CONTRIBUTED ARTICLE

Neural Networks, Vol. 9, No. 5, pp. 787-796, 1996

e e mmmmgr m e - am

Sequential Competitive Learning and the Fuzzy c-Means
Clustering Algorithms

NIKHIL R. PAL,! JaMEs C. BEzDEK? AND RICHARD J. HATHAWAY?

'Indian Statistical Institute, *The University of West Florida and 3Georgia Southern University

(Received T October 1994, revised and accepted 5 July 1995)

Abstract——Several recent papers have described sequential competitive learning algorithms that are curious hybrids
of algorithms used to optimize the fuzzy c-means (FCM) and learning vector quantization (LVQ) models. First, we
show that these hybrids do not optimize the FCM functional. Then we show that the gradient descent conditions they
use are not necessary conditions for optimization of a sequential version of the FCM functional. We give a numerical
examnple that demonstrates some weaknesses of the sequential scheme proposed by Chung and Lee. And finally, we
explain why these algorithms may work at times, by exhibiting the stochastic approximation problem that they

unknowingly attempt to solve.

Copyright © 1996 Published by Elsevier Science Ltd

Keywords—Alternating optimization, Fuzzy c-means, Gradient-based fuzzy c-means, Grouped coordinate

minimization.
1. INTRODUCTION

Clustering in wunlabeled object data set X =
{x1, X2,--.,Xn} C ®? is the assignment of (hard or
fuzzy or probabilistic) label vectors to the vectors in
X, and hence, to the objects generating X. c-partitions
of X are sets of (cn) values {u;x} that are arrayed as a
(¢ x n) matrix U = [ug]:

Mfm={UEQ""0$uu <1Vi k; Vk, wy>035;

0<zu;k <nV1‘}; (1a)
k=1
Mf«:n“—'{UGMfWZufl‘::le}; (lb)
i=1
M., = {U € My.pluix =0 or 1V i and k}. (Ic)

Equations (1) define, respectively, the sets of un-
constrained, constrained, and crisp c-partitions of X.
Each column of U in Mpu(Mjcn, M.n) is a label
vector. The reason these matrices are called partitions

787

follows from the interpretation of their entries. If U is
fuzzy, w;, is taken as the membership of x; in the ith
partitioning fuzzy subset (cluster) of X. If U is
probabilistic, u; is usually the (posterior) probability
p(i|x) that, given xg, it came from class i.

This paper discusses algorithms that are related to
approximate minimization of the Fuzzy c-means
(FCM) functional, which defines a constrained,
non-linear optimization problem with both equality
and inequality constraints (Bezdek, 1981). For a
given set of unlabeled object data X, the problem is

@{JM(U,V =33)l —wni}. @

w,v) k=1i=1

where U € My, is a constrained fuzzy c-partition
of X, V=(v,v2,...,v.)ER? is a vector of
(unknown) cluster centers (weights or prototypes),
vER? for 1 £i<c, me[l,oo) modifies the
weight of each fuzzy membership and
IIx|l ,= vxT4x is any inner product norm. The first
method discussed for the solution of (2) was
approximate minimization of J, by the FCM
algorithm, which is based on (batch) iteration
through first order necessary conditions for its local
extrema. Problem (2) for m=1, Ue M,, is the
well-known hard c-means (HCM) model.

Recently, Park and Dagher (1994) and Chung and

788

Lee (1992), have proposed sequential competitive
learning algorithms that are claimed to be related to
problem (2). The first purpose of this note is to dispel
this idea. Then we will show that, instead, their
algorithms can be derived from an optimization
problem that is related (but not equivalent) to (2) in
the sense that one (instead of all ¢) term of (2) is
examined. Next, we numerically compare Chung and
Lee’s algorithm to some outputs obtained by FCM
on the IRIS data. And finally, we exhibit the
optimization problem that implicitly drives these
two algorithms.

The FCM algorithm described later is best
understood and analyzed using the framework of
grouped (variable) coordinate minimization (GCM),
which is a general iterative method for solving
minimization problems. Suppose we wish to solve
the problem

win{f(x)}
1]

where f: Q@ C #°*7 — 2. In many cases this cannot
be done directly, and the problem is reformulated in
terms of groups of subvariables. Following the
approach in Bezdek et al. (1987) and Hathaway et
al. (1991), we wish to solve

Problem 0 : pin{f(y,)}, 3)
[T

over some feasible region 2 =; x)y, where
Q=0 xR R is a function of the
vector variables ye$ e # and ze M € #9.
Partitioning of the set of independent variables into
y and z parts can be done in many ways. In its most
naive form, each component of both sets of variables
is grouped as a singleton. In this case problem (3)
becomes

\m_~i} {f(xerZr"'!x&'+¢)}!
[T 108 0 P

and in this form is called the method of coordinate
descent (Luenberger, 1965). A useful partitioning for
GCM is one in which the resulting minimization of
each vector of coordinates in (3) can be done in a
computationally efficient manner.

The exact-minimization version of GCM to solve
(3) generates the ¢+ 1th iterate (y,,;, Z;+1) €
2° x A7 from the current iterate (y,, z,) according
to the GCM update equations:

Exact GCM update: (y,, Z)) = (Yir1: Ze+1) aS

N. R. Pal et al.
follows
Problem of : z,,, = argmin {f(y,, z)}; and (4a)
z€fl
Problem ®: y,,, = agmin{f(y, z11)}. (4b)
ye

Problem «f and # are sub-problems of problem @,
and were it possible to solve problem @ directly in
terms of the joint variables (y,z), we would not be
interested in them. Each of these problems may itself
be unconstrained or constrained, depending on the
nature of the feasible sub-regions ; and ,.
Windham (1987) referred to solving each of the
“half”” problems o and # as alternating optimization
(AQ) between the half-steps defined at (4). It often
happens that a direct solution to problem @ is
unavailable. This is the case with the FCM model
(2), as well as, for another example, maximization of
the likelihood of X when the data are assumed to be
drawn from a mixture of normal distributions. The
algorithm for this latter example is the well known
expectation-maximization (EM) algorithm (Redner et
al,, 1987). In such cases, GCM as written at (4)
provides one of several alternatives for attempting
solutions to (3). There are three cases for eqns (4):

Case 1. Explicit (analytically exact) Half-steps. If
(4a) and (4b) are explicitly defined in terms of each
other, their half-steps are analytically exact. We refer
to explicit half-steps in (4) as analytically exact half-
steps of GCM iteration. Formally, this case
corresponds to the situation where we have explicit
formulae for the new joint iterate (y,,;,2;41) in
terms of each half-iterate, i.e.,

zr41 = ®(y,); and (5a)
Yee1 = V(Zes1)- (5b)

® and ¥ in (5) are known in closed form. The usual
method of finding equations like (5) is via calculus
based optimization; unconstrained, LaGrange multi-
plier or Kuhn-Tucker theory, depending on the
nature of) and ;. Although not needed for the
discussion below, we mention the other two cases for
the sake of completeness, and refer readers to
Hathaway and Bezdek (1991) for more details.
Cases 2 and 3. Implicit (numerically exact and
numerically inexact) Half-steps. If either & or ¥ (or
both) are implicitly defined in terms of each other,
one (or both) of the sets of variables in (4) must be
found numerically. Generally, the form of implicit
definition may suggest a numerical technique, for
example, linear programming, Newton’s method,
gradient descent, simulated annealing, etc. In any
case, we differentiate between two sub-cases: there are
“numerically exact” and ‘“‘numerically inexact”

Sequential Competitive Learning and the Fuzzy

numerical solutions. An implicit numerical half-step
is numerically exact where the solution is computed
exactly using a numerical procedure that terminates
only at the solution; otherwise, we call the half-step
numerically inexact. The distinction between these
two cases can be significant. For example, a
numerically exact half-step might require 100
iterations of Newton’s method; whereas one itera-
tion constitutes a numerically inexact half-step. It has
been shown by Bezdek et al. (1987) that under fairly
general conditions, numerical inexact and numeri-
cally exact half-steps are entirely equivalent for
producing a g-linear rate of convergence' of y,,z,
so the intermediate case (numerically exact solution)
is often not needed—the potential savings in
computational complexity by using numerically
inexact half-steps is obvious.

2. THE FCM ALGORITHM

Optimization of J,, is not amenable to direct solution
in the joint variables (U,V). The AO approach to
problem (2) was first formulated in form (4) by Dunn
(1974) for the special case m = 2, and in the same
year, Bezdek (1973) described the general AO
problem derived from (2) for any m > 1. The first
order necessary conditions are contained in the
following:

Fuzzy c-means (FCM) Theorem (Bezdek, 1981):
Assume m>1 and [|xk—v,-i|f, >0, 1i<g
1 <k <n (UV)€E My, x 7 may minimize Jp,
only if:

Solution of — FEM :

T “i:__._”_)L
Ur = (Vi X) = [ui, i41) = [J_:] ("xk - v, r||4

(Vik); (6a)

! {xi} converges g-linearly to x* if

lim |x; — x*| =0,

k—oo

and there is a constant ¢ in [0, 1) and an integer ky > 0 such that,
for all k > ko, |xk+1 — X*} < ¢lxx — x*|.

789
Solution B — FE€M :
n
E (“l’k,t-l-l)mxk
Virr = ¥V 3 X) = {vier =25 1<i<ey.
> (”fk.t+l)m
k=1
(6b)

We have put eqns (6) in the format of (5), because the
necessary conditions for U and V shown at (6) are
analytically exact half-iterates. Problem &/-F %4 is
constrained by (1b), and solution &/-F € .# is derived
by zeroing the gradient of the Lagrangian of ® with
respect to one column of U (this works because J,, is a
sum of n non-negative terms, so the minimum of the
sum is the sum of the minima). This does not
automatically enforce the inequality constraints on
the wu;, but, fortuitously, they are satisfied by (6a)
anyway. Differentiability of @ in the u;; is guaranteed
by using an inner product norm in (2).

Problem #-F€.4# is unconstrained, and solution
B-FEM (6b) is easily obtained by setting the
gradient of ¥ with respect to v; equal to the zero
vector in #?. Singularity in FCM occurs when one or
more of the distances ||x; — v,||i= 0 at any iterate. In
this case (rare in practice), (6a) cannot be calculated.
When this happens, assign 0’s to each non-singular
class, and distribute memberships to the singular
classes arbitrarily subject to constraint (1b).
Although this theorem is stated for m > 1, it is
actually true for m = 1, because conditions (6)
converge to the well known necessary conditions for
(batch) HCM, and J, — J, as m — 1 from above
(Bezdek, 1981). Table 1 gives a brief specification of
the FCM algorithms as used in our example below.

Iteration simply loops through one cycle of
estimates for V,_; — U; — V, and then checks
[[V: = Vii1]| < e. Equivalently, the entire procedure
can be shifted one half cycle, so that initialization is
done on U, and the iterates become
U,y — V,— U, with the alternate termination
criterion ||U; — U;-1|| < e. The literature contains
both specifications; the convergence theory is the
same in either case. There are some obvious
advantages to the form given here in terms of speed

TABLE 1
Fuzzy c-Means (FCM) Algorithms (Bezdek, 1981)

Store Unlabeled object data X = {Xq,Xz,...,X,} C &P

wili<c<nml<m<oow T=max iterations,T€1,2,...mw 0 <¢
v Norm for Jm: (X,) ,= ||x[|5= x"Ax s Norm for £, = [[V; — V;_4|

Pick
Guess Vo = ("1,0,'2,0-,»--,'{:,0 € R°P
Fort=1to T
Calcutate U; with V,_, and (6a)
fterate Calculate V; with U, and (6b)

If £ = ||[Ve — Vi-1]| <&, stop and put (Uy, Vi) = (Us, V1), else

Next ¢

Use Prototypes V; and/or fuzzy labels Uy

790

and storage. The alternative form that terminates on
U’s is more stringent, since more parameters must
become close before termination is achieved, and it
can happen that different results ensue by using the
same ¢ with both forms. FCM has five algorithmic
parameters (Up or Vo, A, ¢,m,e). Variation in any of
these parameters can affect the output of FCM for a
fixed set of unlabeled data. Consideration of these
effects on the outputs of FCM, as well as its
convergence and convergence rates, are discussed in
Bezdek (1981).

Another aspect of FCM is speed. The AO
approach to minimizing J,, involves c(n+ p) vari-
ables, and for large data sets (a typical image, for
example, has n = 256 x 256 = 65,536), FCM can be
slow. Another way to approach problem (2) is to
formulate it using the necessary conditions at (6) to
eliminate one of the two sets of grouped coordinates.
Since U will almost always contain more variables
than V, we will usually want to reformulate (2) by
substitution of (6a) into the formula for J,,,:

In(UV:X) = Z Z ()"l — "‘"iii:. Z ()"l
= Z": i ("ﬂ:)(l‘u)m- ’d:u |

k=1i=1
m-—1

In (7), ||xk —-v,—||i= dix 4. This calculation was first
done by Bezdek (1976) for a somewhat different
purpose, but as we shall see, it is relevant for the
present article. Minimization of R,(V:X) is un-
constrained in the variables V, and it is often easier to
solve this equivalent problem with commercially
available software (Hathaway & Bezdek, 1995). It

N. R. Pal et al.

may seem that elimination of the U variables has also
eliminated our chance of describing the cluster
memberships of the data, but the partitioning U can
be easily computed using the minimizing V* in {6a).

It is important to understand why we say the
minimization of R,(V : X) is equivalent to minimiza-
tion of J,,(U,V : X).2 This is because of the relation-
ship between minimizers of the original and
reformulated criteria. If all of the dix4 > 0, it is easy
to show (see the Appendix) that for some U*, (U*,V*)
is a global (local) minimizer of J,,(U,V : X) if and
only if V* is a global (local) minimizer of R,(V : X).
We can drop the assumption dj; 4 > 0 and still have
these implications if we extend the definition of R to
allow dijz4 =0. In practice, this can be done by
extending the arithmetic in R’s calculation to include
1/0 = oo and 1/c0 = 0. This extension is automati-
cally done in a computing environment such as
MATLAB.

3. SEQUENTIAL FUZZY COMPETITIVE
LEARNING

There have been several recent attempts to fuzzify
sequential competitive learning (CL) algorithms such
as Kohonen’s learning vector quantization (LVQ)
(Kohonen, 1989). Chung and Lee (1992) discussed an
algorithm they call unsupervised fuzzy competitive
learning (UFCL). Park and Dagher (1994) indepen-
dently presented an algorithm called gradient based
fuzzy c-means (GBFCM). Both of these algorithms
start by dropping all but the kth term in (2), resulting
in the reduced optimization problem:

@{Jm,tﬂ-‘hv TXg) = Z (aa1a) ™ e — ":Ili}, (®)
LK) i=l

where U is a constrained fuzzy label vector in
Nre={ye®R :0 <y; <IViY;_,yi=1}—thatis,
one column of Uin My, V = (v1,¥2,...,Vc) € BP is
a vector of (unknown) cluster centers (weights or
prototypes), v;€ # for 1 <i<c¢, me[l,00)
modifies the weight of each fuzzy membership and
|x|| ,= vxTA4x is any inner product norm.

Problem (8) is explicitly stated by eqns (6) and (7)
by Park and Dagher (1994) for the special case of
m = 2 and the Euclidean norm (A the p x p identity
matrix). Problem (8) appears in two forms in Chung
and Lee (1992). First, as the point of departure for
derivation of update equation (2) in Chung and Lee
(1992) for the prototypes in the unsupervised (crisp)
competitive learning algorithm (Chung and Lee’s
UCL), where our J, j is called Jy(W, V) on p. 541.

2 See our remark following the theorem given in the Appendix.

Sequential Competitive Learning and the Fuzzy

UCL), where our J; i is called Jy(W, V) on p. 541.
And our (8) appears again in Chung and Lee (1992)
preceding the derivation of their update equation (9)
for their UFCL scheme, our J,, i being called J7'(¥).
The Euclidean norm and m > 1 are used in Chung
and Lee.

We discuss (8) in the form shown, since everything
we have to say about it is true for the more general
cases that include m and A4 as parameters. Since
Jm k(U V : Xi) is positive definite, its global
minimum is zero, achieved by setting, for any U; in
Nye, X = v; for all i such that u; # 0. If this fact goes
unnoticed, we might again turn to AO as a means for
solution of (8). Setting up this new problem as the
pair of subproblems of-SF€M#H and B-SFEM,
which for convenience we call sequential fuzzy c-
means (SFCM), exactly as before will lead to the
following:

“Theorem” SFCM: Assume m>1 and
Ik —vii2>0, 1 <i< ¢ 1 <k<n The AO
minimizer '(Uk,,H,V,H) € Nyc X RP Of Ty iS:

Solution of — SFEM :
Ut = B(Vi; Xe) = (1041

-1
_[s ||xk-w,.||,)"” v Oe)
Lgl(nxk—v,-.,u, ’

Solution B — S FEM :
Vi1 = ¥(Ugs;Xe) = {Viern = X% : 1 < i < ¢}.(9b)

Equation (9a), the analytically exact half-iterate
derived with Lagrange multipliers that solves
problem of-S€F #, is precisely the same as (6a)
for the kth column of U because that is how (6a) was
originally derived. So, the solutions to problems
A-FEM and A-SFE€M seem at first to be the
same. However, setting the gradient of ¥ with respect
to v; equal to the zero vector in %7 to find the
necessary condition for problem #-¥F€.# yields:

Va, (Zdﬂg"xk - "j“i) = -2 AXe — Vi) =0 X, =V,
j=1

(10)

Thus, (9b) has only the trivial solution previously
mentioned. Returning to (9a) equipped with (9b)
immediately renders conditions (9a) in Theorem
SFCM indeterminate, and shows that (9a) is not
really necessary—any Uy, in Ny will do. Since
Problem (8) has no non-trivial solution, there cannot
be a “sequential” version of FCM based on
minimizing Jy, .

Faced with this dilemma, Park and Dagher (1994)

791

and Chung and Lee (1992) both resort to an
alternative tactic for problem ®#-¥F€.#. Instead
of setting the gradient of ¥ with respect to v; equal to
the zero vector in #”, these authors compute the
gradient of ¥, and use it to write an update equation
or learning law for the new prototypes based on the
current value of Uy and the method of steepest
descent. Here is the calculation:

[
Vv, (Z AL ".i”i) = 247, A(Xe — V) (11a)
j=1
= —nuM(x; — ;) for A = I, the Euclidean norm case.
(11b)

The constant 2 is simply absorbed into 7 in (11b).
Using the general form of the method of gradient
descent now gives with (11b) the update rule:

Yig+t = Vi + ﬂuﬂ(xk - Vt,:)

where 7 is a small positive constant. (12)

Equation (11b) is (9) in Chung and Lee (1992); and it
becomes (9) in Park and Dagher (1994) upon taking
m =2 (there is a sign change because Park and
Dagher reverse the data and prototypes under the
norm operation). Both sets of authors couple eqn (12)
with our (9a) and this pair of equations defines UCL
(m =1) or UFCL (m > 1) in Chung and Lee (1992);
or GBFCM in Park and Dagher (1994) with m = 2.
Quoting from p. 1628 of Park and Dagher (1994):
“FCM and GBFCM both have an objective function
which tries to minimize the distance between...”.
Thus, Park and Dagher apparently believe that
GBFCM does attempt to minimize J g, that is,
solve problem (8) for m = 2. We have shown this to
be impossible. Their algorithm, however, is partially
related to the well defined optimization problem
given in Section 5.

Park and Dagher’s update rule is, of course, just a
special case of Chung and Lee’s for m = 2. However,
the implementation of GBFCM is somewhat different
from UFCL. Indeed, we were unable to replicate
GBFCM as given in Park and Dagher (1994) on pp.
1628-1629, as there are many inconsistencies and
mistakes (for example, the line e« e+
vi(k + 1) — vy(k) apparently adds a difference vector
to a real number). Table 2 gives the UFCL algorithm
as implemented for the examples below.

Chung and Lee apply the same rationale as Park
and Dagher for derivation of their UCL and UFCL
schemes, and, for the same reason, neither of these
algorithms is related to solutions of our (8), much less
to solutions of our (2). However, as is the case for
GBFCM, the UFCL method is partially related to
the reformulated optimization problem defined by

792

N.R. Paletal

TABLE 2
Unsupervised Fuzzy Competitive Learning {(UFCL) Algorithms (Chung & Lee, 1992)

Store Unlabeled object data X = {x,,Xa,...,X,} C #P

Pick wi<c<nmi<m<oom 0<oy<1em T= max. iterations= 30n
Guess Vo= (v1,0,¥2,0,-..,Vc,0) € R?
Fort=110T:
Choose randomly xx € X
Fori=1toc
Dikre EE—‘ 1
Compute ujx = » (m)
Update v; y = ;41 + OIrUﬂLg [xk — Vf,:—1]
Next i
Compute a; = ap(1 — t/T)
Next t
Put (Uf,Vf) = (Ur,v;r)
Use Prototypes V; and/or fuzzy labels U;

Ry k. We show in Section 5 that both algorithms
actually perform a stochastic approximation based
on minimizing the expected value of our reformula-
tion functional R, i extended to all of 9¢7.

Further, Chung and Lee (1992) state, p. 540, that
“It has been pointed out (Kong & Kosko, 1991;
Hertz et al., 1991) that the basic form of competitive
learning (CL) is nothing more than an on-line version
of the hard c-means algorithm’. We believe that
Chung and Lee misinterpret both of these references.
From Kong and Kosko (1991), p. 119: “Pattern
recognition theorists first studied the UCL algorithm
but called it adaptive K-means clustering [10]”. Kong
and Kosko are correctly referring to the sequential
hard K-means procedure which was analyzed by
MacQueen (1967),° and summarized by Pal et al.
{1993). Equation (7) in Pal et al. (1993) shows this
explicitly, and is just (12) above, with a different
choice for learning coefficient 7. As for Hertz et al.
{1991), we assume that Chung and Lee refer to the
objective function at eqn (9.8), p. 222 of Hertz et al.
This is clearly a different objective function from
Chung and Lee’s J}(V), i.e., our Jp . The point is
that none of these sequential CL schemes can be
regarded as an “on-line version” of hard c-means,
which is a batch algorithm for approximately
minimizing J; in (2). Hard c-means and sequential
hard c-means are similar in appearance, but can
produce very, very different results on the same data
(this does NOT say that hard c-means produces better
results—just different ones; the quality of any

3 Duda and Hart (1973), p. 250 put it this way; “This procedure
[basic minimum-squared-error} is also closely related to the
adaptive sequential procedure of Sebestyn (1962), and to the so-
called k-means procedure, whose convergence properties were
studied by MacQueen (1967)". Batch hard k (or ¢) means is the
algorithm described in Tou and Gonzalez, (1974), p. 94, or by
Bezdek (1981), p. 55. Confusion also arises both over the use of ¢
instead of k; because many writers refer to the sequential version
simply as k-means, dropping the word adaptive or sequential.

clustering is an entirely different topic). We will
show that the same is true for batch FCM by
numerically comparing it to UFCL.

4. NUMERICAL COMPARISON OF FCM AND
UFCL

FCM and UFCL both depend on the choice of
fuzziness parameter m, but in very different ways.
First, remember that > ;_, u;x = 1 for each input x,
and that for a fixed u;, increasing m decreases (u;x)™.
When m is small (close to 1), FCM and UFCL both
tend to produce label vectors that are almost crisp. If
one u;; is close to 1, the update for v; in (11) will be
much larger than the updates for the other v;s. If,
additionally, the current prototypes in UFCL have an
unfavorable geometry compared to the central
tendencies of clusters in the data, some UFCL
updates will move rapidly towards a cluster, while
others may move very little. This effect is illustrated
in Figure 1. For points in both X; and X5
memberships in class 1 will be close to 1. When this
happens, prototype v, in Figure 1 will quickly migrate
towards the grand mean of X and X3, and v; will
never change very much.

FCM, on the other hand, defers updates for the v;

Xl
(@] o & "2
o} o} OOOo
o o © G O
O O Q o ©° o
ooooo oo ©90 ©
o © OOOOO
0]
14 v,
*

FIGURE 1. A geometric situation where UFCL may be unstable
when m is close to 1.

Sequential Competitive Learning and the Fuzzy

inherently more stable to small values of and changes
in m. On the other hand, if m is large (say > 7) all of
the u;’s will be nearly 1/c (Bezdek, 1981), and hence
all ¢ prototypes will be pulled towards the data point
Xy very slowly by UFCL. This will happen because
every (uix)™ will be very small, and every prototype
will be updated to almost the same extent. Thus,
neither a low nor a high value of m seems desirable in
UFCL.

To show that the choice of m can strongly
influence the outcome of the UFCL algorithm, we
ran UFCL on the IRIS data (Anderson, 1935). IRIS
has 150 points in four-dimension (50 points from
each of three types of flowers). UFCL was run with m
= 1.2, 1.5, 2.0, 2.5, and 7.0. We used ap = 0.3 (this is
one of Chung and Lee’s choices) for all five cases. In
each case the algorithm was started with the same
initial prototype vectors shown in Table 3. Following
the suggestion of Chung and Lee the algorithm was
run for T = 30 x 150 = 4500 steps. For each case, the
same points were used in the same sequence for
learning. UFCL did so poorly at m=1.2 and 7.0
with 4500 iterates that we reran these two cases using
20,000 iterates to see if additional learning would
drive the final centroids to better positions. From
Table 3 it is clear, as illustrated by Figure 1, that for
m = 1.2 two of the centroids move rapidly, while the
third moves very slowly. On the other hand, for
m = 7.0, all centroids seem to move at a slow but
more or less uniform rate. In this latter case 86 points
are wrongly classified by the nearest prototype rule,
of which 36 are from class 1, although it is well
known that class 1 is quite well separated from the
other two classes. Neither UFCL nor FCM uses class

793

information during learning. The class information
about the physical labels for the IRIS data was used
only to produce confusion matrices. The confusion
matrices listed in Table 3 are found by applying the
nearest prototype classifier to each of the 150 points
in IRIS [in all cases we were careful to use the
relabeling algorithm described in Pal et al. (1993) to
make sure that algorithmic labels were not swapped
with their physical counterparts]. The nearest
prototype labels are then compared with the actual
labels. The ijth entry of the confusion matrix records
the number of times real physical label i was instead
given label j by the algorithm. For example, three
class two points were incorrectly labeled class 1 for
m=1.5, and the other 47 class 2 points were
incorrectly labeled class 3. Thus, the UFCL-based
nearest prototype classifier commits 50, 50, 15, 16,
and 86 labeling mistakes, respectively, for m = 1.2,
1.5, 2.0, 2.5, and 7.0. For this example, the best
UFCL result in terms of number of missclassifica-
tions is obtained for m = 2. However, this may not be
generally true.

Table 4 contains outputs obtained by FCM on
IRIS using exactly the same initializations as shown
in Table 3. The termination criterion for FCM was
€ = 0.000001. You can see that FCM produces much
more stable estimates of the class centroids over the
same five choices for m. The results are essentially
identical for m=1.5, 2.0, and 2.5; and are very
slightly better for m = 1.2 and 7.0. Observe that the
FCM-based nearest prototype classifier correctly
labels all 50 points in class 1 for all five values of
m. Compare this with the UFCL results.

The nearest prototype errors derived from the

TABLE 3
Outputs of UFCL on the IRIS Data

Initial Centroids

Final Centroids for m= 1.2

Confusion Matrix

0.9563 0.9570 0.1796 0.8507 5.0146 3.3471 1.5808 0.3007 50 0 0
0.7169 0.4361 0.7920 0.5934 0.4062 07713 0.2594 0.5468 3 0 47
0.1419 0.6295 0.1439 0.5399 6.3172 28012 4.9575 1.7045 0 0 50
Final Centroids for m=1.5 Confusion Matrix
5.0121 3.3784 1.5203 0.2642 50 0 0
Init. same as above 1.7779 1.2998 1.1340 0.7011 3 0 47
6.3125 2.8837 49591 1.6919 0 0 50
Final Centroids for m = 2.0 Confusion Matrix
49984 3.3912 1.4880 0.2469 50 0 0
Int. same as above 59115 27784 4.4082 1.4014 0 47 2
6.7902 3.0636 5.6785 2.0959 0 13 38
Final Centroids for m= 2.5 Confusion Matrix
4.9884 3.3816 1.4906 0.2471 50 0 0
Init. same as above 5.9024 2.7934 44110 1.3966 0 45 3
6.7349 3.0602 56148 2.0875 0 13 39
Final Centroids for m= 7.0 Confusion Matrix
3.4662 2.0686 2.2071 0.9078 14 36 0
Init. same as above 5.0748 2.7240 3.1856 1.1355 0 44 6
4.8528 2.4966 3.2980 1.1330 0 44 6

794 N. R. Pal et al.
TABLE 4
Outputs of FCM on the IRIS Data
Initial Centroids Final Centroids for m=1.2 Confusion Matrix
0.9563 0.9570 0.1796 0.8507 5.0061 3.4258 1.4657 0.2479 50 0 0
0.7169 0.4361 0.7920 0.5934 5.8921 2.7449 4.3903 1.4272 1] 48 2
0.1419 0.6295 0.1439 0.5399 6.8468 3.0742 5.7249 2.0705 0 14 36
Final Centroids for m= 1.5 Confusion Matrix
5.0060 3.4203 1.4748 0.2518 50 0 0
6.8273 3.0662 5.7057 2.0668 0 14 36
Final Centroids for m= 2.0 Confusion Matrix
5.0040 3.4141 1.4828 0.2535 50 0 0
Int. same as above 5.8889 2.7611 4.3640 1.3973 0 47 3
6.7750 3.0524 5.6468 2.0535 0 13 37
Final Centroids for m=2.5 Confusion Matrix
5.0024 3.4077 1.4884 0.2541 50 0 0
|nit‘ same as above 58975 2.7770 4.3680 13936 0 47 3
6.7291 3.0440 5.5935 2.0446 0 12 38
Final Centroids for m=7.0 Confusion Matrix
5.0160 3.4015 1.5000 0.2509 50 (v} 0
Init. same as above 5.9867 2.8452 4.4472 1.4332 0 46 4
6.5606 3.0039 5.3712 1.9535 0 9 41

The nearest prototype errors derived from the
confusion matrices in Tables 3 and 4 are summarized
in Table 5, which also shows the number of iterates
each algorithm used for each run. We emphasize that
UFCL iterates are looks at individual vectors,
whereas each FCM iterate is one AO pass through
all 150 points. We see that for very low and very high
values of m, the UFCL learning process is very slow,
and may require a very large number of iterations to
get useful results. The error rates speak for
themselves. UFCL prototypes are good estimators
of central tendency (i.e., good vector quantizers) for
the IRIS data in only for two of the five cases,
whereas FCM yields stable estimates and very
predictable classifier results in all five cases.

Chung and Lee acknowledge in their discussion
section that UFCL is critically sensitive to the choice
of m, but do not provide any explanation for it.
Instead, they suggest a scheme for monotonically
decreasing m from, say 2.2 to 1.4 in small steps. This
strategy was first suggested for the fuzzy learning
vector quantization (FLVQ) algorithm described by
Bezdek et al. (1992), Bezdek (1992a), and Bezdek
(1992b), which is a batch relative of fuzzy c-means. To

TABLE 5

Comparison of Error Rates and Number of lterates
Value UFCL FCM UFCL sequential FCM batch
of m Errors Errors lterates lterates
1.2 50 16 20,000 17
1.5 50 17 4,500 24
2.0 15 16 4,500 26
25 16 15 4,500 33
7.0 86 13 20,000 57

summarize, we have given a reason for the sensitivity
of UFCL (and GBFCM as well) to m, and have also
shown that values of m in the range suggested by
Chung and Lee can still lead to stability problems.

5. WHAT DOES UFCL OR GBFCM MINIMIZE?

Suppose we apply the reformulation trick which led
to Rn(V:X) at (7) to the functional J, i, by
substituting the necessary condition at (%9a) into
Jm k(U,V :). Doing this simply strips the sum
over k from 1 to n from the calculations in (7), leaving
us with:

5

Minimization of R,,(V : xi) is again unconstrained in
the variables V. The gradient of Ry, x with respect to
v; is:

& =Ly —(m-1)
V(R 1V : X)) = Vw(’ —1—)) =...

ik a

(et |

X (X — ¥i),

J,,.,,,(U,V 3 xk) =

1 = R,,.,k(V = Xk).

(13)

where (...) represents some intermediate steps that
are not hard to supply. Now, substitution of (9a) for
the bracketed expression yields

Sequential Competitive Learning and the Fuzzy
V.,(R,.,,,(V : Xg)) = —ZAH;"*(X& - l'f) (14)

Equation (14) is, as it must be, identical to (11a).
Zeroing this gradient leads again to only the trivial
solution x; =v; for unconstrained minimization of
Rn(V : x¢). UFCL and GBFCM do not iteratively
adjust new estimates of the prototypes using the
method of steepest descent based on (14) with xi
fixed, because this would inevitably lead to the trivial
global minimum. Instead, they use the steepest
descent equation as a one time adjustment to the
prototypes, and then move on to the next data point.
At this stage we are in a position to state definitively
that UFCL and GBFCM are not solving optimization
problems based on either J,, (batch FCM) or J, i
(sequential FCM) in either their original or reformu-
lated versions.

And yet, in some cases UFCL (and hence, GBFCM
as well) produces reasonable solutions. Our next task is
to see if we can explain why this might be. The
derivation of CL algorithms that have learning laws of
the general form of the update rule for steepest descent
begins by letting x € &7 be a stochastic input vector
distributed according to some time invariant prob-
ability distribution f(x) for the vector-valued random
variable X Tsypkin (1973). Let X = {x;,x3,...,
Xn,---,} be a set of samples drawn from f(x) at
time instants t =1,2,...,n,.... Our objective is to
find a set c of prototypes V = v; such that the expected
value of R, (V : x) is a minimum. In other words, we
want to minimize

E(R(V : X)) = ”J Ru(V : %) (X)dx,

x€ @

where E stands for expectation with respect to X.
Since the exact form of f(x) is not known,
E(Rn(V :x)) can be approximately minimized,
following Tsypkin (1973), by moving the prototypes
in the direction of the negative gradient of the
random functional R,(V:x). This computation
results in (14) again, with x; replaced by x.
Applying the steepest descent update to the
prototypes each time a point from the process is
submitted is properly called stochastic approximation
of the prototypes that minimize E(R,(V :x)) with
respect to the unknown density function f(x). Most,
if not all of the sequential CL schemes we know of,
implicitly rely on this fact to justify the use of (12) as
an update scheme. It is our belief that UFCL and
GBFCM (and, for that matter almost all unsuper-
vised versions of LVQ, including FLVQ) sometimes
find useful solutions precisely because the data being
processed do have this underlying but unknown
structure. This—stochastic approximate minimiza-

795

tion of E(R,(V : x))—is why UFCL and GBFCM
sometimes work.

6. CONCLUSIONS

We have discussed UFCL and GBFCM, two
sequential clustering algorithms that were presented
as being related to fuzzy c-means, and we have shown
that this is not true. The authors of both algorithms
confused the use of unconstrained optimization on
reformulated versions of sequential FCM with
stochastic approximation. We have shown numeri-
cally, algebraically, and geometrically why the UFCL
scheme is sensitive to the parameter m, as was
acknowledged by Chung and Lee. Sequential schemes
are sometimes attractive, but, like all algorithms, have
some weaknesses. Analysis of UFCL has exposed
some of its weaknesses, and we caution authors of
algorithms of this type to be careful how they interpret
statements such as that in Chung and Lee (1992) p.
550,: *“Also, other existing CL algorithms, such as the
differential CL (Kong & Kosko, 1991), could be
fuzzified under the proposed framework”. Perhaps
they can, but not using the framework offered by Park
and Dagher or Chung and Lee.

REFERENCES

Anderson, E. (1935). The IRISes of the Gaspe peninsula. Bulletin of
the American IRIS Society, 59, 2-5.

Bezdek, J. C. (1973). Fuzzy mathematics for pattern classification.
Ph.D. Thesis, Cornell University, Ithaca, New York.

Bezdek, J. C. (1976). A physical interpretation of fuzzy ISODATA.
IEEE Transactions SMC, SMC-6(5), 387-389.

Bezdek, J. C. (1981). Pattern recognition with fuzzy objective
Sfunction algorithms. New York: Plenum.

Bezdek, J. C. (1992a). Computing with uncertainty. IEEE
Communications Magazine, 30(9), 24-36.

Bezdek, J. C. (1992b). Integration and generalization of LVQ and
c-means clustering, intelligent robots and computer vision Xi:
biological, neural net, and 3-D models. SPIE Proceedings 1826,
D. Cassasent, (Ed.) (pp. 280-299). Bellingham, WA: SPIE.

Bezdek, J. C., Hathaway, R. I, Howard, R. E., Wilson, C. A., &
Windham, M. P. (1987). Local convergence analysis of a
grouped variable version of coordinate descent. Journal of
Optimization Theory and Applications, 54(3), 471-477.

Bezdek, J. C., Tsao, E., & Pal, N. R. (1992). Fuzzy Kohonen
clustering networks. Proc. First IEEE Conf. on Fuzzy Systems,
(pp. 1035-1043). Piscataway, NJ: IEEE Press.

Chung, F. L., & Lee, T. (1992). Fuzzy competitive learning. Neural
Networks, 7(3), 539-551.

Duda, R., & Hart, P. (1973). Parttern classification and scene
analysis. New York. John Wiley.

Dunn, J. C. (1974). A fuzzy relative of the ISODATA process and
its use in detecting compact, well-separated clusters. Journal of
Cybernetics, 3, 32-57.

Hathaway, R. J., & Bezdek, J. C. (1991). Grouped coordinate
minimization using Newton’s method for inexact minimization
in one vector coordinate. Journal of Optimization Theory and
Applications, T1(3), 503-516.

Hathaway, R. J., & Bezdek, J. C. (1995). Optimization of clustering
criteria by reformulation. JEEE Transactions on Fuzzy Systems,
3(2), 241-246.

796

Kong, S. G., & Kosko, B. (1991). Adaptive vector quantization for
phoneme recognition. JEEE Transactions on Neural Networks,
2(1), 118-124.

Luenberger, D. L. (1965). Introduction to linear and non-linear
programming. Reading, MA: Addison-Wesley.

MacQueen, J. (1967). Classification and analysis of multivariate
observations. In Proc. 5th Berkeley Symp. Math. Stat. and
Prob, pp. 281-297.

Pal, N. R,, Bezdek, J. C., & Tsao, E. (1993). Generalized clustering
networks and Kohonen’s self organizing scheme. JEEE Trans-
actions on Neural Networks, 4(4), 549-558.

Park, D. C., & Dagher, 1. (1994). Gradient based fuzzy c-means
(GBFCM) algorithm. Proc. the IEEE ICNN (Vol. 3, pp. 1626—
1631). Piscataway, NJ: IEEE Press.

Redner, R., Hathaway, R. J., & Bezdek, J. C. (1987). Estimating
the parameters of mixture models with modal estimators.
Commun. Stat. (A), 16(9), 2639-2660.

Tou, J., & Gonzalez, R. (1974). Pattern recognition principles.
Reading, MA: Addison-Wesley.

Tsypkin, Y. Z. (1973). Foundations of the theory of learning systems.
Trans. Z. J. Nikolic. New York: Academic Press.

Wei, W., & Mendel, J. (1994). Optimality tests for the fuzzy c-
means algorithm. Pattern Recognition, 27(11), 1567-1573.

Windham, M. P. (1987). Parameter modification for clustering
criteria. Journal of Classification, 4, 191-214.

APPENDIX

Let J denote J,, m>1, let R denote the corresponding
reformulated version. Denote by M the corresponding set of
partitions, i.e., My, or M,.,, and finally, let (V) denote (Vi, k)

_[n lek-wt|<!|xn—";||,f#i]
Q(v)_[ﬂ; otherwise

for the hard case, or

®(V)= z(llxa '.Ih)-l"]-I

j=1 "x‘t == vf"]

for the fuzzy case.

N. R. Pal et al.

THEOREM. Let the distances D,,, for i=1,...,c and
k=1,...,n, be continuous functions of V € B, where B is an
open subset of #“. Let V* be such that the corresponding distances
satisfying Djy 4, > 0,fori=1,...,cand k=1,...,n

For either the hard or fuzzy case:

@ (U, V') globally minimizes J over M x &% = V* globally
minimizes R over #“; and

(i) V* globally minimizes R over 2% = (B(V"), V") globally
minimizes J over M x R°.

For the fuzzy case:

(iii} (U", V") locally minimizes J = V* locally minimizes R; and
(iv) V* locally minimizes R = ($(V*), V*) locally minimizes J.

Proof: We first do (i), using contradiction. Assume that (U",V*)isa
global minimizer of J. Since all Dj;, > 0, we can apply existing
optimality theory for each of the cases to obtain U* = $(V*), which
also implies that R(V*) = J(U*, V*). Now if we also assume that V*
does not globally minimize R, then there is some V** such that
R(V*) > R(V"*) = J(#(V"),V"), but this contradicts the global
optimality of (U, V*) for J. A similar argument establishes (ii).

We now do (iii) by contradiction. Assume that (I”, V*) locally
minimizes J. This implies U* = ®&(V*), R(V") = J(U", V"), and the
existence of an open neighborhood N in M x #“ that contains
(U, V") and satisfies J(U,V) > J(U", V*) for every (U,V) € N.
Now, also assume that V* does not locally minimize R. This implies
the existence of a sequence {V”} in 2, which converges to V*
and satisfies R(V?) < R(V") for r=1,.... Using the continuity
(in the fuzzy case) of & at V*, this implies the existence of a
sequence {(U"J VO)} = {(@(V?),v")}, in Mx %", which
converges to (U",V') and satisfies J(U (72 V) < J(Ur, V") for
r=1,.... This contradicts the existence of the neighborhood N
described above, which contradicts the assumption that (U*,V*)
locally minimizes J.

Finally, for the proof of (iv) by contradiction, we assume that
V* is a local minimizer of R and that (U*,V*) = (&(V*), V') is not a
local minimizer of J. By the second part of this assumption, there
exists a sequence {(U¥),V") m M x ®°, that converges to
(U‘ V') and sausﬁes J(UO, W < J(U*, V) for r=1,.... Now,

(vf')) J(®(V?), V¢ <J(U('> vy < J(r, V) = §V'), for

r=1,.... This last inequality, for the sequence { } -V,
oom.racllcts the assumption that V* is a local minimizer of R.

Remark. A special case of the fuzzy instance of this theorem for
m > 1 was given in Wei and Mendel (1994); and a more general
case that includes the possibilistic c-means model was given in
Hathaway and Bezdek (1995).

	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf

