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Abstraet

In this article, a cluster validity index and its fuzzification is described, which can provide a measure of goodness of
clustering on different partitions of a data set. The maximum value of this index, called the PBM-index, across the hierarchy
provides the best partitioning. The index is defined as a product of three factors, maximization of which ensures the formation
of a small number of compact clusters with large separation between at least two clusters. We have used both the £-means and
the expectation maximization algorithms as underlying crisp clustering techniques. For fuzzy clustering, we have utilized the
well-known fuzzy c-means algorithm. Resulis demonstrating the supenority of the PBM-index in appropriately determining
the number of clusters, as compared to three other well-known measures, the Davies—Bouldin index, Dunn’s index and the
Xie-Beni index, are provided for several artificial and real-life data sets.
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Validity index

1. Introduction

Clustering [1-5] is an unsupervised classification method
when the only data available are unlabelled, and no structural
information about it is available. In clustering (also known as
exploratory data analysis), a set of patterns, usually vectors
in a multi-dimensional space, are organized into coherent
and contrasted groups, such that patterns in the same group
are similar in some sense and patterns in different groups are
dissimilar in the same sense. The purpose of any clustering
technique is to evolve a partition matrix U(X ) of a given data
set X (consisting of, say, n patterns, X = {X,Xz,...,Xxa})
S0 as to find a number, say K, of clusters (C,Cz,...,Ck).
The partition matrix U (X ) of size K x n may be represented
as U =(uy}, k=1,...,K and j = 1,...,n, where uy; is the
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membership of pattemn x; to clusters Cy. In crisp partitioning
of the data, the following condition holds: uy; =1 if x; € C;,
otherwise w;; = 0. The purpose is to classify data set X such

that
C,;é@ fOl’f=L...,K,

GNC =0 fori=1,..,K j=1l,..,Kandi#;j

and

K
Lc=x

=1

In the case of fuzzy clustering, the purpose is to evolve an
appropriate partition matrix U = [u] ., Where iy € [0, 1],
such that u;; denotes the grade of membership of the jth
element to the kth cluster. In fuzzy partitioning of the data,
the following conditions hold:

0 < ij <n fork=1,...,K
j—1
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X
Suy=1 forj=1,..,n

k=t

and

K =n
>3 g =n

k=l fa=1

The k-means algorithm [5] is one of the very well-known
partitional clustering method that produces the minimum-
squared-error partitions. When the number of clusters is
known a priori, the k-means algorithm optimizes the distance
criterion either by minimizing the within cluster spread, or
by maximizing the inter cluster separation. The expectation
maximization (EM) algorithm [6] is considered to be an ap-
propriate optimization algorithm for constructing proper sta-
tistical models of data. It provides a probabilistic clustering
where each data element has a ceriain probability of being
a member of any cluster. Unlike the k-means algorithm, it
does mot depend on any distance measure, and accommo-
dates categorical and continuous data in a superior manner.

The two fundamental questions that need to be ad-
dressed in any typical chustering scenario are: (i) how many
clusters are actually present in the data, and (ii) how real
ot good is the clustering itself. That is, whatever may be
the clustering technique, one has to determine the number
of clusters and also the validity of the clusters formed [7].
The measure of validity of the clusters should be such that
it will be able to impose an ordering of the clusters in
terms of its goodness. In other words, if Uy, Us,..., U, be
m partitions of X, and the corresponding values of a valid-
ity measure be Vi, Fa,..., Vo then Via 2 Via = -+ = Vigm,
Vide {1,2,....m}, i=L2,...,m will indicate that U}, 1
Ua T ... T Upn. Here *U; T U}’ indicates that partition
U; is a better clustering than U;. Note that a validity mea-
sure may also define a increasing sequence instead of an
decreasing sequence of Vi, ..., Vim.

In this paper, we describe an index, called PBM-index,
which can be used to associate a measure with differ-
ent partitions of a data set; the maximum value of which
indicates the appropriate pantitioning. Therefore, if ihe
number of clusters, K, is varied within some range, and
an underlying clustering technique is used to partition the
data, then the value of X corresponding to the maximum
value of PBM-index will indicate the cormrect number of
clusters present in the data. The effectiveness of this in-
dex, for determining the appropriate number of clusters, is
demonstrated for four artificial and two real-life data sets.

Other well-known cluster validity indices, available
in the hterature, are¢ the Davies—Bouldin (DB) index
[8), Dunn's Index {9} (both for hard clusters primar-
ily), and the Xie—Beni (XB) index [10] (for fuzzy clus-
ters). Davies~-Bouldin index is a function of ratio of the
sum of within cluster scatter to between cluster scatter.
Dunn’s index is a ratio of within cluster and between
cluster separations. The Xie—Beni index is a ratio of

the fuzzy within cluster sum of squared distances to the prod-
uct of the number of elements and the minimum between
cluster separation. In order to demonstrate the effectiveness
of the PBM-index, we compare its performance with the
other indices for evolving the proper number of clusters for
four artificial and four real-life data sets. For this purpose,
both the £-means [5] and EM algorithms [6] have been used
as the underlying clustering strategy.

In a part of the investigation, a fuzzified version of the
PBM -index is proposed. Again, the maximum value of the
fuzzy index over different fuzzy partitions of the data indi-
cates the appropriate clustering. For this purpose, the fuzzy
c-means (FCM) algorithm [11] is used as the underlying
clustering technique. FCM uses the principles of fuzzy
sets to partition a data into a fixed number, ¢, of clusters;
thereby providing the appropriate ¢ x a partition matrix, The
performance of the fuzzy PBM index is compared with
the XB-index in determining the proper number of fuzzy
clusters for different data sets.

2. PBM-index: a measure for cluster validity
In this section, we first define the PBM -index. This is fol-
lowed by an explanation of the interaction among the dif-

ferent components of the index so that it can approximately
indicate the proper partitioning of the data.

2.1. Definition

The PBM -index 1s defined as follows:

pea)= (L x B Y )
“\K "B "7F)
where K is the number of clusters. Here,
K
Ex = ZER, (@)
k=1
such that
]
E, = Zuyllx_,- — T " (3)
J=!
and
Dy = ;1}’5_3'( i — 2| (4)

n is the total number of points in the data set, /(X) =
[t41i « » 15 @ partition matrix for the data and z; is the center
of the kth cluster. The objective is to maximize this index
in order to obtain the actual number of clusters.

2.2. Explanation

As formulated in Eq. (1), PBM-index is a composition
of three factors, namely, /K, E /Ex and Dx. The first
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factor decreases as K increases and this, therefore, reduces
the index value. The second factor consists of the ratio of
E:, which is constant for a given data set, and Ex, which
decreases with increase in K. Hence, PBM -index increases
as Ex decreases. This, in turn, indicates that formation of
more number of clusters, which are compact in nature, would
be encouraged. Finally, the third factor, Dy, measuring the
maximum separation between a pair of clusters, increases
with the value of K. Note that this value is bounded up
by the maximum separation between two points in the data
set, Thus, the three factors are found to compete with each
other critically. It may appear that consideration of Dy,
as defined in Eq. (4), may lead to undesirable clustering
where the two maximally separated clusters {say A and B)
have been found, while another cluster C (which can be
divided into more than one clusters) may lie in between.
However, in such situations, considering only D¢, C can-
not be divided into its component clusters. We show that
in such cases, the other two factors become dominant and
are able to provide the requisite clustering in the following
paragraphs.

The first factor indicates the divisibility of a K cluster
system. This reduces with increase in X. The second factor
includes the sum of intra cluster distances for the complete
data set taken as a single cluster and that for the K -cluster
system. Here, the denominator is decreasing with increase
in K and the numerator is fixed. The fixed numerator is used
only to eliminate chances that the second factor becomes
very small. This factor is a measure of the compactness of a
K cluster system, and we want to increase it. The third factor
Dy is the maximum inter cluster separation in a K cluster
system. This factor significs between cluster separation, and
we want to increase it. So while the first factor is decreasing,
the other two are increasing with increase in XK. This is
justified because we want to keep the number of clusters
as small as possible while increase the compactness and
separation as much as possible.

The use of Dy, as the measure of separation, requires fur-
ther elaboration. Instead of using the maximum separation
between two clusters, several other alternatives could have
been used. For example, if D¢ was the sum of pairwise in-
ter cluster distances in a K -cluster structure, then it would
increase geometrically with K, and thus we would face a sit-
uation when there might be no terminating condition. This
might lead to the formation of maximum possible number
of clusters equal to the number of elements in the data set.
If Dg was the average inter cluster distance then it would
decrease at each step with K, instead of being increased.
So, this will only leave us with the minimum possible num-
ber of clusters. The minimum distance between two clusters
may be another choice for Dx. However, this measure would
also decrease significantly with increase in the number of
clusters. So this would lead to a structure where the loosely
connected sub-structures remain as they were, where in fact

a separation was expected. Thus maximum separability may
hot be attained.

In contrast, if we consider the maximum inter cluster sep-
aration then we see that this tends to increase significantly
until we reach the maximum separation among compact
clusters and then it becomes almost constant. The upper
bound of this value, which is equal to the maximum sepa-
ration between any two points, is only attainable when we
have two extreme data elements as two single element clus-
ters. But the terminating condition is reached well before
this situation. This is the reason that we try to improve the
maximum distance between two maximally separate clus-
ters. Since the second and third factors play important role
in increasing the index by improving compactness and sep-
aration, it scems that revealing the maximum separation at-
tainable at each stage provides sufficient information.

If there is any intermediate divisible cluster(s) between
the extreme ones, this fact is taken into account by the
number of clusters and the compactness factors. It is seen
that when division is possible in the intermediate cluster,
the second factor overrides the effect of the first one, and
the reverse is true for indivisible cluster. In order to show
the above fact analytically, we consider spherically approx-
imated clusters. We assume that each cluster may be ap-
proximated by a hyper-sphere having uniform distribution
of elements. If a 4 dimensional data set is considered and
i, F2,...,#q be radii of a cluster along these directions, then
r=(r+r-t- - +ra)fd is considered to be the radius of the
approximated cluster. Compactness of an individual cluster
can be measured by the inverse of its sum of within cluster
Euclidean distances. Thus, if we have a spherically approx-
imated cluster with radius » and n number of elements, then
its compactness is the inverse of nr/2.

If such a cluster of radius r having # number of elements
be divisible into two equal halves with radius r/2 and nf2
number of elements in each, then its compactness will be
approximately doubled upon division. If we try to divide a
compact cluster into two equal halves, then its compactness
will be increased by a factor less than two.

Let Ex denote the sum of within cluster distances of a
K-cluster configuration, and Py denote the corresponding
PBM-index value. Let us assume a K cluster configuration
where K — | number of clusters are of radius » having
elements in each, and one intermediate cluster is of radius
2r with 2n elements. The sum of within cluster Buclidean
distances for this configuration is

Ex=(K — 1)525+2nr. (5)

For this configuration, the larger cluster will be the natural
candidate for division at the next step. Let us assume again
that division will produce two clusters of equal sizes. Now
two cases may arise. The original cluster may have a clear

tendency for division or it may be a compact one. In the
former case we have

nr
Exa=(K - l)—z— + nr ()]



450 M.K. Pakhira et al. | Pattern Recognition 37 (2004) 487-501

thus,

Ex _K+3

Ex K+1 ™)
and

Pr _(K+1XK+1) K 42K +1 8
Pen . KK+3) — K+E ®

which is less than 1 for all X > 1, i.e., a division is sug-
gested,

In the latter case after division, the radius of each of the
resultant clusters will be (7 + (d — 1)2r)/d = ((2d — 1)r)/d.
So, we have,

Ex+.=[(x—1)+2@dll-)] "2-' ©)
thus,
Ex _ K+3
Exei (K—1)+2Qd—1)/d (10)
and
Py (K+ 1)K - 1)+2(2d - 1)/d)
Pra K(K +3)
(K- D+ 2K+ 1)2d - 1) .
- K2 +3K ’ (in

which is greater than 1 forall X ( and d > 1), i.e., division
is not suggested. These observation are also verified by our
experimental results.

So, it is seen that, at small values of K, the secend and
third factors play important role in revealing the maximum
attainable separation and getting compact clusters. As X
grows, the effect of these two factors is overcome by the first
factor. If, in any case, the maximum separation is reached
before the desired compactness, then the first and the sccond
factors intetact to produce the desired compactness.

3. Experimentz] results

Four artificial and four real-life data sets are considered
for experiments. They are described first. This is followed
by a demounstration of the variation of PBM -index with the
number of clusters, when the k-means algorithm and the EM
algorithm are used as undetlying clustering mechanisms. Fi-
nally, a comparison of PBM-index with the Davies—Bouldin
(DB) index , Dunn's index and the Xie-Beni (XB) index is
made in terms of the number of clusters and the clustering
obtained for the above-mentioned data sets.

3.1. Data sets

The four artificial data sets are called Circular_5_2,
Circular_6_2, Elliptical_10_.2 and Spherical_4_3. The
names imply the structure of the classes, concatenated with
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the mumber of clusters actually present in the data and the
number of dimensions. For example, for the Circular.5_2
data the clusters are circular in nature, there are five clus-
ters and the dimension is 2. As can be seen, the number of
clusters range from four to ten. The data sets Circular_5_2,
Circular 6.2, Elliptical_10.2 and Spherical_4_3 are
demonstrated in Figs. 1-4, respectively.

The four real-life data sets are Jris, Crude.oil, Cancer
and Kalazaar.

Iris data: This data represents different categories of
irises having four feature values, The four feature values
represent the sepal length, sepal width, petal length and the
petal width in centimeters [12]. It has three classes Setosa,
Versicolor and Virginica, with 50 samples per class. It
is known that two classes Versicolor and Virginica have
some amount of overlap while the class Setosa is lincarly
separable from the other two. Most techniques reported
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in the literature usually provide two clusters for this data
[13,14).

Crude Oil data: This overlapping data [15] has 56 data
points, five features. The data set is known to have three
classes.

Cancer data: The Cancer data is the Wisconsin Breast
Cancer data set available at [hitp:/fwww.ics.uci.edu/mlearn/
MLRepository.html]. Each pattern has nine features corre-
sponding to clump thickness, cell size uniformity, cell shape
uniformity, marginal adhesion, single epitheiial cell size,
bare nuclei, biand chromatin, normal nucleoli and mitoses.
There are two categories in the data: malignant and benign.
The twa classes are known to be linearly inseparable. There
are a total of 683 points in the data set.

Kalazaar data: The Kalaazar data [16] consists of 68
patterns in four dimensions, There are two classes: diseased
and normal/cured, and four input features/symptoms. These
symptoms are the measurements of blood urea (mg%),

serumn creatinine (mg%), urinary creatinine (mg%) and
creatinine clearance (ml/min).

3.2, Results

Several runs of the k-means algorithm are executed for
a fixed value of K, and the clustering comresponding to the
run that provides the minimum value of the sum of within
cluster distances is assumed to be appropriate (for which
values of PBM -index and other indices are calculated). This
is done, since it is known that the k-means algorithm often
gets stuck at suboptimal configurations depending on the
choice of initial cluster centers. Several re-initialization are
therefore necessary to overcome this problem. The value
of K is varied in the range [2,40]. Although, the maximum
value of X, i.e., Knpgy, is taken to be 40 for the present in-
vestigation, it should vary for different data sets. Generally,
the maximum number of clusters that can be present in
a data set having n elements should not exceed /n. This
value is considered as a rule of thumb in clustering litera-
ture [11]. Note that, as K — n, the term Ex — 0; thereby
PBM -index grows to a very high value. On the basis of this
observation, /7 can be recommended as a safe measure
for Kpax.

The variation of the PBM-index with the number of clus-
ters is shown in Figs. 5-10 for the above-mentioned data
sets. As expected, both Figs. 5 and 6 (corresponding to Cir-
cular_5_2 and Circular_6.2 data sets) show that the value
of PBM-index peaks at cluster numbers 5 and 6, respec-
tively, indicating that these are the correct number of clus-
ters for the corresponding data sets. Similarly, from Fig. 7,
it is found that for Eiliptical_10_2, the maximum value of
PBM-index is obtained at X = 10, while for Spherical_4_3
this happens at X = 4 (see Fig. 8). It may be verified from
Figs. 14 that PBM-index actually attains its maximum vai-
ues when the number of clusters is equal to that present in
the respective data sets in all the cases.

It is evident from Figs. 9 and 10 that for Iris and
Crude_ Oil, clear maximas exist at X = 3 (with values
24.886 and 457.781, respectively). Both these data sets are
known to contain three classes of patterns {12,15). From
Figs. 11 and 12, it is seen that for the Cancer and Kalazaar
data, maximas exist at X = 2 (with value 145.181) and
K =13 (with value 910.747), respectively. These data sets
are known to have twe clusters each. Thus for the Kalazaar
data PBM -index fails to detect the correct number of clus-
ters when k-means algorithm is used as the underlying
clustering technique. In Section 3.3, it is shown that the
other indices are also unable to detect the correct number
of clusters for this data set,

The clustered Iris data set, along with the correspond-
ing centers, is shown in Fig. 15 for two features, namely,
petal length and sepal width. An interesting observation in
this regard is that although we know that the Iris data set
has three physical classes, very few automatic clustering
techniques, reported in the literature, can actually come up
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with three clusters for this data. In most of the situations,
the number of clusters found for this data is equal to two
[13,14),

3.3. Comparison with other indices

The Davies—Bouldin index: This index is a function of
the ratio of the sum of within-cluster scatter to between-
cluster separation. The scatter within the ith cluster is com-
pated as

Vg
(ICI 2 k- 2f|||z}) (12)

x€C

° N . . . , . . ,
5 10 15 20 25 30 35 40
Nusber of Clusters

Fig. 7. Variation of the PBM-index with the number of clusters
for Elliptical_10.2,

and the distance between cluster C; and C; is defined as

P 7]
dys = {le« -zjsl'} = Jlai = . (13)
=1

Si.q is the gth root of the gth moment of the points in cluster {
with respect to their mean, and is a measure of the dispersion
of the points in cluster /. Specifically, S;,1, used in this article,
is the average Euclidean distance of the vectors in class ¢
to the centroid of class i. dy; is the Minkowski distance of
order 1 between the centroids that characterize clusters i and
J- Subsequently we compute

Siq + Sig } (14)
Riae = u#' { dijs '
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The Davies—Bouldin (DB) index is then defined as
| X
DB:E.ZRE'Q'. (ls)

The objective is to minimize the DB index for achieving
proper clustering.

Dunn’s index: Let $ and T be two nonempty subsets in
R" . Then the diameter 4 of S and set distance  between S
and T are

48)= ;gg{d(x. »} (16)
and
¥ST)=_min {d(x.y)} a”n
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Fig. 10. Variation of the PBM -index with the number of clusters
for Crude_ Off,
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for Cancer.

where d(x, y) is the distance between points x and y. For
any pastition Dusin defined the following index:

o | scu)
o= Tk {ls%lgj# { ‘mxd(&) }} : (18)

Larger values of vp cormrespond to good chusters, and the
number of clusters that maximizes vp is taken as the optimal
number of clusters.

In Ref. [17] generalized Dunn’s index is presented. This
general form is

- . (., C))
vp, = min {I<P¢u£:w{———max A;(‘C*)}}' (19)

lsk<k
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It may have 18 different forms depending on the functional
forms used to select §; and 4;, These indices are denoted
by vo; for 1 £ i £ 6and | < j < 3. In our experiments we
used the index form vp;,. The functional forms for different
d; s and A; s may be found in Ref. [17].

The Xie—Beni index: This is a fuzzy clustering index. We
mention it here briefly. The generalized version of this index
[11] is given by

Im
S=——0 20
n% @) 20)
where J. is the sum of squared errors abjective fiunction for
fuzzy clustering [11] and is given by

. n K
kU, Z) =3 )" lix; — wll? (21)

j=l k=1

where | € m < oo. Here, I/ is a partition matrix, {/ =
[ug;] € RX". y; is interpreted to be the grade of membership
of x; in the kth cluster. Z is the set of cluster centers, i.e.,
Z = {z,} € R". The relations used for computing U and Z
are same as those used in Ref. [11].

dmin 18 the minimum inter cluster distance. The minimum
value of § in the hierarchy corresponds to the number of
clusters present in the data set.

Table 1 provides the actual number of clusters present in
the above-mentioned data sets, and the number of clusters in-
dicated by the indices, namely, the DB index, Dunn’s index,
the XB-index and PBM-index (which attains its maximum
value) using the k-means algorithm. As can be seen from the
table, while PBM-index is able to provide the appropriate
number of clusters for all the data sets except the Kalazaar
data, the DB-index fails for Elliptical 0.2, Iris, Crude_ Oil
and Kalazaar data sets, Dunn’s index fails for Elliptical_1
(.2, Iris and Kalazaar data sets and the XB-index fails for

all other data sets except Circular_5_2, Spherical_4_3 and
Cancer. In Ref. [17] it is shown that for the Iris data, Dunn’s
index is able to find either two or three cluster solutions,
But out of total 18 possible forms of the generalized Dunn’s
index, only two can detect three cluster solution and the re-
maining 16 (including vn, )} can detect 2 cluster solution,
In Ref. [14] a scale space-based method is described, where
also it is shown that for the fris data the two and three
cluster solutions are sustained for comparable scale inter-
vals with two cluster being for a marginally longer scale
interval,

Table 2 provides a comparison of the DB-index, Dunn’s
index, the XB-index and PBM-index, when the EM al-
gorithm is used for clustering. From this table, it can be
seen that the DB-index, Dunn’s index and the XB-index
fail for Elliptical 10_2, Iris and Crude_Qil data sets, In
addition the Dunn’s index also fails for the Kalazaar data
set. It is worthwhile 10 mention here that for the Kalazaar
data, the PBM-index, DB-index and XB-index are able
to detect the correct number of clusters. All these indices
failed 1o detect this by the k-means algorithm. This re-
sult is expected due to more perfect clustering by the EM
algorithm.

Tables 36 present the variation of the DB-index, Dunn's
index, the XB-index and PBM -index with the number of
clusters in the range [2,15] for all the data sets when the
k-means algorithm is used for clustering. The optimum val-
ues of the indices are presented in boldface in the tables.
Note that, from Table 6, it is seen that for the Kalazaar
data, the minimum value of the DB-index (0.338) is ob-
tained for X = 15 and the second lower value (0.913) for
K =13. However, as mentioned in Ref. [11], the maximum
possible number of clusters that one should consider for a
data set having n elements is \/n which is between 8 and
9 for this data set. Therefore, the index value {0.918) for
K =4 is highlighted. Table 7 shows the variation of the
PBM-index only with the number of clusters for the data
sets when the EM method is used as the underlying cluster-
ing method. Since Iris is a widely used data set, we compare
the cluster centers obtained for this data when the k-means
method and the EM method are used for clustering in con-
junction with the PBM-index in Table 8. As can be seen,
the obtained cluster centers are quite close to the actual
ones,

The clustered Elliptical_ 1. 2 data, for which PBM -index
is maximized (when X was equal to 10) is shown in Fig.
13. Similar is the situation when the EM algorithm is used
to cluster the Eiliptical 10_2 data. A better ¢luster structure
compared to that obtained with the £-means method is ob-
served. These clusters are shown in Fig. 14. Fig. 15 shows
the almost correctly clustered Jris data (in two dimensions)
for which PBM -index attained the maximum value, Like-
wise if the EM algorithm is used as the underlying cluster-
ing technique, PBM-index attains its maximum value for
a three cluster solution; but in this case the clustering is
more perfect. These are shown in Fig. 16. It is seen that
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Table |

Comparison of the number of clusters identified by the DB index, Dunn’s index, the XB-index and PBM -index using the k-moans algoritsm
Data set Actual number of clusters Number of clusters obtained

DB-index Dunn's index XB-index PBM-index

Circular. 5.2 5 5 s s s
Circular_6_2 6 [ 6 4 &
Spherical. 4.3 4 4 ] 4 4
Elliptical. 10.2 10 8 2 4 10

Iris k| 2 2 2 3
Crude_Oil 3 2 3 2 3

Cancer 2 2 2 | 2
Kalazaar 2 4 3 é 3

Table 2

Comparison of the number of clusters identified by the DB-index, Dunn's index, the XB-index and PBA -index using the EM algorithm
Data set Actual number of clusters Number of clusters obtsined

DB-index Dunn’s index XB-index PBM-index

Circular.5.2 5 5 5 5 s
Circular_6.2 6 6 6 6 6
Spherical. 4.3 4 4 4 4 4
Elliptical_10_2 10 8 2 2 10

Iris 3 2 2 2 3

Crude. Ol 3 2 2 3 3

Cancer 2 2 2 2 2
Kalazaar 2 2 4 2 2
Table 3

Values of the DB-index, Dunn's index, the XB-index and PBM -index in the range of K =2, ..., 15 for differcat datas sets using the k-mesns
algerithm (Entries in bold face indicate the optimal values For respective indices)

Number of clusters Data set
Circular_5.2 Circular 6.2
DB DUNN XB PBM DB DUNN XB PBM
2 1.099 0.949 0.415 8.535 1.006 1.105 0.286 73922
3 0.784 1.007 0.233 9428 0.633 1.038 0.152 96.798
4 0679 1.364 0.442 15.461 0.36!1 2.158 0.043 360.85¢
5 0.671 1.409 0.143 19.143 0173 0.951 0.140 412415
6 0.778 0913 0.388 15.408 0.355 1242 0.05% 626419
7 0.831 0.949 0319 14.408 0.544 0.749 0.555 508.040
8 0.862 0.893 0.166 14.266 0.725 0.751 0.542 403234
9 0917 0.811 0316 10.886 0.678 0.669 0.516 321442
10 0.930 0.808 0375 11.197 0.775 0.721 0.533 343217
N 0.883 0.811 0.336 9310 0.629 0.661 1.247 296.727
12 0918 0.803 0.357 10410 0.862 0.535 0437 261.651
13 0816 0.902 0.461 1031) 0.983 0479 0.494 268898
i4 0.815 0.692 0.556 9.499 0.807 0.566 0.524 234.571

15 0.766 0.698 0.572 9.463 0.820 0.443 0459 200.894
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Values of the DB-index, Dunn’s index, the XB-index and PBM -index in the tange of K =2,..., 15 for different data sets using the £-megns

algorithm (Entries in bold face indicate the optimal values for respective indices)

Number of clusters Data set
Spherical 4.3 Elliptical 102
DB DUNN XB PBM DB DUNN XB PBM
2 0.534 1.852 0.756 274903 0.753 1.795 0.160 155.421
3 0.511 1.042 0.081 395.5M 0.882 1.128 0.217 220.218
4 0.441 1.939 0.052 941.876 0.709 1.202 0.148 248.63%
5 0.755 0.589 0.678 667,766 0.660 0.684 0.426 208.356
6 0.787 0.484 1.191 485,160 0.650 0.812 0.242 181.965
7 0.824 0.482 0.781 368.502 0.736 0.741 0.221 209.766
8 1.032 0473 1.045 314,586 0.565 0.741 0.159 233.508
9 1.042 0.476 0,895 240.224 0.589 0.673 0.206 285.08%
10 0.936 0.421 0914 227246 0.666 0.691 0.728 299288
1 0.916 0.433 1.132 193.554 0.676 0454 0.815 167.370
12 0.934 0.394 1.027 155.672 0.630 0.863 0.509 228.336
13 0974 0.364 0.935 149.530 0.693 0.638 0.499 204.845
i4 0870 0.346 1.876 141.732 0.685 0.686 0.724 181,617
15 1.077 0.457 1,382 140,119 0.706 0.205 1.091 198.430
Table 5

Values of the DB-index, Dunn’s index, the XB-index and PBM -index in the tange of K =2,...,15 for different data sets using the k-means

algotithm (Entries in bold face indicate the optimal values for respective indices)

Number of clusters Data set
Iris Crude. Oil
DB DUNN XB PBM DB DUNN XB PBM
2 0.404 1.902 0.066 19.923 0.647 1.303 0.122 306.006
3 0.666 1.282 0.164 24.886 0.706 1319 0.149 4571781
4 0.776 0.946 0.260 20.139 0.794 0.888 0.351 380317
5 0.502 0.582 0.430 14.060 0.859 0.678 0.440 350.305
6 0.878 0.545 0.509 15.246 0.964 0.755 0.598 260.788
7 1.017 0.638 0.476 11.449 0.935 0429 0.522 247,197
8 0.981 0.451 0.749 8.041 0.940 0.566 0.778 209.125
9 1.002 0,427 0.492 10.039 0.852 0.345 0.524 209.125
10 £.032 0.510 0.908 7.877 0.978 0.456 0.515 195.587
11 0.964 0.486 0.791 7262 0.909 0.350 1.493 178.687
12 0.982 0.469 0.815 6.552 0.839 0.446 1.872 184.027
13 1.018 0.356 0.440 6.041 0914 0.318 1.160 172.5240
14 1.128 0.377 0.975 5317 0.875 0.304 1354 135771
15 1.054 0.449 0.988 4.852 0.938 0.251 1.268 114.075

the percentages of correct clustering, for the fris data, us-
ing the £-means and the EM algorithm are 93,33 and 98.67,
respectively.

It is observed that for clustering Iris using the EM al-
gorithm, the number of clusters detected by both Dunn's
index and the XB-index is 2. The values of the Dunn’s in-
dex for K =2 is 1.985 and for K = 3 is 1.097, and that
of the XB-index for K = 2 is 0.065 and for K =3 is
0.221.

3.4. Fuzzification of the index

In this section, we propose a fuzzy version of the
PBM -index denoted by PBMF . The fuzzy index is obtained
by incorporating fuzzy distances, It is defined as follows:

1 E, 2
PBMF = X e x X Dx) . (22)
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vValues of the DB-index, Dunn’s index, the XB-index and PBM -index in the range of K =2,..., 15 for different data sets using the k-means
algorithm (Entries in bold face indicate the optimal values for respective indices)

Number of clusters Data set
Cancer Kalazaar
DB DUNN XB PBM DB DUNN XB PBM
2 0.757 0.930 0.149 145181 1.029 0.450 0.310 486.354
3 1.535 0.675 0.432 104,962 1.101 0.519 0.471 910.747
4 1.604 0.679 0.451 73.630 0.918 0.458 0.292 777.546
5 1.655 0.580 2042 60.531 1.106 0316 0.758 577.664
6 1.627 0.258 2215 44 857 0.973 0.449 0.465 602.602
7 L.615 0.256 2214 33.841 0.922 0.445 0.389 416.579
8 1.773 0.229 2212 27.910 1.038 0.320 0.685 425,636
9 1.595 0.250 1.924 21414 0.984 0322 9.682 438,088
4] 1.575 0.247 1.963 18.022 1.066 0.297 0.578 325.102
§ 1.675 0.224 4.561 15.809 0.924 0.362 0.457 381.356
12 1.607 0.224 1.862 13.462 0.919 0.354 0.380 373.350
13 1.557 0.181 4,630 11.802 0.913 ¢.256 0.514 343,570
14 1.631 0.208 1.683 16.993 1.003 0.354 2.616 337.034
15 1.556 0.195 3874 9.633 0.838 0.253 0.557 311.357
Table 7

Values of PBM-index in the range of K =2, ..., 15 for different data sets using the EM algorithm (Entries in bold face indicate the optimal
values for PBM -index)

Number of clusters Data set

Circular_5_2  Circular_6_2  Sphericai_4_3  Elliptical 16.2  Iris Crude_ Oil Cancer  Kalazoar

2 6.152 64.220 274.903 154.143 20.193  291.611 142,127 822.548

3 6.729 77.354 379.79 196.928 22365 410.278 74269 395.127

4 15.001 158.456 941.876 224.964 14311  369.958 62428 522.027

5 18.700 412,415 671.521 179.121 12754 351.747 41402 480.707

6 15.931 528.128 478.087 221.211 11.229  276.520 32,593  411.0M3

7 14.288 503.542 376.419 210.464 12502 238,030 16.856 397.755

8 15.201 405.217 286.345 237.906 8226 187752 20.557 359.754

9 10.788 35357 265.228 282,613 9316 221.240 15.785 337.086
10 11.682 301.500 225.182 299.402 7710 143237 15856 322372
11 10.47% 285.368 200978 220.768 6273  178.103 14090 327.805
12 10.765 256.163 175.113 178.983 5885 195.534 9076 230.29]
i3 9.365 266.871 151.374 199,532 5533  160.50% 104380 251.697
14 9.229 226.105 142,167 189.317 4729 137451 10087 195523
15 9.064 184.08% 139.431 185.032 4.161  120.741 8.121  181.819
Table 8
Comparison of the cluster centers obtained for the Jris data using the k-means and the EM methods with the original centers
Cluster number  Centers for Jris data

Actual cluster centers Centers with k-means Centers with EM

1 6.588 2974 5552 2.026 6854 3.077 5.715 2.054 6673 3.002 5.531 1.988
2 5.006 3428 1.464 0.246 5.006 3.428 1.464 0,246 5.006 3.428 1.462 0.246
3 593 2770 4260 1326 5884 2741 4389 1.434 5.817 27 4229 1.338
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Fig. 13. Clustered Elliptical. 10.2 data and the corresponding
Centers (*) for Ten Clusters (indicated by ‘0° to “9°) obtained
by the k-means algorithm, corresponding to the optimal value of
PBM -index (=299.288),
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Fig. 14, Clustered Elliptical_10.2 data and the comresponding cen-
ters (*) for ten clusters (indicated by *0° to ‘9”} obtained by the
EM algorithm, corresponding 10 the optimal value of PBM-index
(=299.402).

Here, Ju is considered to be

r K
In(U.Z2) =YY )"y — zeli- (23)

J=1 &=1

We have taken m = 1.5, and have used the fuzzy c-means
algorithm(FCM) [11] for clustering.

The number of clusters determined by the fuzzy versions
of the XB-index and PEM -index are shown in Table 9. As

InU,Z)= 3 (uy)"llx; = zeli. (23)

J=1 k=1

We have taken m = 1.5, and have used the fuzzy c-means
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Fig. 15. Clustered Jris data and the corresponding centers (*) for
three clusters (indicated by ‘1’ to “3') obtained by the k-means
algerithm, corresponding to the optimal value of PBAM-index
(=24.886).
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Fig. 16. Clustered Iris data and the comesponding centers (*)
for three clusters (indicated by *1’ to *3’) obtained by the EM
algorithm, corresponding to the optimal value of PBM-index
(=22365).

to correctly identify the number of clusters for all dasa sets
except the Kalazaar data for which the XB-index identi-
fied five clusters instead of 2. The variations of the fuzzy
XB-index and fuzzy PBM -index values for K = 2-15 are
shown in Tables 10 and 11, respectively.

4, Discussion and conclusions
A cluster validity index is described in this article. It is

found to attain its maximum value when the data is prop-
erly clustered. Therefore, this new index may be used for

4. Discussion and conclusions
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Table &

Comparison of the number of clusters identified by the fuzzy
XB-index and fuzzy PBM-index using fuzzy c-means algorithm
v..rhen m=135

Actual number Number of clusters obtained
of clusters

Data set

XB-index PBMF-index

Circular_5_2
Circular_6.2
Spherical 4.3
Elliptical_ 10.2 1
Iris

Crude. Oil
Cancer

Kalazaar

[V I S LS I P — . Y
N NS R A
—
WINW WO Ao

Table 10

set. Moreover, proper partitioning of the data set may also
be achieved using the PBM -index. The performance of this
index for providing the correct number of clusters is com-
pared with these of the well known the DB-index, Dunn’s
index and the XB-index where the new index is found to
significantly outperform all three of them. The fuzzy ver-
sion of this index is also found to perform well for all the
data sets considered.

Here, the expression for the index is raised to a power of
2 in order to improve the contrast between the index values
for consecutive K-values. Note that in this article, for crisp
clustering, we have used the k-means and EM algorithms
as underlying clustering methodologies. Since the number
of clusters needs to be specified a priori for both these algo-
rithms, they have to be executed several times for different

Values of fuzzy XB-index in the range of X =2,...,15 (when m = 1.5) for different data sets using the fuzzy c-means algorithm (Entries

in bold face indicate the optimal values for XB-index)

Number of clusters  Data set

Circular.5.2  Circular_6_.2  Spherical.4.3  Elliptical . 16.2  Iris Crude.Qil  Cancer  Kalazaar
2 0.334 0.308 0.074 0.144 0.062 0198 0.135 0.283
3 0201 0.136 0.084 0.219 0.156 0.131 0.512 0.435
4 0.115 0.043 0.052 0.135 0220 0.258 0.717 0.313
5 0.132 0.136 0.603 0.196 0277 0225 1.907 0.272
6 0279 0.054 1.173 0.188 0836 0249 1.736 0.370
7 0.266 0.560 0.512 0.189 2411 0383 2.239 0.426
3 0.396 0.554 0.958 0.149 0.551 0360 1511 0.465
9 0336 0.499 1.164 0123 0.599 0312 1.451 0.317
10 0.308 0.450 0.691 0.461 1265 0334 1.381 0.290
1 0273 0.538 1.044 0.296 1.254 0284 3.871 0.369
12 0246 0.402 0.598 0.471 0.638 0459 3.697 0.324
13 0212 0.392 0.710 0.433 1.069 0399 3.531 0.289
14 0212 0329 0.708 0.371 0970 0430 3.355 0.284
15 027 0.366 0.603 0.362 0923 0362 4.306 0.287

Table 11

Values of fuzzy PBM-index in the range of K =2,..., 15 (when m = 1.5) for different data sets using the fuzzy c-means algorithm (Entries

in hold face indicate the optimal values for PBM-index)

Number of clusters Data set

Circular.5.2  Circular.6.2  Spherical_4_3  Elliptical_10_2  Iris Crude_Od  Cancer  Kalazaar

2 9 666 90.821 290.259 187.060 21.828 352.68%8 170.668 595.979
3 12.236 117.701 598.341 282.274 28217 535784 146.827 1238.021
4 20.693 372.336 960.814 298.668 24.741 509315 122.966 1013.571
5 22935 417.548 808.379 313.113 23.194  525.968 106.17¢ 980.565
6 20.467 638.371 590.393 297.770 21.557 329.858 94.615 912.366
7 20,178 527483 468.896 287.642 18464 394300 85.470 764.219
8 19.651 489.693 476.680 284.901 15944 367.4R9 75.899 718408
9 17.131 417.426 440.664 338.523 14410 327.03i 67.109 704.994
{1] 18.199 402.123 365.957 345.923 12953 327574 59.707 695.149
11 16.581 361.228 359.292 315.631 12.208  336.502 59.044 742.347
12 16.695 201.795 239.754 291.795 10976 311.628 56.596 697.123
13 15,650 319,158 325.261 277.956 9847 270208 52.258 706.695
14 14.761 340,550 250.304 248.598 9.885  326.127 45387 630308
33 14.138 256.352 251.064 286.219 6235 316.342 42.567 671.984




500 M.K. Pakhira et al. | Pattern Recognition 37 (2004} 487501

values of K, varying in the range [2, Kmer]. Similarly, for
the fuzzy index, the FCM algorithm is run several times,
The PBM-index is computed for the partitions thus obtained
with different & and the number of clusters corresponding
to the maximum value of this index is taken to provide the
actual number of clusters. In this regard, a technique may be
developed, for example by using evolutionary computation
[183, which can evolve the appropriate number of clusters
automatically using the PBM-index. Moreover, extensive
experimentation with the PBMF -index is required to firmly
cstablish its effectiveness. The authors are currently working
in that direction.

5. Summary

Clustering is an unsupervised classification scheme where
ne a priori knowledge of the data set is available. In clus-
tering (also known as exploratory data analysis), a set of
patterns, usually vectors in a2 multidimensional space, are
organized into a number of coherent and contrasted groups,
such that patterns in the same group are similar in some
sense and patterns in different groups are dissimilar in the
same sense. Clustering can be performed either in crisp or
fuzzy mode. In crisp mode, the clusters are disjoint, i.e., one
pattern can belong to one and only one cluster. In fuzzy clus-
tering, each pattern can be a member of all the clusters with
a certain grade of membership. When only two hard grades,
0 and 1, are available, fuzzy clustering reduces to crisp
clustering.

In clustering, the role of a validity index is very impor-
tant. It helps to determine the appropriate number of clusters
present in a data set. In the literature of clustering, a large
number of cluster validity indices are there. Among them the
Davies—Bouldin {DB) index and Dunn’s index arc highly
used for crisp clustering, whereas, the Xie-Beni (XB) index
is widely used for fuzzy clustering. Besides these indices,
there are many other indices. But none of the indices per-
form satisfactorily for wide range of data sets. Owing to this
reason it is necessary to develop a suitable index which can
be applied to various data sets.

In this article, we propose a cluster validity index
which can work for both crisp and fuzzy clustering. We
have provided a detailed mathematical amalysis of the
index in support of the work-ability of the proposed
index.

Like other indices, the proposed index is also an optimiz-
ing index, i.e., it can be used in association with an optimiza-
tion algorithm in order to search for better clustering. The
index can provide a measure of goodness of clustering on
different partitions of a data set. The maximum value of this
index, called the PBM -index, across the hierarchy provides
the best partitioning. The index is defined as a product of
three factors, maximization of which ensures the formation
of a small number of compact clusters with iarge separation
between at least two clusters.

We have used both the A-means and the EM algorithms
as underlying crisp clustering techniques. For fuzzy clus-
tering, we have utilized the well-known fuzzy c-means
algorithm,

We have tested the superiority of the proposed
PBM-index in appropriately determining the number of
clusters, as compared to above-mentioned Davies-Bouldin
index, Dunn’s index and the Xie—Beni index, by using it for
several artificial and real-life data sets. The data sets include
four artificial and four real-life data. The artificial data sets
include two- and three-dimensional data where the number
of clusters vary from four to ten. The real-life data sets
have dimensions in the range of four to nine and number
of clusters vary from two to four. It is found that the pro-
posed index outperforms the other indices for all the data
sets.
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