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Obliquely propagating ion acoustic solitary waves in a dusty plasma
in the presence of an external magnetic field
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The obliquely propagating nonlinear ion acoustic wave in a dusty plasma subjected to an external
magnetic field is studied in the Sagdeev’s pseudopotential framework. The Sagdeev’s potential is
derived in two cases, one of which assumes the quasineutrality condition and the other uses the
Poisson equation instead. The respective ranges of parameters for which solitary waves exist in both

the cases are studied in some detail numerically.

{. INTRODUCTION

Dusty plasma can be defined as a plasma with highly
charged and extremely massive dust grains. It occurs in vari-
ous astrophysical as well as laboratory environments.' Dif-
ferent types of wave phenomenon in dusty plasma have been
studied extensively.' ™"

The presence of the highly charged and massive dust
grans in a plasma introduces new eigenmodes. They are, for
example, dust acoustic mode,” dust ion-acoustic mode," dust-
lower hybrid mode,* dust drift mode,’ etc. Experimental ob-
servations on dust acoustic waves and dust ion acoustic
waves have been reported by Barkan et al.,, Thompson ez
al..’ and Nakamura et al.® Several authors™'? have studied
waves in dusty plasma in the presence of a magnetic field.
Electrostatic modes in a magnetized dusty plasma have also
been studied by some authors.'>'* Choi et al.'>'® have stud-
ted the nonlinear ion acoustic solitary wave in a magnetized
dustf plasma, obliquely propagating to an external magnetic
field in the framework of the Sagdeev potential.'’ They have
reported that when the ion charge density is high, the
Sagdeev potential needs to be expanded up to on* near
n=1. They also found that rarefactive ion acoustic solitary
waves as well as the kink-type double layer solutions could
exist, in addition to that conventional hump-type ones found
in the n> expansion. Choi ef al.'” used the charge neutrality
condition, which is valid when the length scale L of the
solitary wave is greater than the Debye length \p or gyrora-
dius r., to derive the pseudopotential for the ion acoustic
solitary wave in a dusty plasma. Mamun et al.'® investigated
obliquely propagating electron-acoustic solitary waves in a
magnetized plasma with (wo temperature electrons and ions
where the hot electrons follow a vortex-like distribution.
They obtained a modified Korteweg-de Vries (KdV) equa-
tion and denved its stationary solitary solution. We consider
a plasma comprising, apart from the ions and Boltzmann
distributed electrons, massive dust grains. The magnetic field
(B) is taken along the : axis, so that B=Be,. The dust dy-
namics 15 not taken into account and the charge of the dust
grains are assumed 1o be constant. Our work differs from the
one by Choi et al."” in the sense that we have not assumed
the charge neutrality condition. which means the parameter

B, to be explained later, cannot be taken too large. It may be
mentioned that the charge neutrality condition should be
critically examined, particularly in the case of double Yayers
where the potential drop can be large enough to accelerate
the 1ons. Also we have derived the exact Sagdeev’s potential
in the quasineutral case and found some discrepancies in the
result given in Ref. 15. However, like Choi ef al.."* we as.
sume that the ion mass alone provides the inertia and the
massless electrons follow the Boltzmann relation and the ion
temperature is considered to be small compared 10 that of the
electron. In fact the jon temperature is neglected in this
study. Expenimental and theoretical investigations of waves
in a plasma with hot electrons as well as cold ions have been
done by several authors.'® For example, as in a cold plasma,
where the ion temperature is near that of ambient, the elec-
tron temperature may be of several thousand degrees. The
organization of the paper is as follows. In Sec. I the basic
equations governing the plasma system are given. Also the
Sagdeev’s potential for this system is derived here. Discus-

sion of the results and the conclusion are mentioned in
Sec. I1I.

il. BASIC EQUATIONS FOR DIFFERENT SPECIES

The basic equations for ions are

on.

}?+V.(n,-vi)=0,, “)
\% B

——'--i-(v,.V)v,-—--e ¢+f—-{-’v,>< z1 (2)
m; mC

v2¢=-477'["’ en‘.-i-eni-—ezdnd], (3)

where n, {s=i,e,d) are the number density of the sth species.
Here i.e.d stand for ion, electron, and dust grain, respec
tively. v;, m; are, respectively, the velocity and mass of the
ions. Here ¢ is the plasma potential and z, represents the
dust charge number so that charge of the dust is given by
gg=—ez,. Where e is the elementary charge. The density of
the electrons is given by
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n,=n, exp(%"é) . (4)

We assume that the wave is propagating in the x-z plane.
After normalization the system reduces to

a ’
—6; + E;(nv,) + a—z(nvz) =0, (5)
@_x+( 2, i) __%
o vy, Jor== PR (6)
P )] d é
_atx + (vxgj-: + vza—z)vy =—u,, N
o, |8, 8) __ 9
a:+(""ax+v‘az)v‘— P ®
# &#
(ax2 6z2)¢ Blexp ¢ - &in+ 8], 9

where [S-rzl)t2 =/ ng, S=ngzy/ng. r,=Ci/Q is the
ion gyroradlus and )\ =(T,/4mn 4e%) ' is the electron Debye
length.

The normalizations are §k—t, (C,/Q)V—V, v,/C,
—v, niing—n, ed!T,— ¢, where C;=(T./m)'? is the ion
acoustic velocity, £2=eBy/m;c is the ion gyrofrequency. n,,
n;, are the electron and ion densities, respectively, in the
unperturbed state. It can be seen that when r, is small, 8
cannot be assurned to be too large and hence a priori charge
neutrality condition cannot be assumed. To obtain the disper-
sion relation for low frequency waves we write the depen-
dent variables as the sum of the equilibrium and perturbed
parts. We put n=14+7, v, =7, v,=0,, ¢=d, v,=b,. Equations
(5)—~(9) can be written as

‘Z i*%%“ (10)
%a ﬁ+% (11)
2e-s, (12)
(:22 ¥ az2)¢ Bld- 67 (14)

We assume the perturbation is of the form exp i(kx+k.z
- wt), where k,, k, are the wave numbers in the x and z
directions, respectively, and w is the wave frequency. The
dispersion relation for the low frequency (w<<{}) ion acous-
tic wave is obtained as
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1 1 K2 |2
w=k —+k2( 1+——-)+—*—] (15
z[ S Bé/  Bé )
In order to have a travelling wave solution of the system of
Eqgs. (5)-(9) we introduce a new variable
E=lx+lz— M1, (16)

where /,, I, are directional cosines and M is the Mach num-
ber of the localized wave. Equations (5)—(9) can then be
reduced to ordinary differential equations in terms of £,

M(1=n)+ (Lv,+lw)n=0, (i7)
N AN
Md§ +(l,v,d§+lzvzd§)u,- "df — 40, (18)
i )
Md-f + lxvxd§+lzuzd§ Uy ==V, (19)
N a6
Md§ +(va,d€+lzvzd€) _lzdg’ (20)
@+ dfz-ﬁ[e" én+8). (21)
From (18) and {17),
M, _ dd
ndE CdE @2)
and from (19) and (17)
Mdoy _
oz =0 (23)
From (20) and (17},
My, _ do
nde dE @9
Let
¢
F(¢)= f nde, (25)
0
then
b= (). e

From (26), (25), and (17)

Ly +_'2F(¢)=[1-;]M
M F(gy]
and from (21)

27

EZ+B)= ( ) = Ble? - 1- 8,F(d) + 5,9). (28)

As we can see, Eq. (21) can be integrated to the form
Hdp!dE)*+{$)=0. The equation can be interpreted as an
“energy integral” of an oscillatory particle of an unit mass
with velocity d@/d£ and position ¢ in a potential well y{d).
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This is the reason for ¢(¢) to be called a pseudopotential or
sometimes reférred to as Sagdeev's potential.'”

It is seen that {¢)=0, dif/dd=0 at $=0. Hence soli-
tary wave solutions exist if

() yYld¢? <0, at ¢=0;

(ii) there exists a nonzerp ¢, the maximum (or, mini-
mum) value of ¢, at which ¢(¢,)=0;

(iii) y{¢) <0, when ¢ lies between O and ¢,

From (22), (23), (27), and (28) one can get an equation
in F{¢), which when solved would give F(¢) in terms of ¢.
However, in case of a small amplitude F(¢) is expanded in
terms of ¢ given as,

F($y=d+aid*+a,¢’ + a3 +a,d° + - (29)
From (27),
v,=A¢+B@ +C¢ + D¢, (30)

The values of A, B, C, D are given in the Appendix. From
(28),

2 1
(%%) = 12f12[¢2(1 ~28,a,)+ ¢3(§' - 28|a2)

1
+¢4(E—’28|a3)]. (31)
Keeping terms up to ¢?,
d’¢ dy
;5-2=A.¢+A2¢2=— 2" (32)

where,

_B _L(l )
Al_li-}-lg(l 26]01), A2—1§+[§ 2 36102 . (33)

From (23),
i,
M =0 () (34)
and from (22)
M o ]ae
= ["' Fid) d¢»] a’ G3)

From (35) and (34), equating equal powers of ¢, a,, a,
are determined from the equations

A=Y\(1-268a), (36)

M

az[TXZ'I' 31“6]] =le2—2Aa1 +X1(I. -25,a-,)Aa|
Y,

S (37)

The expressions for X|, X, Y, Z, are given in the Ap-
pendix. Integrating Eq. (32),

_33-28a) sechz( J_A_,_g)
=),

¢= 1- 651(12
Keeping terms up to ¢°,

(38)
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FIG. 1. {(a) Sagdeev's potential ¥=y*10" vs ¢ is plotted, where the dust
plasma parameters are $=0.48, M=0.2, 1,=0.1, =1~ The values of 5,
are §;=2.5,2.6,3.6. Here the solid curve corresponds to & =3.6 and the
middle and lower dotted curves represent the cases &=2.6 and §,=2.5,
respectively. (b) Sagdeev's potential ¥=gi* 107 is plotted against ¢ where
B8=0.75,0.78. Here M=0.2, [,.=0.1, and #=2.6. #=0.75 corresponds 1o the
solid curve and the dotted curve is plotted for 8=0.78.

ﬁ=A|¢+A2¢2+A ¢ (39)
a8 o
where
B8 {1
A3= I§+[§(€-461a3), (40)

and a; is determined from the equation

4M  9X,(1 - 28,a)M
a|
X

X

+4Y15l] = %(1 - 26]31)

X[C - 4Ba, + A(4a® - 3a,)] + X3, (1)

where X; is given in the Appendix. Integrating Eq. (39),

- _.’h_,/f‘:ﬁ.*f}_ fa. ]—l 42
d}-[ 3, YERETY cosh(vA, ) | . (42)

if A%:%A /A3, then solution (42) would not be valid and
a shock wave solution is obtained which is given by
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2A2 2 MZAI + 2“4%( Nd) L] (50)
where & is an integration constant and
° ; =1 B, Mz[(l N)(6-N,)
A = —4 - -
a=-—F—= (4,>0). 44) 6" (Na~ DM’AT 247 ’ :
324 (1=-N,)?
. . -2(3- MH)——2 |, (51)
To compare our result with that of Ref. 15 we derive the A
Sagdeev potential assuming charge neutrality condition, viz.,
e®=8n- 3, we have, _ 1 C . &2[ 15 — 20N, 4 632
(L) wir+ mio M Oem 1PaCAL 24 o
- +
W)= — l 45) _HoMYI-NJE-ND |, (52
{(n-N,)? { M1 J2 ’ A & )
1
- + Yy
nwon—Ne where C,=(3-M?>)*1-N,)*/A%; A,, B,, C, are the same as
where mentioned in Ref. 15. For double layers to exist (n) should
have a double root at ¢=0 and a nonzero ¢=4¢,,. The con-
N,= ) (46) dition for double root of the polynomial on the right-hand
& side of Eq. (49) is
and B?=4AcC. (53)
N; n-Ngj| n-N; (n-1)7? This condition imposes a constraint among the parameters. If
¥(P) =Nd{ (n-1)+ S ITC N,;}ln 1-N, tT3 we keep other parameters fixed then we get a relation be-
tween M and /.. When M is plotted against £, it can be seen
2 l1-n that this relation is different from the one in Ref. 15.
-M{Inn+ , (47)
n

-N -N,
¢2(¢)=[1-N,,-l§" d}ln%—"+l§lnn—n+]
n _
1 1) M
JE V 21 R —_
M(n 2?12)+ 27

¢

Note that the terms connected to the M? term in (48)
were omitted in Ref. 15. This will affect the numerical evalu-
ation of the Sagdeev’s potential as well. To study double
layers we expand ¢{n) in terms of n we have

Wn) =Adn? + Bon® + Con®,

(48)

(49)

where

IIl. DISCUSSION AND CONCLUSION

Before going into detail let us first observe that Egs. (38)
and (42) would not be valid for 61a1=% or 8,a2=-;-. In these
cases one needs a higher order term to obtain solitary waves.
Also when A, <0, only oscillatory solutions would be ob-
tained. So to obtain solitary waves it is assumed that A,>0
and A;#0. In Fig. } ¥+ 107 is plotted against ¢, taking terms
up to ¢* [Eq. (31)] when 8=0.479, [,=0.1 and §=2.5, 2.6,
and 3.6. It is seen that with increasing &, the wave amplitude
decreases. This agrees with results from Choi et al 15
8,=3.6 is the critical value beyond which solitary waves
would not exist. It is also seen that only a compressive-type
solution is obtained. In Fig. 1(a) *107 is plotted against ¢
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FIG. 3. Sagdeev's potential V=g 107 vs ¢ is plotted taking terms up 1o ¢*
and ¢®. The dotted curve represents the lower order and the solid curve
corresponds to the higher order case. Here 8,=2.6 and the value of the other
parametars arc the same as those in Fig. 1.
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for §=2.6 and B=0.75,0.78. 8=0.79 is the critical value of
B, for this value of & beyond which solitons will not exist.

In Fig. 2 the exact Sagdeev’s potential is plotted against
the ion density r in the quasineutral case. Here &=2.6 and
three values of /, are used. The values of other parameters
are same as Fig. 1. It is seen that for /,=0.1 only rarefactive
-solitary waves exist, whereas for /,=0.11 both compressive
and rarefactive solitary waves coexist. For [,=0.13 solitary
waves do not exist. In Fig. 3, ¥(¢) is plotted taking terms up
to ¢* and ¢, It is found that inclusion of higher order term
brings small changes in the amplitude of the soliton, though
the nature and shape of ¥(¢) remain the same. From Fig. 4,
we find that the amplitmde of the sech (Ref. 2) solution given
by (38) with respect to the variation of &, remains negative.
Figure 5 shows the range of parameters in the quasineutral

amplitude
1.0
0.5
0.5 1.6 1.5 2.0
S—
-05
=1

FIG. 4. The amplitude of the solitary wave given by expression [38) has
been plotted against &, without using quasineutrality, The value of the dust

plasma parameters are 8=0.479, {,=0.1, M=0.2; other parameters are the
same as those in Fig. 1.
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FIG. 5. M vs [, is plotted in the quasineutral case showing the region of
existence of the double layer. The relation between M and i is obtained
from the condition given in Eq. (53).

a.2

case for which double layers will exist. Here M against /, is
plotted when N;=0.3. As mentioned earlier this relation is
different from the one given in Ref. 15 [Fig, 6(b) of Ref. 15),
In Fig. 6, the dotted curve shows the potential profile against
£ using the relation (38) and the solid curve corresponds to
the same when the relation (42) is used. ¢+ 107 vs ¢ is plot-
ted in Fig. 7 with §,=2.5, M=0.2, /,=0.1 for two values of
B viz., $=0.3 and 0.4. Here the solid curve is for 8=0.3 and
the dotted curve is for 8=0.4. It is seen that the amplitude of
the solitary wave increases with 8. To get a realistic picture
we use B from Ref. 19. Figure 8 shows that as /, decreases
the amplitude decreases which agrees with results from Ref.
15, In Fig. 9 we plot ¢ 10% for the case when A;<0,A2
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-0.08 — :
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§

FIG. 6. ¢ vs £ is plotted using the expressions (42) and (38) with 8,=2.6.
where other parameters are the same as those used in Fig. 1. The dotted

curve corresponds to the lower order and the solid curve is for the higher
order case.
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FIG. 7. Sagdeev's potential W=y« 107 vs ¢ is plotted, where the dust
plasma parameters are §=2.5. M and {, have the same values as in Fig. 1.
Two values of B are $=0.3,0.4. Here the doned curve comesponds to
B=0.4 and the solid curve is obtained for 8=0.3.

= %A,A; which occurs in the case of the double layer solitary
wave. Figure 10 shows the potential profile obtained by us-
ing the expression for ¢ given in Eq. (43).

Mamun ef al.'® considered a different plasma model and
showed that the soliton amplitude is independent of the ex-
ternal magnetic field. Contrary to this, we find that the am-
plitude depends on the external magnetic field. However,
Mamun et al. considered a different plasma model without
assuming quasineutrality. We have found the respective
ranges of various parameters for which solitary waves and

10 \ .
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\ \
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A0 U e e e . j
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FIG. 8. ¥=¢x107 vs ¢ is plotted, where the dust plasma parameters are
6=2.5, M=02, B=0.48. The two values /. used are [ =0.1,0.09. Here the
solid curve corresponds to /.=0.] and the dotted one is obtained for
{.=0.09.
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FIG. 9. Sagdeev’s potential W=y 10 vs
plasma parameters are §,=9.968, M=0.2, 8

double layers exist. From Eq. (36), (37), and (41) it is seen
that a,, a,, a3 depend on the values of 8. So the amplimde of
solitary wave changes as the value of external magnetic field
changes. To conclude we have studied ion-acoustic solitary
waves in a magnetized dusty plasma comprising Boltzmann
distributed electrons, ions and dust grains and found out the
respective ranges of physical parameters for which solitary
waves and shock waves would exist. It is also shown that
these ranges differs from the case when quasineutrality is
assumed. Also we found that the higher order solution is
important as it gives an idea how much effect higher order
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FIG. 10. ¢ vs £ is plotied using the expression (43) with &,=9.968, where
other parameters are the same as those used in Fig. 9.
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terms have and also provides justification for truncating the
series for example, as was done in Eq. (39).

APPENDIX

=l-_-{‘z—+2alm]' (Al)
LL M
1l 2 2

=—|-2=+3a,M - 4aiM |, (A2)
LL M
l’ Izﬁz 3

== --‘-—+4Ma3—12a1a2M+8alM y (AS)
Ll M
1- lzag 2

D= | - X2+ Say - 16a1a3M - 9a3M + 36a}a:M

X b

- 16a1M] ' (A4)

x.=f:§%, (AS5)

X z

(A6)
(A7)
(A8)

X1
Xg =C~- 280[ -3A02 - —41(5 -38102)(28 -2Aa.)

Y
+ *6-' +Y,+Y,, (A9)
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X1
Y2= —'41[('3' - 25102)2A0| + (1 - 26|a])(4Ba| + 6Aﬂz

- SAa?)] . (A10)

Y;=- %[(1 -28,a4,){(6C —4Ba,) +ZB(% -261a2)].
(a1
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