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Abstract

Finite geometries are used to construct several families of asymmetric orthogonal arrays. Many
of these arrays appear to be new.
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1. Introduction

An orthogonal array, OA(N,n,m; X --- X my,g) is an N X n matrix with symbols
in the ith column from a finite set of m;(=> 2) symbols, 1 < i < n, such that in every
N x g submatrix, all possible combinations of symbols appear equally often as a row.
Orthogonal arrays with m;=- - -=m,=m (say) are called symmetric and we denote such
arrays by OA(N, n,m, g); otherwise, the array is called asymmetric. For the construction
and applications of orthogonal arrays in design of experiments, see Hedayat et al.
(1999) and Dey and Mukerjee (1999).

It 1s known that for an OA(N,n,m; X --- X m,,g),

N1+ Y (m-D+ Y (m—1)m,—1)

1 €ign | <i) <ia<sn

ER Z (m —1)---(m;, — 1) if g(=2u, u > 1) is even

| iy < <iy S
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and

Nz1+ 3 m-D+ > (m=10m,-1)

I<ign 1€ <z €n

+ 4 Z (m,-l—l)"'(miu_dl)

1€h <o <iygn

Hem =1 D (my—1)(my — 1)
2K <<l <n

if g(=2u+1, u>1)is odd and m) = max m;.
I<ign

Orthogonal arrays for which the number of rows N attains the above lower bounds are
called right. Tight orthogonal arrays are of great importance in design of experiments
as optimal fractional factorial plans with the least number of runs.

The construction of asymmetric orthogonal arrays of strength swo have received
considerable attention. Asymmetric orthogonal arrays of strengths greater than two have
however, received less attention in the literature. The purpose of this communication is
to present some methods of construction of asymmetric orthogonal arrays of arbitrary
strength. The methods are based on finite projective geometries and we refer the reader
e.g., to Hirschfeld (1979, 1985) for an excellent account of finite projective geometries.
In Section 2, a recent method of Suen et al. (2001) is used to obtain a family of
asymmetric orthogonal arrays of strength g(= 2). Arrays of strength three obtained
through this method appear to be new. Some more families of asymmetric orthogonal
arrays of strength three and four are presented in Section 3. Several of such arrays
also appear to be new.

2, A general method

For m a prime or prime power, let GF(m) denote a Galois field of order m. For
completeness, we first state a result of Suen et al. (2001).

Theorem 2.1. Let C be an r x n matrix with entries from GF(m) and suppose C is

written as C =[F; F,), where for | <i < u, F; is an v x n; matrix, Z,‘;l n; =n.

If for every choice of g matrices F;,...,F; out of F\,...,F,, the r X ;’:1 n;, matrix

[F; i Fi,] has full column rank over GF(m), then one can construct an OA(m’,
u,(m") x .- X (m"), g).

The orthogonal array of Theorem 2.1 is given by the row space of C, where the n;
columns of F; form a new column of m" symbols for 1 <7 < u. We shall now present
a method based on Theorem 2.1 to obtain some families of asymmetric orthogonal
arrays. The main result that follows uses a replacement procedure similar to the one
employed by Suen et al. (2001). We start with a generating matrix over GF(m*) and on
replacing each entry of the generating matrix by its matrix representation over GF(m),
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a new generating matrix is obtained. The final orthogonal array is then generated via
another matrix obtained by deleting certain rows of the new generating matrix. We
have the following result,

Theorem 2.2. Let m be a prime or prime power and i,k be integers such that 1 <i <k.
If there exists an r x u matrix A with entries from GF(m*) such that

(i) any g columns in A are linearly independent over GF(m*), and
(ii) there is a row in A which has exactly t zero entries and u — t nonzero entries.

Then, one can construct an OA(m™* %+ u (mFY x (mf)y—, g).

Proof. Without loss of generality, one can assume that in the last row of A, the first
t entries are zero and the remaining u — ¢ entries are 1. Replace each entry in 4 by
its k X k matrix representation, the entries in the matrix representation being elements
from GF(m). Call the derived rk x uk matrix C*. The matrix C* is obtained in the
following manner.

Let @ be a primitive element of GF(m*) with minimum polynomial x* +a;_ . x*~1 +
-+« 4+ o1x + dg, where for 0 < j <k — 1, a; € GF(m). The companion matrix of the
minimum polynomial is

'-0 o ... 0 —0lg 1

1 0 0 -
W = o1 ... 0 —0l2

(0 0 ... 1 -0

Recall that if o is a primitive element of GF(m*), then 0,1, w, «?, ..., w* 2 are all the
elements of GF(m*), where s=m*. A typical element @’ of GF(m*) can be represented
by a k x k matrix ¥’/ with elements from GF(m), with 0 being represented by a k x k
null matrix and 1, by the identity matrix of order £.

Now, for } < j<u, let F} be the rk x k submatrix such that C* = [F} :---: F}].
Then it can be verified that for any choice of 1 < j; < .- <j;, <u, the rk x gk
submatrix has full column rank, gk. '

Given 1 i <k, for t+1 < j <u, let F; be the (rk — k£ +) X i matrix obtained by
deleting the last £ — i columns and the last £ —i rows of F It and let for 1 < j<¢ F;
be the (rk — k + i) X k matrix obtained by deleting the last £ — i rows of F;. Then the

(rk—k—+i)x (tk+ui—ti) matrix C=[F; :---: F,] satisfies the condition of Theorem 2.1,

namely, that for any choice of 1 < ji <--- < j, <u, the matrix C; =[F}, :-+-: F}]
has full column rank; this follows because C, is obtained from [. e Fj’:] by deleting
some columns and then some zero rows. It follows now that the OA(m™*~*+ u, (m* )’ x
(m'y*~,g) can be constructed via Theorem 2.1. ]
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To illustrate Theorem 2.2, we construct a tight array OA(256,10,8% x 48,3), which
appears to be new.

Example 2.1. Let m=2, k=3, i=2. Let w be a primitive element of GF(8) with the
minimum polynomial x* + x + 1. The following 3 x 10 matrix 4 has the property that
any three of its columns are linearly independent over GF(8).

w 5 6

0
0 1 w 3w’
1 1

1

[(8]

A=

-~ & B

w o'
w o o
1 1

0
1
0 1

[ R e R

The companion matrix of the minimum polynomial x> +x + 1 is
0 0 1
w=|1 01
010

and the elements of GF(8) can be represented by 3 x 3 matrices with entries from
GF(2) as

0 0 0 100 001 010
o=|0 0 o, 1=|010|, w={101|, w*=|011],
0 0 0 001 010 101
101 011 111 110
=[111], o*=|110|, &@=[100|, ®*=]001
011 111 110 100

Replacing each entry in A by its matrix representation, we obtain the matrix C* as

F{ F; Fy Fi F5 Fg F Fg Fy Fj
100 000 000 100 001 010 101 o011 111 110
010 000 000 010 101 O11 111 110 100 001
001 000 000 001 010 101 011 111 110 100
000 100 000 100 010 o011 110 001 101 111
000 010 000 010 o011 110 001 101 111 100
000 001 000 001 101 111 100 010 011 110
000 000 100 100 100 100 100 100 100 100
000 000 010 010 o010 010 010 010 010 010
000 000 001 001 001 001 001 001 001 001
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Deleting the last row of C* and the third column of each of Fy,...,F7j,, the 8 x 22
matrix C is obtained, which can now be used to get the OA(256,10, 82 x 48,3) via
Theorem 2.1. [

We now use Theorem 2.2 to construct some specific families of asymmetric or-
thogonal arrays of strengths two and three. In order to obtain the r x ¥ matrix 4 in
Theorem 2.2, we make use of points, lines, planes, flats, ovals and ovaloids in a finite
projective geometry. A column of 4 corresponds to a point in the finite projective
geometry PG(r — 1,m*). To construct an array of strength two, any two columns of 4
must correspond to two distinct points in PG(r — 1,m*). Similarly, for constructing an
array of strength three, any three columns of 4 must cotrespond to three noncollinear

points of PG(r — 1,m*). Let us first consider arrays of strength two. To that end, we
have the following result,

Theorem 2.3. Let m be a prime or a prime power and i,k and r be integers such
that 1 <i <k andr 2 2. Then a tight OA(m™ " v, 4 vy, (M) x (m')2,2) can be
constructed, where v; = (m™*=* — 1)/(m* — 1) and v, = m™**.

Proof. Let A4 be the r x (m™ —1)/(m* — 1) matrix such that the columns of 4 correspond
to all the points in PG(r — 1,m*). Out of these, the (m™—* — 1)/(m* — 1) columns with
the last entry zero forms an (r — 2)-flat. Hence, the last row of 4 bhas exactly v, zero
entries and v, nonzero entries. Using Theorem 2.2, the required orthogonal array can
now be constructed. O

We now consider arrays of strength three. Most of the arrays constructed below
appear to be new.

Theorem 2.4. Let m be a prime or a prime power and i,k be integers, 1 <i <k.
Then one can construct

(a) a tight OA(m*+ mF +2,(m*)? x (m' )" ,3), where m is even;

(b) an OA(m™+i mk + 1,(m*)? x (m)" =1,3), where m is odd.

Proof. Let the points of the finite projective geometry PG(2,m*) be denoted by 3 x 1
vectors with entries from GF(m*). An oval in PG(2,m*) has m* + 2 points when
m is even and m* + 1 points when m is odd. Any three points on an oval are not
collinear. If 4 be the matrix whose columns are points of an oval in PG(2,m*), then
it follows that any three columns of A are linearly independent. Moreover, one can
assume without loss of generality that the first two columns of 4 are (1,0,0)' and
(0,1,0). Then the line through the points (1,0,0) and (0,1,0) does not meet any
other point in the oval, and the points on this line are represented by 3 x 1 vectors
with the last entry equal to zero. It follows then that the last row of A has pre-
cisely two zero entries. The required arrays (a) and (b) can now be constructed via
Theorem 2.2. O
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Remark 2.1. With i =1 in Theorem 2.4, we have the arrays

(i) OA(m*+! mk + 2, (m*)? x m™,3) whenever m is even, and
(i) OA(m¥ !, mt + 1,(m*)? x m™ =1,3), whenever m is odd.

Array (i) was constructed by Suen et al. (2001) through a different technique. Array
(i) is an improvement over a result of Suen et al. (2001) in terms of having more m
symbol columns. Note that the array of Example 2.1 is a special case of Theorem 2.4
with m=2=ik=3.

We next have the following result.

Theorem 2.5. Let m,i,k be as in Theorem 2.4, Then one can construct an OA(m**',

m* 1, (mk Y+ 5 (mtyn o 3),

Proof. Let the points of a PG(3,m*) be denoted by 4 x | vectors with entries from
GF(m"*). An ovaloid in PG(3,m*) has m® + 1 points and any three of these points are
not collinear. Any plane in PG(3, m*) meets an ovaloid in either one point or, m* + 1
points. If 4 is the 4 x (m* + 1) matrix with columns corresponding to the points of an
ovaloid, then clearly any three columns of 4 are linearly independent. Without loss of
generality, we can assume that the first three columns of 4 are (1,0,0,0),(0,1,0,0)
and (0,0, 1,0)’. The plane through these points must meet the ovaloid in m* + 1 points,
and each of these points has the last entry zero. It follows then that the last row of 4
has exactly m* + 1 zero entries and m?* — m* nonzero entries. The result now follows
from Theorem 2.2. [

As an application of Theorem 2.5, let m =2 = k,i = 1. We then have the array
OA(128,17,4° x 212,3). This array, however is not tight. It is not known whether a
tight array OA(128,24,4° x 2%,3) exists or not.

3. Some more orthogonal arrays

Suen et al. (2001) constructed the following arrays:

(i) OA(m®,m? + m + 2,(m?) x m™ ™+ 3), where m is an even prime power, and
(i1) OA(m’,m + 2,(m?) x m™*1,4), where m is a prime or a prime power.

In this section, we improve these resuits by constructing the following families of
arrays:

(') OA(mS,m? +m+2,(m?) x m™+m+1 3), where m is a prime or a prime power, and
(ii') OA(m’,m + 3,(m?) x m™2,4), where m is an even prime power.

Note that the array (i) is tight. Although the array (ii’) is not tight, one can show that
in an OA(m>, n+1,(m?)xm",4), n < m+2. To see this, suppose an QOA(m*, n+1, (m?)x
m",4) exists. Then deleting the first column of the m® x (n + 1) subarray given by
rows with the same symbol in the first column, one gets a symmetric OA(m>,n,m,3).
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By a result of Bush (1952), in a symmetric OA(m3,n,m,3), n<m+ 1 if m is odd
and, n < m+ 2, if m is even. It follows that if m is an even prime power then in an
OA(m’,n+ 1,(m*) x m",4), n <m+2.

For constructing the arrays (i’) and (ii'), the following preliminaries will be
helpful. Recall that in a finite projective geometry, PG(r — 1,m) of dimension
r — 1, a point is an ordered r-tuple (x¢,xy,...,x.—1), x; € GF(m), 0 <i<r — 1.
Two such vectors (xg,x1,...,x,—1) and (yg, ¥i,-..,¥-—1) represent the same point
if there exists a A#0 such that for 0 <i<r — 1, x; = 1y;. An elliptic quadric
in PG(3,m) consists of m* + 1 points such that any three points are not col-
linear. It has the following canonical form (see e.g., Hirschfeld (1979, Theo-
rem 5.2.4):

xox1 = f(x2,x3),

where f is an irreducible binary quadratic form. We then have the following

Lemma 3.1. Let ¥V = {(1, f(»,2), 3.2): .,z € GF(m)} be a set of m? vectors, each of
order 1 x 4, where f is an irreducible binary quadratic form. Then any three vectors
in V are linearly independent.

Proof. The result follows since ¥ contains m? points of the elliptic quadric xux; =
f(x2,x3) in PG(3,m) (the other point not in ¥ is (0,1,0,0)). O

We now have the following result.

Theorem 3.1. An OA(m’,m? + m + 2,(m?) x m™+"+1 3Y can be constructed for any
prime or prime power m.

Proof. The required array can be constructed if we can find a matrix C of order

5 {(m? +m -+ 3), satisfying the condition of Theorem 2.1. Let C=[F; :---: Foppymiol,
where
1 0 0 0 O
F= , Fa=[1 0 0 0 17,
0160 00

F=[1 x* 0 1 xJ, 1<i<m+2, xeGF(m)
and
Fi=[0 f(yz) 1 y zI, m+3<j<m*+m+2, yzeGF(m),

f(3,2) is irreducible.
With the above choices of the matrices F;, 1 < i< m?+ m + 2, we now show by
considering all possible cases that the rank condition of Theorem 2.1 is met.
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(DLeti=1, j=2, 3<k<m+2 The matrix [F) : Fy | F;] must have rank 4.
Now,

*
(]

[Fi:F,: Fel=

o O O -
O O = O
_—0 O O e

L S

0

The above matrix has rank 4 since the determinant of the 4 x 4 submatrix given by
the first, second, fourth and fifth rows equals —1.

(2) Leti=1, j=2, m+3 <k <m?+m-+2. The matrix [F, : F, : F;] must have
rank 4. Now,

‘101 0
01 0 f(»2)

[Fi:Fa:F)=10 0 0 1
000 y
0 01 z |

The above matrix has rank 4 since the determinant of the 4 x 4 submatrix given by
the first, second, third and fifth rows equals —1.

(3) Let i=1, 3<j <k <m+2. The matrix [F, :F;: F;] must bave rank 4. We
have

I 17
X2 x
0
1

X1 X2

[F) Fi Fy] =

(=T =T - I = R
o o0 = O

The above matrix has rank 4 since the determinant of the 4 x 4 submatrix given by
the first, second, fourth and fifth rows equals x; — x; 0.

@ Leti=1,3<j<m+2, m+3<k<m® +m+2. The matrix [F, : F; : Fy]
must have rank 4. We have

"1 0 1 0

1 ¥ f(52)
[Fl:F, F]=[0 0 0 1
0 0 1 y

([0 0 x z ]
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The above matrix has rank 4 since the determinant of the 4 x 4 submatrix given by
the first four rdws equals —1 #0.

(5) Leti=1, m+3 < j <k <m?+m+2. The matrix [F, : F; : F] must have rank
4. In this case,

1 0 0 0 T
0 1 f(ynzi) f(yaz2)

[Fi:FjiF]=10 0 1 1 where (y1,21)%# (32,22).
0 0 Y1 Y2
|0 0 z) zy

If y, # y2, the determinant of the 4 x 4 submatrix formed by the first four rows equals
y2—y1 #0. If 2| # z3,the determinant of the 4 x4 submatrix formed by the first, second,

third and fifth rows equals z; —z; # 0 and thus, in either case, the rank of [F : F; : Fi)
is 4.

(6) Let i =2, 3<j<k<m+ 2. The matrix [F, EF,- : F] must have rank 3. In
this case,

[1 1 17
S
[F:F;:Fi]=|0 0 0| wherex#x.
1 1
1 x x|

[F> iFj : F;] has rank 3 since the determinant of the 3 x 3 submatrix formed by the
first, fourth and fifth rows equals x; — x; #0.

(M Leti=23<j<m+2, m+3<k<m?+m+2 The matrix [F; : F; : Fi]
must have rank 3. In this case,

11 0

0 ¥ f(n2)
[F:F;:F]=|0 0 1

0 1 y

|1 x z

This matrix has rank 3 since the determinant of the 3 x 3 submatrix formed by the last
three rows equals ~1#£0.
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B)Leti=2, m4+3<j<k<m
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24 m+2. The matrix [F; : F; : F;] must have rank

3. Here,
M1 0 0
0 fOz) f(rihz)
[F FiiF]=|0 1 1 where (y1,21) # (y2,22).
0 » Y2
| 1 z zz

If y, # y3, the determinant of the 3 x 3 submatrix formed by the last three rows equals
y2—y1 #0. If z; #2, the determinant of the 3 x 3 submatrix formed by the first, third

and fifth rows equals z; — z; # 0 and thus, in cither case, the rank of [F, : F; : Fy] is 3.

(9) Let 3<i<j<k<m+2. The matrix [F;: F : F;] must have rank 3. In this
case,
1 1 17
X o %
[Fi:F;:F]=|0 0 0],
1 1 1
LX) X2 X3

where x),x),x3 are distinct clements of GF(m). [F; 5Fj ka] has rank 3 since the
determinant of the 3 x 3 submatrix formed by ‘the first, second and fifth rows equals

—(xz = x1)(x3 — X1 )(x3 — x%2) #0.

(1) Let3 <i<j<sm+2, m+3<k <
have rank 3. Here,

m* +m+2. The matrix [F; : F; : F;] must

T 1 0
X% f(n2)
[F,iFiF]=10 0 1 ,
1 1 y
[ X1 X2 z

where x;,xp are distinct elements of GF(m). [F; 'F : F;] has rank 3 since the
determinant of the 3 x 3 submatrix formed by the Iast three rows equals

x; —x1 #0.
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(11) Let 3<i<m+2, m+3 <j <k <m’+m+2. The matrix [F; : F; : F;} must

have rank 3. In this case,
M1

[Fi:F;:Fel=|0
1

X

0 0
1 1
i »2
2y Z3

x? S(uz1) f(y2,z2)

where (y1,21)# (¥2,22).

If y1 # y2, the determinant of the 3 X 3 submatrix given by the first, third and fourth
rows equals y» — y; # 0. If zj #z,, the determinant of the 3 x 3 submatrix formed by

the first, third and fifth rows equals z, — z; # 0. Thus, in either case, [F; : F; : Fi] has

rank 3.
(12) Let m+3 <i < j,k <m?+m+2. In this case,

i 0 0 0 T
Snz1)) f(ra,z) f(3,23)
FiF G RlI=| 1 1 1,
bgl »2 y3
L ) 22 z3 d

where (11,2,),(2,22) and (y3,23) are distinct. The matrix [F; fFJ- : Fi] has rank 3 by
Lemma 3.1.

Thus the result is proved. O

We illustrate the above theorem below.
Example 3.1. Let 0,1 and 2 be the elements of GF(3). Then f(y,z) = v+ 22 s

imeducible over GF(3). An OA(243,14,9 x 3'3,3) can be constructed via Theorem 2.1
using the following matrix C:

'F\ F, F3 F4 Fs F¢ F; F3 Fy Fy Fiu Fn Fi Fu)
10 1 1 1 1. 0 0 O 0 ¢ 0 0 0 0
01r 0 0 1 1 0 1 1 1 2 2 1 2 2
““loo 0 0 0 0 1t 1 1 1 1 1 1 1 1
00 0 1 1 1 0 0 0 1 1 1 2 2 2

loo 1 0 1 2 01 2 0 1 2 0o 1 2

We next construct an OA(m>,m + 3,(m?) x m"+%,4), where m is an even prime
power. Suen et al. (2001 )-constructed an OA(m’, m-+2,(m?)xm™+!,4) for any prime or
prime power m. When m is odd, these arrays have the maximum number of m-symbol
columns. For even m, the number of m-level columns is at most m +2 and we show
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that this upper bound on the number of m-level columns can actually be achieved. To
that end, we first have the following lemma.

Lemma 3.2. If m is an even prime power, then there exists an o€ GF(m) such that
x* + x+#a for all x € GF(m).

Proof. For any x € GF(m), (x + 1)* + x + 1 =x? + x, since m is even. Also, since the
set {x? + x:x€ GF(m)} contains exactly m/2 elements and there are m elements in
GF(m), there exists an « € GF(m) such that x> + x #a for all x€ GF(m). O

We now have the following result.

Theorem 3.2. I[f m is an even prime power, then an OA(m>,m + 3,(m*) x m"*2,4)
can be constructed.

Proof. Let C=[F, : --- : F,.1), where
—10000’ F—[IIOOI]'
'""fo10 0 0] " ’

F;=[12010] where a£x?+ x for all x € GF(m),
and
Fi=[0 x* 1 x x%, xeGF(m), 4<i<m+3.

One can show that with above choices for the matrices F;, 1 £ i < m + 3, the rank
condition of Theorem 2.1 is satisfied. In order to save space, we demonstrate this only
in one case; the other cases can be handled in the same way as in the proof of Theorem
3.1.

Let i=2,j=3,4<k <l<m+ 3. Then, the matrix [F> : Fy ¢ F¢ | F;] must have
rank 4. Now,

110 017
1ax:x
[Fy:F3  Fy:Fjl=1001 1 where x; # x;.
01 x x
10 %2 22
By elementary row operations, this matrix can be shown to be row equivalent to
1 1 0 0 T
0 1 x X7
0 0 1 |
0 0 ¢ (x1 +x2)(x1 +x2 + 1)
(0 0 0 (1 +x)02 +x +xx0 +a+1) ]
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Since x; +x; # 0, the above matrix has rank 4 if either x; +x241#0 or, x? +x3 +x1x, +
a+1#0. If x;+x+1=0, then x}+x2+xx0+ o+ 1=x3 42,06, +x2 )+ o+ 1=xP+x;+a #0
for any x) € GF(m), by the choice of «. Hence x; +x; + 1 and x> +x3 4+ x;x2 + ¢ + 1
cannot be zero simultaneously for any x| # x,. Hence the rank of the matrix is 4. [

We give an example to illustrate Theorem 3.2.

Example 3.2. Let m =4 and let 0,1, and w?(=w + 1) be the elements of GF(4).
Set « = w#x* + x for any x € GF(4). An OA(4°,7,16 x 4%, 4) can be constructed by
choosing the matrix C appearing in Theorem 2.1 as

‘F\ F, Fy F, Fs F¢ F:]

10 1 1 0 0 0 0

01 1 o 0 1 1 1
C =

00 0 0 1 1 1 1

00 0 1 1 1 o o?

(00 1 0 0 1 o o]
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