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In this paper we analyze the neural network implementation of fuzzy logic proposed by
w Ž .xKeller et al. Fuzzy Sets Syst., 45, 1]12 1992 , derive a learning algorithm for obtaining

Žan optimal a for the net, and, for a special case, we show how one can directly avoiding
.training compute the optimal a . We address how training data can be generated for

such a system. Effectiveness of the optimal a is then established through numerical
examples. In this regard, several indices for performance evaluation are discussed.
Finally, we propose a new architecture and demonstrate its effectiveness with numerical
examples. Q 1998 John Wiley & Sons, Inc.

1. INTRODUCTION

Fuzzy logic exhibits a variety of exotic applications, ranging from process
control through medical diagnosis, securities trading, robot arm control, etc.1 ] 6

Its most popular area of application is in control engineering. Neural networks
Ž .NN , a biologically motivated computational paradigm with learning ability,
have also been used in many applications.7 Apart from the learning ability of a
NN, it has inherent robustness and parallelism. Fuzzy logic, on the other hand,
has the capability of modeling vagueness, handling uncertainty, and supporting
human-type reasoning. Integration of these two soft computational paradigms
Ž .often known as neuro-fuzzy computing is, therefore, expected to result in more
intelligent systems.8,9

During the last few years, extensive research has been going on in the
integration of fuzzy system with neural networks. The aim of such work is to
combine the expert knowledge or operators’ experience of fuzzy systems with
the computational capabilities of neural network in an efficient manner to solve
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complex problems.8 ] 23 Integration of fuzzy logic and NNs often is done in two
ways}a fuzzy system implemented in a neural architecture and a NN equipped
with the capability of handling fuzzy information. Several attempts have been
made in both directions. Of course, there are several hybrid systems that may
not be categorized strictly in either of these two classes. The fusion of fuzzy logic
and neural networks focuses on the process by which individual merits can be
combined and by which analogies between them can be superposed.

Keller et al.10 proposed a neural implementation of fuzzy logic. In this note,
we analyze that system and derive learning rules for finding good parameters for
the network. For a special case, we show how the optimal parameter can be
computed and we demonstrate the method with some examples. We also discuss
several indices for performance evaluation. Finally, we propose a new architec-
ture that exhibits better characteristics than the network in Ref. 10.

The paper is organized as follows. Section 2 briefly discusses the basics of
fuzzy logic and neural networks. Section 3 presents the network proposed by
Keller et al. Section 4 analyzes the net and derives an algorithm for tuning the
network parameters. It also derives the optimal value of the parameter for a
special case of the network. Section 5 addresses the issue of performance
evaluation, while Section 6 presents the results with optimal a . In Section 7, we
introduce a new architecture and present numerical examples with the new
architecture. Finally, the paper is concluded in Section 8.

2. BASICS OF FUZZY LOGIC AND NEURAL NETWORKS

2.1. Fuzzy Logic

Fuzzy sets were introduced in 1965 by Zadeh24 as a new way to represent
vagueness in everyday life. Fuzzy sets are generalizations of crisp sets and have
greater flexibility to capture faithfully various aspects of incompleteness or
imperfection in information, and can be used to model human reasoningrthink-
ing processes.

� Ž . 4Let A s m u ru, u g U be a fuzzy set defined on X and let R sA
Ž . Ž .Ý m u, ¨ r u, ¨ be a fuzzy relation representing a rule if x is A then y isU=V R

B, defined on X = Y, i.e., R s A = B. Here = is the Cartesian product
implemented through some T-norm and U and V are the respective universes of
X and Y. Now given x is A9 the conclusion B9 of y is B9 can be obtained by the
composition of A9 and R. The composition of A9 and R results in a fuzzy set
B9 defined on y as

B9 s A9( R s Proj Ce A9 l R on y 1Ž . Ž .Ž .

Here Ce and Proj are the cylindrical extension and projection operators,
respectively.25 If the intersection is performed with the maximum operation and
projection with the minimum operation, then

mX y s max min mX x , m x , y 2� 4Ž . Ž . Ž . Ž .B A R
x
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This is known as max-min composition. Similarly, the max-prod composition is
defined as

mX y s max mX x ? m x , y 3� 4Ž . Ž . Ž . Ž .B A R
x

Normally, B9 s R( A / B, where ( is a composition operator implemented
through a pair of T-norm and S-norm. This is a very undesirable property.

If there are n rules, then the composite relation representing the rule base
for the system is

n n

R s R s A = B 4Ž .D Di i i
is1 is1

Given a set of rules the composition can be done with respect to each rule
separately, and then the different conclusion BX can be aggregated to get ai
resultant conclusion B9. On the other hand, the relations representing different
rules can be aggregated first as in Eq. 4 and then the composition operator can
be directly applied to R.

Suppose we have a rule if x is A then y is B. Now given x is A9, we want
to derive a conclusion y is B9, such that the disagreement between A and A9 is
reflected between B and B9. Moreover, given x is A, we want to have a
conclusion y s B9 as close as possible to B.

2.2. Neural Networks

Neural networks,7 like fuzzy logic systems, are excellent at developing
human-made systems that can perform types of information processing similar
to what our brain does. The concept of artificial neural networks was inspired by
biological neural networks, but the heart of this emerging technology is rooted
in different disciplines. Biological neurons are believed to be the structural
constituents of the brain and they are much slower than silicon logic gates.
However, inferencing in biological NNs is faster than the fastest computer
available today. The brain compensates for the relatively slower operation by a
really large number of neurons with massive interconnections between them.
Biological neural networks enjoy the following characteristics:

v They are nonlinear devices, highly parallel, robust, and fault tolerant.
v They have a built-in capability to adapt their synaptic weights to changes in the

surrounding environment.
v They can handle easily imprecise, fuzzy, noisy, and probabilistic information.
v They can generalize from known tasks or examples to unknown ones.

Artificial NN is an attempt to mimic some or all of these characteristics.
This soft computational paradigm is different from a programmed instruction
sequence. Here information is stored in the synaptic connections. A neuron is
an elementary processor with primitive types of operations, like summing the
weighted inputs coming to it and then amplifying or thresholding the sum. The
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computational neuron model proposed by McCulloch and Pitts is a simple
binary threshold unit. The ith neuron computes the weighted sum of all its
inputs from other units and outputs a binary value, 0 or 1, depending on
whether this weighted sum is greater than equal or less than a threshold u .i
Thus,

x t q 1 s f w x t y uŽ . Ž .Ýi i j j iž /
ij

where

1 if x ) 0f x sŽ . ½ 0 otherwise

If the synaptic weight w ) 0, then it is called an excitatory connection; ifi j
w - 0, it is viewed as an inhibitory connection. A simple generalization of thei j
McCulloch]Pitts neuron by replacing the threshold function f with a more
general nonlinear function enhances the power of the networks built from such
neurons. Although the development of neural networks was inspired by the
model of the brain, its purpose is not just to mimic a biological neural net, but to
use principles from the nervous system to solve complex problems in an efficient
manner.

Thus we see that fuzzy logic can model vagueness and can perform
human-style reasoning, while NNs compute in the style of the brain, having
robustness, adaptability, and generalization ability. Therefore, integration of the
two paradigms into a single system is expected to result in a more powerful
computational system.

3. NN IMPLEMENTATION OF FUZZY LOGIC

Keller et al.10 proposed a novel neural network architecture for computa-
tion of fuzzy logic inferences. Each single rule of the form

if x is A , x is A , . . . , and x is A then y is B1 1 2 2 n n

is implemented using the basic neural structure shown in Figure 1. It is a
four-layer network. Suppose A is described by a possibility distribution with ni i
components. Then the input layer will have n groups of nodes, where the ith
group has n nodes representing a fuzzy set for the ith antecedent variable. Thei
input layer receives the fuzzy sets AX , AX , . . . , AX that characterize the possibil-1 2 n
ity distribution of the facts if x is AX , x is AX , . . . , x is AX .1 1 2 2 n n

�Let the fuzzy set A be characterized by the membership values A s a ,i i i j
4j s 1, 2, . . . , n . Without loss of generality, we assume that n s p ; i si i

1, 2, . . . , n. The second layer of the net has n nodes and the ith node in layer 2 is
connected to ith group of p nodes in layer 1, which corresponds to the
antecedent clause x is A .i i

�Let w be the connection weight between the ith node of layer 2 i.e., thei j
.node corresponding to the ith antecedent clause and the jth node of the ith
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Figure 1. The neural network architecture of Keller et al.10 for fuzzy logic inference.

group of nodes in layer 1. With a view to generating a measure of disagreement
Ž X . Žbetween the input possibility distribution x is A and the antecedent clause xi i i

.is A , Keller et al. set the connection weight w s 1 y a , i.e., the complementi i j i j
of A. Then they computed a local measure of similarity between A and A9
through a measure of disagreement between the complement set Ac and A9.
Thus, the k th node of the second layer computes the level of disagreement
between the kth antecedent clause and the k th input fuzzy set.

Keller et al. suggested the following measure of disagreement:

d s max w ) aX s max 1 y a ) aXŽ . Ž .Ž .k k j k j k j k j
j j

Here ) denotes an operator, either product or minimum. When ) is product
and min we get the following measures of disagreement:

d1 s max 1 y a . aXŽ .Ž .k k j k j
j

and

d2 s max min 1 y a , aXŽ .Ž .½ 5k k j k j
j

3 Ž < X <.They also used another measure of disagreement: d s max a y a , wherek k j k j
X Ž .Xa s m x .k j A kk
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ŽUsing these operators, the disagreement values for all nodes each node
.corresponds to an antecedent clause are combined to obtain an overall level of

disagreement between the antecedent clauses and the input data. This disagree-
ment value provides an inhibiting signal for the firing of the rule. The connect-
ing links between layers 2 and 3 are represented by a , where a is choseni i
subjectively. The weight a corresponds to the importance of the variousi
antecedent clauses, which are supplied subjectively.

The third layer, known as clause combination layer, has exactly one node
corresponding to each antecedent clause, which combines the disagreement
values produced by the nodes in layer 2. The combination node computes

� 41 y t s 1 y max a ? d . The output layer has m nodes, each corresponding toi i i
the m components of the output fuzzy set B9. The connection weight between
the combination node and the ith node of the output layer is set as u s 1 y b .i i
The activation function of each output node is given by

bX s 1 y u 1 y t s b q t y b tŽ .i i i i

Ž .1 y t can be interpreted as the level of agreement between the antecedent
clause and the input fuzzy sets.

4. OPTIMAL CHOICE OF a

This network has several interesting properties.10 For example, if t s 0
Ž .total agreement , then the computed conclusion is exactly y is B. On the other

Ž .hand, if t s 1 total disagreement , then the output is all 1, i.e., y is UNKNOWN.
However, except for d3, t / 0 even when A9 s A.

The method of computation of the disagreement is such that even two
widely different input fuzzy sets may result in the same value of disagreement
and hence the same output. Let us illustrate this with an example. For simplic-
ity, we consider a rule with one antecedent clause and one consequent clause, if
x is LOW then y is HIGH. Note that in Ref. 10, the same rule was used.

We use the same membership functions as in Ref. 10, but with more
Ž .quantization levels. Table I shows the membership functions LOW LO and

Ž .HIGH HI . Table I also includes the other membership functions used by
Keller et al. In addition to these, we have generated two distorted versions of

Ž .LOW, named L1 and L2. The input fuzzy sets for LOW LO , VERY LOW
Ž . Ž . Ž . Ž .VL , MORE OR LESS LOW ML , NOT LOW NL , and HIGH HI are

Ž . Ž . Ž .shown in Figure 2 a . Figure 2 b depicts the input fuzzy sets LOW LO and L1
Ž .and L2}the distorted versions of LOW LO . It is evident from Table I that LO

is more similar to L1 than L2, and we expect a higher disagreement value for L2
than that for L1. But d1, d2, and d3 all show the same disagreement value and
hence the same output fuzzy set B9, for both L1 and L2. This happens because
of the specific choice of d1, d2, d3 used; this is not a desirable property. In Ref.
10, a s 1 was used and the authors mentioned that a could be learned but noi i
results or guidelines were provided.
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Ž .Figure 2. Fuzzy sets used for learning of: if x is LOW then y is HIGH a five input sets
Ž .}LO, ML, NL, VL, and HI and b three input sets}LO, L1, and L2.

Next we address the issue of a tuning and direct computation of the
optimal a for a special case.

4.1. Tuning of a

Tuning a raises an important issue}what would be the training data?
Suppose we want to learn if x is LOW then y is HIGH. As a first choice, what

Ž .comes to our mind is to use the data corresponding to the pair LOW, HIGH .
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Let X be the vector containing the membership values corresponding to LOW
and Y be the same for HIGH. Now when X is given as an input to the net,
suppose the network produces an output vector Y 9. We can now learn a , so that
5 5 2Y y Y 9 is minimum.

This choice is not a good one because the net may learn the relation if x is
LOW then y is HIGH quite well, but the net may be so much biased to this
relation that it may fail to realize the right kind of generalization capability.
Under such a situation, the reasoning network might start behaving like an
ordinary MLP, i.e., approximate the input]output mapping but lose its reason-
ing ability. We generate the training data using the same concept as Keller and
Tahani.15

Our objective is not just to learn the relation if x is A then y is B. The net
should learn in such a manner that when the input is A9, the net should produce
a B9, so that the similarityrdissimilarity between A and A9 is reflected between

Ž .B and B9. Therefore, the training set should contain such A9, B9 . For example,
in the case of if x is LOW then y is HIGH, we can generate training data using
the following case:

if x is VERY LOW then y is VERY HIGH
if x is MORE OR LESS LOW then y is MORE OR LESS HIGH
if x is NOT LOW then y is UNKNOWN

Thus, to make the net learn if x is LOW then y is HIGH, we train it using the
Ž . Ž .four sets of training vectors LOW, HIGH , VERY LOW, VERY HIGH ,

Ž . ŽMORE OR LESS LOW, MORE OR LESS HIGH , and NOT LOW, UN-
. Ž .KNOWN . These four are very natural choices for LOW, HIGH relation.

Ž .Some other distorted cases like LOW9, HIGH9 may also be added to the set.
Ž .One can, of course, argue against the use of VERY LOW, VERY HIGH as

this may cause the system to make a conclusion that is more specific than
HIGH, but this is not important in the present case. Our intention is to show
that you can always have some reasonable and consistent training data. More-
over, since bX G b ,10 the net will never make a more specific conclusion than B.i i

We emphasize here that the above set of four vectors is needed just to
learn the relation if x is LOW then y is HIGH. One might feel that the net is also
training for the relation if x is VERY LOW then y is VERY HIGH or if x is MORE
OR LESS LOW then y is MORE OR LESS HIGH, but this is not correct, because

Ž .to learn the relation VERY LOW, VERY HIGH , the training set may contain
Ž . Ž . ŽLOW, HIGH , VERY LOW, VERY HIGH , and MORE OR LESS LOW,

. Ž .MORE OR LESS HIGH and must contain NOT VERY LOW, UNKNOWN .
In this context we mention that other trainable network structures have

also been used to perform fuzzy logic inference. In Refs. 14]16, standard
multilayer perceptrons were used to learn rule families for applications of fuzzy
logic inference. The most desirable aspect of these structures is their ability to
generalize the inference process from training data. The properties of fuzzy

17,20 Žaggregation networks were studied with regard to both their ability accu-
.racy to perform inference and their generalization capabilities. Some compar-
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isons of techniques can be found in Refs. 19 and 21. The other side of MLP for
fuzzy logic inferencing is that the logical structure of fuzzy reasoning is lost and
it behaves like a black-box-type function approximator, which usually picks up

Žone of several possible generalizations each corresponding to a local minimum
.of the error function that drives the learning process . Usually such a system

19,21 Ž .provides good generalizations, but it can settle to a very bad undesirable
generalization too. However, in the present case, even with a tuned value of a ,
the fixed weight network preserves the logical structure of fuzzy inferencing and
hence the chance of a very bad generalization is drastically reduced. Thus with a
tuned value of a , we can get some generalizability like an MLP, yet retain the
understandability of the fixed weight net.

Now we derive the learning algorithm for a . Suppose we want to learn if x
�Ž . 4is A then Y is B. Let the training set be T s A , B , i s 1, 2, N , where A s Ai i 1

Ž . Ž .and B s B, and A , B , i s 2, . . . , N, are N y 1 pairs of fuzzy sets that are1 i i
Ž .semantically consistent with A, B . When A is an input to the system, thei

desired output is B . Let the output produced by the net be denoted by O ,i i
i s 1, 2, . . . , N. Suppose each of B and O is represented by a p-componenti i
membership vector. Then we can learn a by minimizing

N N
25 5E s e s B y O 5aŽ .Ž .Ý Ýi i i

is1 is1

or
pN

2
E s b y O 5bŽ .Ž .Ý Ý i j i j

is1 js1

Ž .where B s b , b , . . . , b is the desired output vector corresponding to thei i1 i2 i p
Ž .training data vector A , and O s O , O , . . . , O is the computed outputi i i1 i2 i p

vector for A .i
We attempt to minimize E by gradient descent on the sample error

function e . Ignoring the subscript i, for the sake of notational simplicity, wei
update a at the t th step as

­ e
a s a y h)t ty1 ­a ty1

where h is the learning coefficient. Here,

2 2p p­ e ­Ý b y O ­Ý b y b y a d q a b dŽ . Ž .js1 j j js1 j j js s 6Ž .
­a ­a ­a

The update equation thus becomes

p

a s a q hd b y O 1 y b 7Ž .Ž . Ž .Ýt ty1 j j j
js1
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For a batch version of the learning algorithm, the update equation will be

pN

a s a q h d b y O 1 y b 8Ž .Ž . Ž .Ý Ýt ty1 i i j i j i j
is1 js1

A straightforward extension of the learning rule for the case with more than one
antecedent clause is not possible because of the max operator used in the
computation of t in layer 3.

Ž .To get around this problem, we propose to use a soft-max operator SM
instead of max. Two possible choices for SM are

Ýn x exp ysxŽ .is1 i i
SM1 x , . . . , x s 9Ž . Ž .1 n nÝ exp ysxŽ .is1 i

and
1rsnÝ x� 4is1 i

SM2 x , . . . , x s 10Ž . Ž .1 n 1r sn

Note that

� 4Lim SM1 x , . . . , x s max x , . . . , xŽ .1 n 1 n
sªy`

and

� 4Lim SM2 x , . . . , x s max x , . . . , xŽ .1 n 1 n
sª`

ŽTherefore, choosing a reasonably large negative or positive depending on the
.case value for s, practically we can realize the max operator and yet we can use

calculus to derive the learning rules. Denoting g s a d we can computei i i

t s SM1 g , . . . , gŽ .1 n

or

t s SM2 g , . . . , gŽ .1 n

Subsequently, the learning rules can be derived. For an application system there
could be many rules, and in that case, for each rule one such net can be trained.
However, for the case with a single antecedent clause, we can directly calculate
the optimal value of a , without learning as

pN
2

E s b y b y a d q b a d 11Ž .Ž .Ý Ý i j j i j i
is1 js1
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Now

pN­ E
2s 0 « 2 b y b b y 1 d y a d 1 y b b y 1 s 0Ž . Ž . Ž . Ž .� 4Ý Ý i j j j i i j j­a is1 js1

12Ž .
p pN N

2« d b y b b y 1 s a d 1 y b b y 1Ž . Ž . Ž . Ž .Ý Ý Ý Ýi i j j j i j j
is1 js1 is1 js1

13Ž .

ÝN d Ý p b y b b y 1Ž . Ž .is1 i js1 i j j j« a s 14Ž .N 2 pÝ d Ý 1 y b b y 1Ž . Ž .is1 i js1 j j

5. EVALUATION OF THE NETWORK

In order to evaluate the performance of net, in Ref. 10 two indices Avg
Ž . Ž .average distance and Max maximum distance as defined next were used.

Ž .Average Distance A¨g

� 4 Ž .Let B s b be the vector representing the desired target output and leti
� X4B9 s b be the output produced by the net. Theni

p < X <Ý b y bis1 j j
Avg s

p

Ž .Maximum Distance Max

Max is defined as

< X <max s max b y b� 4j j
j

Note that Keller et al. computed Max and Avg with respect to B, when the
network was set for the relation if x is A then y is B. In the present investigation,
we propose to compute them as distances from the target fuzzy set in the

Ž .training data. In other words, for the training data A , B , we compute Avg andi i
Ž X. XMax using the pair B , B , where B is the conclusion suggested by the neti i i

when A was the input.i
In addition to Avg and Max, we also use a measure of fuzziness for

evaluation of the effectiveness of the network.

Measures of Fuzziness

A measure of fuzziness gives an idea about the average ambiguity in a fuzzy
set. It quantifies the average ambiguity in making a decision whether an element
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belongs to the set or not. The fuzziness of a crisp set using any measure should
be zero, as there is no ambiguity about whether an element belongs to the set or

w Ž . xnot. If a set is maximally ambiguous m x s 0.5 ; x , then its fuzziness shouldA
be maximum. When a membership value approaches either 0 or 1, ambiguity
about whether an element belongs to the set decreases. More formally, a

Ž . qmeasure of fuzziness for a discrete fuzzy set is a mapping H: P X ª R that
Ž .quantifies the degree of fuzziness present in A; P X is the power set of X.

According to Ebanks,26 a measure of fuzziness should satisfy the following
Ž .five axioms for A, B g P X :

Ž . Ž .AXIOM P1: SHARPNESS. H A s 0 m m x s 0 or 1 ; x g X.A

Ž . Ž .AXIOM P2: MAXIMALITY. H A is maximum m m x s 0.5 ; x g X.A

Ž . Ž .AXIOM P3: RESOLUTION. H A G H A* , where A* is a sharpened ¨ersion of A.

Ž . Ž c. Ž . Ž .cAXIOM P4: SYMMETRY. H A s H A , where m x s 1 y m x ; x g X.A A

Ž . Ž . Ž . Ž .AXIOM P5: VALUATION. H A j B q H A l B s H A q H B .

Ebanks proposed another requirement called generalized additï ity, but
according to Pal and Bezdek27 Axioms P1]P5 are sufficient requirements for
measures of fuzziness. Pal and Bezdek27 proposed two new classes of fuzziness
measure: the multiplicatï e class and the additï e class.

A measure of fuzziness under the multiplicative class is defined as follows:
w x q w x Ž . Ž . Ž .Let f : 0, 1 ª R be concave increasing in 0, 1 . Define g t s f t f 1 y t andˆ

Ž . Ž . � Ž .4 Ž . n Ž . qg t s g t y Min g t . Then H# A s KÝ g m , K g R , satisfiesˆ ˆ0 F t F1 is1 i
P1]P5.

Ž . 1y tAs an example, define f t s te . Then under the multiplicative class we
get

n

H# A s H# A s K m 1 y m 15� 4Ž . Ž . Ž . Ž .ÝQE i i
is1

the quadratic entropy of a fuzzy set.27

Measures of fuzziness under the additive class are defined in the following
w x q Ž . Ž . Ž .way. Let f : 0, 1 ª R and be concave. Define g t s f t q f 1 y t andˆ

Ž . Ž . � Ž .4 Ž . n Ž . qg t s g t y Min g t . Then H A s KÝ g m , K g R , satisfiesˆ ˆ0 F t F1 q is1 i
P1]P5 and is a measure of fuzziness.

Ž .We now illustrate the additive class with the same f t that we used for the
Ž . 1y t Ž . � 1ym i Ž . m i4multiplicative class, i.e., f t s te . Then H A sÝ m e q 1 y m eq i i

27 Ž .is a measure of fuzziness subject to adjustment of constants .
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In order to compare the desired output with the output suggested by the
network, in addition to the average distance and maximum distance, we propose

Ž .to use a measure of fuzziness. If the Avg or Max distance between two fuzzy
sets is small and the measures of fuzziness for them also are comparable, then
we can infer, possibly with more confidence, that the fuzzy characteristics of the
desired output fuzzy set are preserved in the computed fuzzy set. Comparison of
only distance may not be enough, as there can be two widely different fuzzy sets
B9 and B0 such that the distances between B and B9, and B and B0 are
comparable. Similarly, only fuzziness may not be adequate to compare two fuzzy
sets. In the present investigation, as an illustration, we have used only the
quadratic fuzzy entropy, i.e., Eq. 15.

6. RESULT WITH OPTIMAL a

Ž . ŽIn order to learn the relation LOW, HIGH in Table I, we used LOW,
. Ž . ŽHIGH , VERY LOW, VERY HIGH , MORE OR LESS LOW, MORE OR

. Ž .LESS HIGH , and NOT LOW, UNKNOWN to learn a and compute the
Ž .optimal a . Table II shows the a obtained from the batch learning Eq. 8 and

Ž .the computed optimal a Eq. 14 . We have experimented with a produced by
Ž . Žboth the batch version of the learning algorithm Eq. 8 and the optimal a Eq.

. Ž14 . Since a values produced by Eqs. 8 and 14 are very close practically the
.same , in our subsequent discussion we report results obtained with the opti-

mal a .
Ž . Ž 1.Table III a depicts the output fuzzy sets produced with d by the original

10 Ž .method of Keller et al. with a s 1, while Table III b shows the output
obtained from the same method using the optimal value a as computed by
Eq. 14.

Table IV presents the different performance indices d, Avg, Max, and the
difference in fuzziness between the desired and the computed fuzzy sets both for
a s 1 and the optimal value of a . The total square error with a s 1 is 1.103,

Ž .while the same with the optimal a a s 0.8254 is 0.96. Clearly, the optimal a
gives better overall performance. Table IV reveals that, except for NOT LOW
Ž . ŽNL , in all cases optimal a produces better agreement in term of all three

.performance measures between the desired and computed outputs.

Table II. a obtained by batch algorithm Eq. 8
and optimal a by Eq. 14.

a by Batch
kd Used Learning Optimal a

1d 0.8265 0.8254
2d 0.605 0.6036
3d 0.8927 0.8926
4d 0.9430 0.9423
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Table IV. Performance evaluation for d1.

a s 1 With Optimal a s 0.8254

Input d Avg Max Ent. Diff. d Avg Max Ent. Diff.

LO 0.25 0.18 0.25 0.42 0.25 0.15 0.21 0.37
ML 0.38 0.22 0.38 0.51 0.38 0.18 0.32 0.48
VL 0.15 0.19 0.33 0.35 0.15 0.17 0.31 0.31
NL 1.00 0.00 0.00 0.00 1.00 0.13 0.17 0.44
L1 0.38 0.28 0.38 0.50 0.38 0.23 0.31 0.47
L2 0.38 0.28 0.38 0.50 0.38 0.23 0.31 0.47

Average square error s 1.10 Average square error s 0.96

Table V shows the results obtained by d2, while Table VI presents the
results with d3. The values of different indices are reported in Tables VII and
VIII.

The output fuzzy sets for all inputs are shown in Figures 3, 4, and 5,
1 2 3 Ž . 1respectively, for d , d , and d . Figure 3 b reveals that in the case of d with

optimal a , the conclusion for NL is practically unknown. For d2 and d3, as
shown by Figures 4 and 5, the conclusions for VL, L1, and L2 are the same. This
is not a desirable characteristic. It is clear from Tables III, V, and VI and from
these figures that the outputs of L1 and L2 are the same for all cases. Tables IV,
V, and VIII show that for d1, d2, and d3, the disagreement value d is the same
for both L1 and L2. Thus the distorted versions L1 and L2 produce the same
output, although the inputs are significantly different. This is evident from
Tables III, V, and VI.

7. A MODIFIED SCHEME

7.1. The New Architecture

A new network structure that makes the original network of Keller et al.
more powerful is shown in Figure 6. We modify only that part of the network
that computes the disagreement value d between the input and the antecedent.i
In Ref. 10, d s were computed using the Max-Min or Max-Prod or Sup-normi
operation. As a result, as illustrated in Tables III, V, and VI, several widely
different inputs might result in the same output fuzzy set. In order to eliminate
this undesirable characteristic, we use a different method, based conceptually on
the same idea of disagreement used by Keller et al. In Ref. 10 the dissimilarity

Ž . Ž .between the antecedent A and the input fuzzy set A9 was computed by a
measure of similarity between Ac and A9. In the present case, we use the same
concept, but our measure of disagreement is

² c :A , A9
4d s s d say 16Ž . Ž .c5 5 5 5A A9
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Table VII. Performance evaluation for d2.

a s 1 With Optimal a s 0.6036

Input d Avg Max Ent. Diff. d Avg Max Ent. Diff.

LO 0.50 0.37 0.50 0.50 0.50 0.22 0.30 0.46
ML 0.57 0.35 0.57 0.47 0.57 0.20 0.35 0.50
VL 0.33 0.32 0.44 0.54 0.33 0.23 0.36 0.42
NL 1.00 0.00 0.00 0.00 1.00 0.29 0.40 0.76
L1 0.50 0.37 0.50 0.50 0.50 0.22 0.30 0.46
L2 0.50 0.37 0.50 0.50 0.50 0.22 0.30 0.46

Average square error s 1.66 Average square error s 1.19

where Ac and A9 are vectors of membership values denoting the correspond-
² : 5 5ing fuzzy sets, ? denotes the dot product, and ? represents the Euclidean

norm. To implement Eq. 16 we propose a four-layer network. The first layer
Ž . Ž X X .layer 1 has p neurous that take A9 s a , . . . , a as input. The second layer1 p
has one node, while the third and fourth layers have p nodes each. All nodes in
layer 1 are connected to the second layer node. Moreover, every node of layer 1
is connected to the corresponding node of layer 3. All third layer nodes are
connected to the second layer node. In addition, all third layer nodes are
connected to a single node in layer 4 that finally computes the disagreement
value.

Thus each node in layer 1 has two outgoing links and the node in the
second layer has p incoming links and p outgoing links, while each node in the
third layer has two incoming links and one outgoing link. Note that the subnet
just described is needed to compute the disagreement value for one atomic
antecedent clause. If the antecedent part of the rule has n such atomic
antecedent clause, then n such subgroups}one for each clause}will be needed
Ž .see Fig. 6 .

Let W l, m be the connection between node i in layer l and node j in layeri j
m. The different connection weights are w1, 2 s 1, w1, 3 s 1, w2, 3 s 1, andi j i i 1 j

3, 4 Ž . 5 c 5w s 1 y a r A . We denote the output from the ith node of layer l to thei1
jth node of layer m by ol, m, i.e., the input received by the jth node of layer m byi j

Table VIII. Performance evaluation for d3.

a s 1 With Optimal a s 0.8926

Input d Avg Max Ent. Diff. d Avg Max Ent. Diff.

LO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ML 0.24 0.15 0.24 0.42 0.24 0.14 0.22 0.39
VL 0.25 0.26 0.39 0.48 0.25 0.24 0.37 0.45
NL 1.00 0.00 0.00 0.00 1.00 0.08 0.11 0.29
L1 0.25 0.18 0.25 0.42 0.25 0.16 0.22 0.39
L2 0.25 0.18 0.25 0.42 0.25 0.16 0.22 0.39

Average square error s 0.82 Average square error s 0.76
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1 Ž .Figure 3. Output fuzzy sets for the rule if x is LOW then y is HIGH with d a using
Ž .a s 1 and b using optimal a .

the ith node of layer m. The activation functions of the neurons in different
layers are different. The nodes in layer 1 simply transfer the signal unattenu-

Ž .ated, i.e., the activation function is f x s x. The transfer function of the second
layer node is

p
21, 2 1, 2 1, 2f o , i s 1, . . . , p s w ? oŽ . Ž .Ýi1 i1 i1(

is1
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2 Ž .Figure 4. Output fuzzy sets for the rule if x is LOW then y is HIGH with d a using
Ž .a s 1 and b using optimal a .

A third layer node computes

w1, 3 ? o1, 3
i i i i1, 3 2, 3 3, 4f o , o s s oŽ .i i 1 i i12, 3 2, 3w ? o1 i 1 i

The activation function of the fourth layer neuron is given by
p

3, 4 3, 4 3, 4f o , i s 1, . . . , p s w ? oŽ . Ýi1 i1 i1
is1
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3 Ž .Figure 5. Output fuzzy sets for the rule if x is LOW then y is HIGH with d a using
Ž .a s 1 and b using optimal a .

It is easy to see that the output of the fourth layer node can be obtained from
Eq. 16 and the entire operation is easily implementable in a neural paradigm.

The architecture of and the operation in the fifth and sixth layers are,
respectively, identical to those of layers 3 and 4 of the original network proposed
in Ref. 10. Keller et al. proved some results about their network. Here we prove
some such results for the modified network.
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Figure 6. Modified neural network architecture for fuzzy logic inference.

THEOREM 1. Consider the net with a single antecedent clause. Suppose A is a crisp
subset of its unï erse of discourse. The proposed network produces the standard
modus ponens results, i.e., if the input x is A is such that A9 s A, then the network
result is y is B.

Proof. Let A be a crisp subset of its domain of discourse and A9 s A. Then

p p1 y a a 1Ž .i i4d s s 1 y a aŽ .Ý Ý i ic c5 5 5 5 5 5 5 5A A A Ais1 is1
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� 4 Ž .Ž .Now since A is crisp, a g 0, 1 . Hence, 1 y a a s 0 ; i s 1, . . . , p. Thisi i i
results in d4 s 0. Therefore,

bX s b q a ? 0 y b ? a ? 0 or bX s b ; i s 1, 2, . . . , pi i i i i

Thus B s B9 and hence the proof. B

Note that there is no restriction on B}it could be either crisp or fuzzy.

COROLLARY 1. For a multiclause network, suppose A , A , . . . , A are crisp1 2 n
subsets of their respectï e domains of discourse. Suppose the input x is AX , . . . , x is1 1 n
AX be such that AX s A , ; i s 1, 2, . . . , n. Then the result is y is B.n i i

Proof. For each clause the disagreement node at layer 4 produces d4 s 0i
; i s 1, 2, . . . , n resulting in t s 0 at the clause combination node in layer 5.
Hence the result follows. B

THEOREM 2. Consider the network with a s 1. Suppose the input x is A9 is such
that A9 s Ac. Then the network produces y is UNKNOWN; i.e., the possibility
distribution of y is identically equal to 1.

Proof. We have

p X p1 y a a 1 y a 1 y aŽ . Ž . Ž .i i i i4d s s s 1Ý Ýc c c5 5 5 5 5 5 5 5A A9 A Ais1 is1

Now since a s 1 and t s 1 at the clause combination node,

bX s b q a ? 1 y b ? a ? 1 or bX s 1 ; i s 1, 2, . . . , p since a s 1i i i i

COROLLARY 2. Consider the net with multiple clauses and with a s a s ??? s1 2
a s 1. Now suppose the input fuzzy sets AX , i s 1, . . . , n, are such that AX s Ac forn i i i
some i. Then the network produces the result y is UNKNOWN.

Proof. In the given situation at least one node, say k, in the fourth layer will
4 � 4produce d s 1. Therefore, max d , a s 1. Thus the clause combination nodek i i i

produces t s 1. Hence the proof. B

These properties show some desirable characteristics of the proposed
network.

7.2. Results with New Architecture

We implemented the network described in Figure 6 for the same relation if
x is LOW then y is HIGH. Table IX shows the output fuzzy sets obtained using
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4 Ž .Figure 7. Output fuzzy sets for the rule if x is LOW then y is HIGH with d a using
Ž .a s 1 and b using optimal a .

Ž . Ž .the new architecture. Figures 7 a and b present a graphical representation of
the output fuzzy sets obtained for a s 1 and the optimal a , respectively.

As described, we find that the output fuzzy sets obtained for L1 and L2 are
different. We make the following observations from Table IX and Figure 7:
output fuzzy sets produced for LO, L1, and L2 are different for both optimal a
and a s 1. For both choices of a , the output fuzzy set corresponding to LOW
Ž . Ž .LO is closer to the HIGH HI than the output fuzzy sets for L1 and L2. Table

Ž .IX also reveals that the conclusions output fuzzy sets for L1 and L2 are less
specific than that for LOW and, again, the conclusion for L2 is less specific than
that for L1. This is reasonable as L1 and L2 are distorted versions of LOW and
L2 has more distortion than L1. Moreover, the optimal a results in better

Ž .conclusions. For example, with LOW LO as input, optimal a results in a
w Ž .x Žconclusion row corresponding to LO in Table IX b closer to HIGH HI in

. w Ž .xTable I than that observed with a s 1 Table IX a . This is also revealed by
different performance evaluation indices in Table X. Observe that the input

Ž . Ž .fuzzy set VERY LOW VL is more specific than LOW LO , but the conclusion
Ž .computed by the net with VL as input is less specific than HIGH HI . This is a
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Table X. Performance evaluation for d4.

a s 1 With Optimal a s 0.9423

Input d Avg Max Ent. Diff. d Avg Max Ent. Diff.

LO 0.15 0.11 0.15 0.29 0.15 0.10 0.14 0.28
ML 0.09 0.15 0.30 0.25 0.09 0.14 0.29 0.24
VL 0.20 0.14 0.20 0.37 0.20 0.13 0.19 0.35
NL 1.00 0.00 0.00 0.00 1.00 0.04 0.06 0.16
L1 0.16 0.12 0.16 0.30 0.16 0.11 0.15 0.29
L2 0.18 0.13 0.18 0.33 0.18 0.12 0.17 0.32

Average square error s 0.61 Average square error s 0.59

desirable property, because we cannot make a conclusion more precise than
Ž .HIGH HI from a rule if x is LOW then y is HIGH.

Comparison of Table IX with Tables III, V, and VI shows that the modified
net results in better conclusions for L1 and L2. For example, the possibility
distribution that resulted for L1 and L2 by the modified net is closer to HIGH
Ž .HI in Table I than those produced by the original network of Keller et al. with
d1, d2, and d3. However, for d3, the original network of Keller et al.10 produces

Ž . Ž .exactly the conclusion HIGH HI , when LOW LO in Table I is given as input.

8. CONCLUSIONS

We have addressed the issue of selecting an optimal value of a for the
network proposed by Keller et al. for a neural implementation of fuzzy logic. We
have provided a learning algorithm for a and also have computed the optimal
value of a for some special cases. We also proposed a modified architecture for
neural implementation of fuzzy inferencing. Effectiveness of the modified net is
established through numerical examples. The use of the proposed schemes in
developing various application systems is currently under investigation and will
be reported in the future.

The work of Kuhu Pal was supported by the Council of Scientific and Industrial
Research of India. The research of Nikhil R. Pal was partially supported by the
Department of Science and Technology of the Government of India, Grant No. III
Ž .5 21 r96-ET.
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