (0.109)  0.695 (0.061)  0.459 (0.014)

T ,(LD) 0.585 (0.084)  0.484 (0.041)  0.283 (0.008)
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Empirical powers (levels) of the test statistics under one sample

contamination {i.e.,

TABLE IV

level ¢ and forn., = n, = 75

1

2

e =01, e,= 0) for different values of nominal

Test statistic a=0.10 =0.05 a=0.01

Distribution (4.1)

']"1 0.917 (0.099) 0.857 (0.052) 0.671 (0.010)

T, 0.909 (0.100)  0.849 (0.050)  0.652 (0.011)

T,(HD) 0.921 (0.109)  0.863 (0.057)  0.687 (0.011)

T,(LD) 0.919 (0.102)  0.860 (0.053)  0.677 (0.011)
Distribution (4.2)

'T1 0.497 (0.106) 0.384 (0.048) 0.195 (0.007}

T, 0.859 (0.123)  0.781 (0.061)  0.559 (0.012)

T,(1iD) 0.904 (0.116)  0.836 (0.060)  0.646 (0.014)

T,(LD) 0.500 (0.108)  0.388 (0.050)  0.200 (0.008)
Distribution (4.3)

T, 0.692 (0.076)  0.604 (0.034)  0.409 (0.006)

T, 0.902 (0.104)  0.834 (0.053)  0.639 (0.011)

T,(HD) 0.914 (0.106)  0.859 (0.056)  0.676 (0.011)

T,(LD) 0.702 (0.078)  0.614 (0.035)  0.418 (0.006)
Distribution (4.4)

T, 0.632 (0.080)  0.543 (0.038)  0.365 (0.006)

T 0.860 (0.124)  0.778 (0.069)  0.566 (0.015)

T,(HD) 0.910 (0.114)  0.848 (0.058)  0.662 (0.012)

T,(LD) 0.635 (0.083)  0.549 (0.038)  0.369 (0.006)
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TABLE V

BASU, SARKAR, AND BASU

Empirical powers (levels) of the test statistics under two sample

contamination (i.e.,

level wand forn

1

6= 01, ¢,= 0.1) for different values of nominal

:1'12:20

Test statistic

a=0.10

a=0.05

a=0.01

T (HD)
T,(LD)

Distribution (4.1)

0.457 (0.099)
0.464 (0.104)
0.495 (0.116)
0.475 (0.111)

0.325 (0.051)
0.332 {0.053)
0.365 (0.061)
0.346 (0.056)

Distribution (4.2)

0.293 (0.086)
0.358 (0.114)
0.469 (0.128)
0.311 (0.094)

0.176 (0.032)
0.254 (0.053)
0.356 (0.071)
0.190 (0.039)

Distribution (4.3)

0.293 (0.079)
0.374 (0.113)
0.440 (0.132)
0.304 (0.087)

0.196 (0.036)
0.266 (0.061)
0.329 (0.068)
0.209 (0.041)

Distribution (4.4)

0.338 (0.071)  0.226 (0.033)
0.425 (0.104)  0.308 (0.053)
0.478 (0.121)  0.355 (0.062)
0.356 (0.078)  0.244 (0.037)

0.138 (0.009)
0.137 (0.014)
0.175 (0.015)
0.152 (0.011)

0.038 (0.003)
0.093 (0.010)
0.168 (0.019)
0.044 (0.003)

0.071 (0.006)
0.103 (0.011)
0.154 (0.015)
0.081 (0.008)

0.078 (0.004)
0.113 (0.012)
0.170 (0.017)
0.087 (0.006)
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TABLE VI
Empirical powers (levels) of the test statistics under two sample

contamination (i.e., ¢= 0.1, ¢,= 0.1) for different values of nominal

level a and forn, = n_, = 40

1 2
Test statistic a=0.10 a=0.05 a=0.01
Distribution (4.1)
£ 0.731 (0.108)  0.609 (0.057)  0.355 (0.011)
T, 0.703 (0.100)  0.582 (0.051)  0.336 (0.009)
T4(HD} 0.744 (0.113)  0.633 (0.057)  0.388 (0.014)
(LD) 0.736 (0.113)  0.618 (0.060)  0.366 (0.012)
Distribution (4.2)
Ty 0.431(0.108)  0.303 {0.045)  0.106 (0.003)
T 0.564 (0.124)  0.447 (0.060)  0.238 (0.011)
T4{HD) 0.697 (0.127)  0.581 (0.066)  0.360 (0.016)
T,(LD) 0.441 (0.108)  0.312 (0.045)  0.112(0.003)
Distribution (4.3)
T, 0.384 (0.075)  0.285(0.030)  0.125 (0.005)
T, 0.611 (0.106)  0.484 (0.055)  0.260 {0.011)
T,(HD) 0.648 (0.113)  0.531 (0.059)  0.294 (0.014)
T ,(LD) 0.392 (0.080)  0.261 (0.033)  0.131 (0.005)
Distribution (4.4)
T, - 0480 (0.080)  0.356 (0.029)  0.170 (0.004)
E, 0.656 (0.098)  0.530 (0.046)  0.291 (0.008)
4(HD) 0.725 (0.120)  0.615 (0.060)  0.372 (0.014)
4(LD) 0.487 (0.085)  0.367 (0.032)  0.178 (0.004)
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TABLE VII
Empirical powers (levels) of the test statistics under two sample

BASU, SARKAR, AND BASU

contamination {i.e., (=01, ¢,= 0.1) for different values of nominal

level o and for n

1

:n2:a0

Test statistic

a=0.10

a=0.05

a=0.01

Distribution (4.1)

0.794 (0.099)
0.784 (0.101)
0.802 (0.116)
0.797 {0.103)

0.696 (0.048
0.681 (0.051
0.713 (0.057
0.704 (0.051

— e e

Distribution (4.2)

0.486 (0.099)
0.635 (0.118)
0.757 (0.124)
0.493 (0.102)

0.349 (0.044)
0.522 (0.061)
0.654 (0.068)
0.358 (0.046)

Distribution (4.3)

0.422 (0.080)
0.694 (0.101)
0.730 (0.114)
0.429 (0.081)

0.318 (0.034)
0.577 (0.049)
0.625 (0.058)
0.325 (0.036)

Distribution (4.4)

0.491 (0.075)
0.739 (0.098)
0.782 (0.115)
0.496 (0.078)

0.385 (0.033)
0.629 (0.051)
0.689 (0.062)
0.391 (0.035)

0.455 (0.010)
0.442 (0.010)
0.478 (0.011)
0.463 (0.011)

0.140 (0.006)
0.298 (0.011)
0.432 (0.017)
0.145 (0.006)

0.153 (0.005)
0.334 (0.012)
0.386 (0.013)
0.160 (0.005)

0.202 (0.004)
0.390 (0.009)
0.464 (0.013)
0.209 {0.005)
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TABLE VIII
Empirical powers (levels) of the test statistics under two sample
contamination (i.e., €,= 0.1, ¢,= 0.1) for different values of nominal

level a and for n, =n,= 75

(o]
n

Test statistic a=0.10 a=0.05 a=0.01

Distribution (4.1)

I, 0.917(0.099)  0.857 (0.052)  0.671 (0.010)

T, 0.909 (0.100)  0.849 (0.050)  0.652 (0.011)

T,(HD) 0.921 (0.109)  0.863 (0.057)  0.687 (0.011)

T,(LD) 0.919 (0.102)  0.860 (0.053)  0.677 (0.010)
Distribution (4.2)

i 0.608 (0.098)  0.482 (0.047)  0.230 (0.006)

T 0.792 (0.125)  0.700 (0.064)  0.480 (0.015)

T,(HD) 0.883 (0.121)  0.818 (0.062)  0.625 (0.015)

T,(LD) 0.611(0.101)  0.488 (0.048)  0.237 (0.006)
Distribution (4.3)

T, 0.472 (0.076)  0.371 (0.033)  0.211 (0.004)

X, 0.837 (0.107)  0.739 (0.052)  0.510 (0.011)

T,(HD) 0.856 (0.117)  0.783 (0.058)  0.566 (0.012)

T (LD) 0.476 (0.077)  0.375 (0.034)  0.215 (0.004)
Distribution (4.4)

T, 0.556 (0.072)  0.452 (0.029)  0.258 (0.003)

T, 0.886 (0.103)  0.811 (0.051)  0.608 (0.011)

T,(HD 0.907 (0.118)  0.840 (0.060)  0.660 {0.013)

T,(LD) 0.560 (0.073)  0.455 (0.030)  0.262 (0.003)
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power to Student’s t in the uncontaminated case, achieves high power and
preserves the level in the contaminated cases also. In addition, it is simple to
compute and can be of substantial practical value. The authors are currently
studying the performance of this approach to the problem of testing the
equality of normal means under unequal variances.
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