350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO.2, FEBRUARY 2007

Stacked Euler Vector (SERVE):
A Gray-Tone Image Feature Based
on Bit-Plane Augmentation

Arijit Bishnu and
Bhargab B. Bhattacharya, Sr. Member, IEEE

Abstract—A new combinatorial feature called Stacked Euler Vector (SERVE) is
introduced to characterize a gray-tone image. SERVE comprises a four-tuple,
where each element is an integer representing the Euler number of the partial binary
image formed by certain pixel overlap relations among the four most significant bit
planes of the gray-tone image. Computation of SERVE is simple, fast, and does not
involve any floating point operation. SERVE can be used to augment other features
to improve the performance of image retrieval significantly. Experimental results on
the COIL database are reported to demonstrate its performance.

Index Terms—Euler number, bit-plane graph, combinatorial feature, CBIR.

<4

1 INTRODUCTION

A compact representation of image features is highly desirable for
efficient management of the image database, search, and retrieval.
Typical features of an image can be broadly classified into two
types: 1) geometric features and 2) luminance signature [12]. With
the emergence of the Internet, content-based image retrieval
(CBIR) has recently become important. A good survey of the
existing CBIR systems has appeared in [13], [14]. The features used
by most of the systems comprise low-level features. Determination
of a compact set of parameters for a gray-tone image is thus highly
needed, which is easy to compute and which remains invariant
under various transformations.

In this work, we define a new feature of a gray-tone image
called Stacked Euler vector (SERVE), which significantly improves
upon a previous work [2]. For a binary image, the Euler number
(genus) is a well-known geometric feature [3], [11]. See [1] and the
references therein for more details. To characterize a gray-tone
image using similar topological features, we consider its four most
significant binary bit-planes with pixel intensity values (integers)
lying in the range [0, 255] for defining SERVE. A bit-plane is first
modified (augmented) using the information present in the more
significant bit-planes. We then derive SERVE, which is a four-tuple
representing the Euler numbers of these four modified bit-planes.
SERVE deriving its definition from the Euler number is also
topologically invariant. It is shown that SERVE enhances retrieval
success remarkably, particularly for object or logo type of gray-
tone images. In our experiments, the COIL database [7] is used.
The objective of this work is not however, to achieve state-of-the-
art image classification on COIL, which is available elsewhere [8].

The rest of the paper is organized as follows: Section 2 presents a
review on the Euler number and its relation to bit-plane graphs. In
Section 3, the concept of SERVE is introduced based on bit-plane
augmentation. In Section 4, a discussion on aggregating and
discriminating features and experimental results on retrieval using
SERVE are presented. Discussions and conclusions appear in
Section 5.

2 EULER NUMBER AND THE BIT-PLANE GRAPH

The Euler number (genus) of a binary image I in 2D is defined as the
difference of the number (P) of connected components (objects) and
the number (H) of holes [3]. A generalized version of this concept
known as Euler-Poincare Characteristic (EPC) is widely used in
differential topology [5] as an object descriptor. To compute the
Euler number of a 2D binary image, we assume the conventional
notion of eight-connectivity for objects and four-connectivity for
holes [11]. A run in a row (column) of the pixel matrix is defined to be
a maximal sequence of consecutive 1’s in that row (column). Two
runs appearing in two adjacent rows (columns) are said to be
neighboring each, if at least one pixel of a run is in the eight
neighborhood of a pixel of the other run. Let R(7) and O(i) denote
the number of such runs and neighboring runs between the ith row
and the (i — 1)th row. Then, the Euler number of a binary (N x M)
image can be computed using the relation [11] (see [1] for proof).

E(I)=P-H=) R()-

i=1 i

O(2). (1)

N N
=2

The above two formulations given in [3] and [11] are equivalent in
the light of the classical Euler’s formula for a connected planar
embedded graph, called the bit-plane graph, defined below. This
graph can be thought of as an extension and simplification of the
graph-based representation of binary images by DiZenzo et al. [15].

For each connected component j of the image Ip, a bit-plane
graph G, ={V},A;}, j=1,...,P is constructed as follows: Each
node in V; and each edge in A; correspond to a run and a
neighboring run in component j of G, respectively. So, |V}| = n;
and |4;| = o0, where n; and o; are the number of runs and that of
neighboring runs in component j of the graph G;. For example, the
graph corresponding to the binary image (Fig. 1a) is shown in
Fig. 1b. Clearly, V;NVi=¢ and A;N A, =¢, as any run in
component k can have no overlap or intersection with another
run in component j (k # j). From the definition, it follows that the
graph G; will be planar and bipartite [4]. However, the row-major
or column-major construction of the bit-plane graph defined as
above may not be isomorphic [4] to each other. See Fig. 1. But, we
prove that they will have the same Euler number. The following
observation is easy to follow:

Observation 1. The number of bounded faces [4] (f;) in the bit-plane graph
(G) is equal to the number of holes in the image irrespective of whether
the graph is constructed in row-major or in column-major fashion.

Hence, from the Euler’s formula for planar graphs [4], we have
nj —oj = 1 — f;. Since f; remains same for both the row-major and
column-major bit-plane graphs, the difference n; — o; is the same in
both the cases. Thus, the Euler number E; of the connected
component j, which is n; — 0, remains invariant for both row-major
or column-major bit-plane graphs. The Euler number also satisfies
the local additive property [3]. Thus, with no intersection between any
two maximally connected components, the Euler number E(I) of the
entire image can be expressed as Zle E; = Zle nj—3 i 10j=
Zf\:l R(i) — Zz\:l O; (see (1)). Equation (1) can be used to compute
the Euler number without constructing the graph.

3 STACKED EULER VECTOR FOR A GRAY-TONE IMAGE

3.1 Bit Planes and Stacked Euler Vector

A gray-tone image I is usually represented as an (N x M) matrix,
where the intensity I(xz,y) of each pixel at (z,y) is an integer lying
between [0, 255]. Thus, a eight-bit binary vector, (br,...,b)
represents the intensity value of each pixel. The image may now be
considered as an overlay of eight binary bit-planes. The first four most
significant bit planes, B7, B, Bs, and By (corresponds to (b7, bg, bs, bs)),
are considered as they contain most of the information of the image.
However, the defintion can be extended to considering all bit-planes.

The Euler vector of a gray-tone image is defined earlier [2] as a
four-tuple {Er, Eg, E5, Es}, where Ej is the Euler number of the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO.2, FEBRUARY 2007 351

Runs =2 /o) ° o) e o(o\ }Nbrruns
Runs =4 @ . ke ﬂ/./ (./ Q @ Nbr runs
Runs =3 @ D @ Nbr runs
Runs=1 \05 ° ﬂ IR (o/

&

Fig. 1. lllustration of runs and neighboring runs showing that the corresponding graphs are not isomorphic. (a) Euler number = Y runs — > neighboring runs = —1.

(b) Row-major bit-plane graph; the tuple («,) denotes run number 3 in row «. (c) Column-major bit-plane graph; (v, 3) denotes run number in column ~.

R(j%, 1) R(j%, 1) R(j%, 1)
.......... RGLD RO S 2t A non-overiapping run
@ (ii) (iii) ceee 0111111111 110c00e
RGj,i) R(j, i)

(@)

0000 0000000000000 -ccee

run of 0’s in a lower bit-plane

Fig. 2. Overlapping and nonoverlapping runs. (a) Overlapping runs. (b) Nonoverlapping runs.

partial two-tone image formed by the jth bit-plane, 4 <j <7,
corresponding to the reflected gray code representation of the
intensity values. However, Euler numbers defined merely on
isolated bit-planes as in [2] do not capture any interrelationship
across the bit-planes present in the actual intensity level structure
of the gray-level image. To find out an ideal spatial feature based
on bit-planes, we exploit certain “connectivity” that exists across
the bit-planes to define the augmentation of bit-planes.

The bit-plane B; and its corresponding graph G give an initial
structure of the original image. Now, as we go down the bit-planes,
each bit-plane and its corresponding graph augment further
details. The augmentation is described next.

3.2 Augmentation of Bit-Plane Graphs
Let R(j,7) be a run in the ith row of the jth bit-plane (B;) starting
at column s;; and ending at column ej;, 1 < 55 <ej < M.

Run overlap. Let a run R(j,) start at column sj; and end at ej;.
The run R(j',4) is said to overlap R(j,i) for (4 < j < j <7),if any
one of the following conditions hold:

spi < Sji < €y,

syi < eji < ey

sji < sypi < eji < €jiy
Sji — €5 = 1, and

5. Sji — €4i = 1.

halb ol e

Conditions 4 and 5 are for eight-connectivity; for four-connectivity,
they are not required. Any run R(j,) is a nonoverlapped run if no

such R(j',4) exists for R(j,%). See Figs. 2a and 2b for examples of
overlapping and nonoverlapping runs. In Fig. 2a, R(j,i)s denote
overlapping runs for R(j,)s.

Augmented graphs for an augmented bit-plane. Each bit-plane B; has
a bit-plane graph G; associated with it. G} represents the
augmented graph for an augmented bit-plane B}". Clearly, for
Bz, G3" = G7. For any other bit-plane B;(4 < j < 7), the augmented
graph G} is constructed as follows: For runs R(j,i) in the bit-
plane B;, we determine the overlapping runs R(j,i)(4 < j < j/ < 7).
Then, we create new runs (alternately, nodes of G*’) of B;*/ using
all overlapping runs of R(j,i)s. Also, we create new runs
(alternately, nodes of G'f*) of the augmented bit-plane as an union
of the corresponding nonoverlapping runs. This finishes the
construction of the nodes (alternately, runs) of the augmented
graph G". The edges of G}* are formed by the usual definition of
neighboring runs between two augmented runs as defined in
Section 2. See Figs. 3a, 3b, and 3c for the original bit-planes,
augmented bit-planes, and the augmented bit-plane graphs.

Note that, if all bit-planes By, (4 < j < j/ < 7) are stacked on B;
to create the new bit-plane Bj"/, then we can find the dominating
run and neighborhood run relations between Bjys and B; only by
looking at the run and neighborhood runs of Bj". Thus, B} can be
derived by just “OR”-ing the bit-planes B;s with B;. The augmented
graph G}* is then constructed corresponding to the bit-plane B}*.
The above observation, based on which we define SERVE, is
summarized below.

352

[BN BN BN] LN AN AN)
o|ofe]e o[efefe ° . Y
° ° ° ° ° ° °
- ° - °|e ool
°|e o|efe
B7 (EN=1)
B7
[BN BN BN J LN NN AN]
of[efe]e o[e|efe . ° .
[] [] L] L] L] L]
- . o|o|e o[e|efe
o|e|e o|oefe
B7 + Bg (EN=1)
B6
[BN BN BN J [BN AN AN]
hed bl el ° o[o[ofe]e °
° oo PS ° ° °
hd L) o|o]e o[eo|efe
o|o]e o|efe
B7 + B¢ + Bs (EN=-1)
Bs
[BN BN BN J [N AN AN)
L el D o|le|o|o|o|0® .
hd o|o|o]o|e]e]e|e
oe|e]e o|efe
B7 + B + B5s + B4 (EN=-2)
B4

(@) (b)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO.2, FEBRUARY 2007

WOLD

G G¢™®

7 6
() (2 e
CENCECAORNCENG
QQQQQQ
4 () «)
G G

(©)

Fig. 3. Normal bit-planes, OR-ed bit-planes with their graphs, and SERVE. (a) Original bit-planes. (b) OR-ed bit-planes, SERVE = {1,1, —1,—2}. (c) Augmented graphs

of the OR-ed bit-planes.

Observation 2. For any bit-plane B;, the augmented bit-plane Bj" is
constructed as: Bf;"g =Bj+Bj1+...+ By, where 4 <j <7, +
denotes bit-wise logical OR operation.

SERVE (Euler Vector of type-1). The Stacked Euler Vector
(SERVE) of a gray-tone image is a four-tuple { E7, Es, Es5, E4}, where
Ej; is the Euler number of the partial two-tone image represented by
the augmented bit-plane B} (see Figs. 3 and 4 for illustrations).

SERVE remains invariant under the transformations in which
the Euler number remains invariant. The proof can be deduced as a
simple extension of the triangulation independent topology
preserving property of the Euler number as shown in [3]. SERVE,
as a signature of a gray-tone image, uses both geometric and
intensity level characterization [12]. An on-chip VLSI implementa-
tion of SERVE can also be done following the design in [1].

4 EXPERIMENTS WITH STACKED EULER VECTOR
(SERVE)

4.1 Aggregating and Discriminating Features

The problem of image feature extraction can be viewed as a
function F that maps a set of images I to a multidimensional feature
space IR" as 7 : I — IR". In many CBIR applications, 7 being only a
bijective mapping is not much of a benefit. Based mostly on human
perceptions (which is not mathematically well defined), the set of
images I can be classified into a set of equivalence classes
I, I, ..., I}. Based on some appropriate distance function, if there
exists a relation that divides the multidimensional feature space IR"
into equivalence classes Ri, Ry, ..., Ry such that there exists a
bijective mapping between equivalence classes I; € I and R; € IR",
it =1,2,...,k then we can say that the feature F is “good.” “Good”
features are both aggregating and discriminating. Aggregating
(discriminating) features are those for which images belonging to

the same (different) equivalence classes have feature values “close”
(“far”) relative to a distance function in IR". See [8] and the
references therein for efforts in finding such “good” features. But, the
features used are mostly complex and computationally expensive.
On the other hand, most of the existing CBIR systems use low-level,
fast-to-compute features [14]. Low-level features suffer from the
problem that they are not both aggregating and discriminating. If
both are used together, the discriminating feature will obviously
have a dominating contribution to the distance measure, making the
aggregate feature redundant. A better solution can be obtained by
breaking down the retrieval process into two steps. First, retrieve a
set of images I, € I based on the aggregating feature. Next, use the
discriminating feature on I, to retrieve the final set of images. In
Section 3, we show experimentally that SERVE is a more (less)
aggregating (discriminating) feature than invariant moments and
both can be combined in the said two-step process to improve
retrieval efficiency. We chose invariant moments as a feature
because of its simplicity and wide use to place SERVE in its proper
perspective. We also provide another experiment with some shape
features.

4.2 Image Database

For our experiments, the standard COIL-20 image database [7] of
20 objects is used. Images of all the 20 objects were taken at pose
intervals of 5 degrees. This corresponds to a total of 1,440 gray-
scale images. Details can be found in [7]. The images shown in
Fig. 5 are numbered starting from the top left in a row-major
fashion, e.g., the second to last (car) is “obj19,” the last image in the
second row (“vaseline”) is “obj10.”

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO.2, FEBRUARY 2007 353

Gray-tone image

Gray-tone image
Fuler numbers:

&

B;+ Bg+ Bs + By
Ey=—4

B; + Bg + B
Es; =—6

Fig. 4. lllustration of normal and OR-ed bit-planes and SERVE for an original image. (a) Original bit-planes B;, Bs Bs, and By. (b) OR-ed bit-planes and SERVE; the

SERVE here is {—5, -8, —6, —4}.

4.3 Combining Serve with Invariant Moments for Image
Retrieval

Among many image features that are invariant under shifts,
changes of scale, and rotation, and to general linear transforma-
tions, the set of invariant moments [6], [10] attracted wide attention
because of its simplicity of computation. Reiss [10] presented a
corrected version of the set of moments invariant to the general
linear transformation presented earlier by Hu [6]. In this paper, we
show that a simple feature like SERVE can enhance image retrieval
efficiency significantly when combined with the set of four
invariant moments proposed by Reiss [10].

4.3.1 Measures for Aggregating and Discriminating Features
The 72 images pertaining to each object are partitioned into
equivalence classes based on the equality of SERVE and moments
separately. As seen from Table 1, moments are found to be
different for each image of the same object, but SERVE for some
classes may have the same value for a group of images, e.g., obj15
in Table 1 has only eight different SERVE values. Considering
either SERVE or moments as a feature, each image is a point in a
four-dimensional space. With the distances representing the
normal Euclidean distances, we calculated the average distance
(Dw;) ((7) distances) between two images of the same object
(intra-object distance). The corresponding coefficients of variances
of intra-object distances are also given in Table 1. They indicate
that the SERVE of different poses of the same object tend to remain
close, whereas the moment may discriminate different images.
Based on these observations and discussions in Section 1, we
devise a series of retrieval experiments by combining SERVE with
moments to improve retrieval success.

o
-

Fig. 5. COIL objects.

4.3.2 Retrieval Experiments

To test the combined feature of SERVE and moments, we perform
a retrieval experiment by first using SERVE followed by moments,
and vice versa. Given a query image, all the images (say, m)
corresponding to the first n distinct distances from the query
image are chosen. These m images are then ranked using their
moments. A success results if we retrieve an image of the same
object in COIL as the query. We also perform the experiment the
other way round, where moments are used first followed by
SERVE. The results are shown in the graph in Fig. 6a, where n is
varied from 5 to 72. The curve marked (SERVE, moments) is the
one when SERVE is used first followed by moments and it clearly
shows better performance than the other case. Even whenn = 72, a
retrieval success of 43 percent was reported. This graph best
determines the relation of SERVE and moments. Further, com-
pared to moments alone, retrieval based on the combined feature
of (SERVE, moments) shows a marked improvement. We also
experimented with an eight-dimensional feature vector comprising
the four-tuple SERVE and the four invariant moments, instead of
the feature augmentation described earlier. It is interesting to
observe that the results were almost the same as the case when
moments were used first followed by SERVE.

SERVE can be used with other possible discriminating features
for better retrieval. We devised another set of experiments where
the following simple shape features were used instead of moments.
A gray-level image is thresholded at a value corresponding to the
fourth bit-plane (a value of 16). The features are [16]: 1) the ratio of
area and the square of perimeter and 2) the convex hull deficiency
ratio, defined as the ratio between the original area and the area
formed by the convex hull of the edge points. Again, given a query
image, all the images (say, m) corresponding to the first n distinct
distances from the query image are chosen. These m images are
then ranked using these two features. The retrieval success
improves compared to use of SERVE followed by moments, as
shown in Fig. 6b.

In Section 3, SERVE is defined as a 4-tuple { E7, Es, E5, E4 }. We
may call it as index-4 SERVE. We have also studied how the
success ratio continues to improve with inclusion of each FE;
starting from the most significant element { £;}. We performed the
same retrieval experiment as described earlier considering index-1
feature (i.e., { E7}) only, index-2 feature (i.e., { E7, Es}), index-3 (i.e.,
{Er7, Es, E5}), and, finally, index-4 ({E7, Eg, Es, E,}), ie., SERVE.
The results shown in Fig. 6¢c demonstrate that the success ratio
improves steadily with increasing indices but with diminishing
returns. This justifies the choice of 4-tuple SERVE as a feature
vector. It is also interesting to notice the retrieval results (Fig. 7)

354

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO.2, FEBRUARY 2007

TABLE 1
Comparative Results

COIL Equivalence Co-efficient Ratio of CPU time Retrieval results
objects classes of variance for computing for (SERVE, moments)
of the of Deyjs moments to forn =10
objects SERVE
Moments | SERVE | Moments | SERVE No. of No. of
images images of
retrieved | same obj.
obj1 72 37 79.3 49.0 4.0 10
obj2 72 18 187.9 97.9 2.7 10 4
obj3 72 72 252.5 445 5.0 10 4
obj4 72 67 89.4 57.1 43 10 10
obj5 72 72 148.2 57.2 5.7 10 10
obj6 72 70 330.9 46.0 2.6 10 7
obj7 72 46 724 8.7 47 10 3
obj8 72 51 130.3 68.9 4.9 10 10
obj9 72 71 163.7 464 4.9 10 10
obj10 72 69 147.8 61.3 4.8 10 10
objI1 72 23 81.4 82.9 4.9 10 3
obj12 72 55 779 65.9 2.7 10 10
objI3 72 69 91.8 454 4.8 10 6
obj14 72 66 93.2 414 4.8 10 8
objI5 72 8 75.2 76.9 4.9 10 9
obj16 72 16 70.7 84.0 5.0 10 7
objI7 72 15 80.5 76.1 49 10 5
objI8 72 41 135.1 46.6 4.8 10 10
obj19 72 67 241.8 39.7 5.0 10 10
0bj20 72 72 82.2 41.0 2.8 10 10
100
70| 0 ® 70-
2
65 80 E 65
g (SERVE, moments) g 2
o S E L 55
‘?-: 501 2 60 2 i i
2 * ; g 50 \ index—4
s 50 2 - \ A N -
® © *_ e ind&x-3
401 (moments, SERVE) 3 N .
5 * * * 40 o Y (moments,shape) Twee AT o indgxt%
* * . ¥ . . . £ »\‘*7;"1(13)5_;1»\;*
"" 70 it

20 30 40

No. of images retrieved

(a)

80 0 10 20 30

No. of images retrieved

(b)

40 50 20 70

30 N 40 50 60
No. of images retrieved

(c)

Fig. 6. Retrieval results when SERVE was used followed by moments and vice versa on the COIL database. (SERVE, moments) means SERVE was used first followed
by moments and vice versa for (moments, SERVE). (a) Retrieval successes of SERVE and moment augmentation. (b) Retrieval successes of SERVE and shape feature

augmentation. (c) Retrieval successes for different indices of SERVE.

corresponding to n = 10 for some cases (see Table 1) with (SERVE,
moments) as the feature vector. This corresponds to the case n = 10
in the curve marked (SERVE, moments) in the graph in Fig. 6a. It
may be observed that the failure images of the other retrieved
objects show a striking similarity in either shape or luminance to
the query object. Concerning the CPU time, Table 1 shows that
SERVE is faster than moment computation.

4.4 Efficiency of SERVE Based on Bit-Plane
Augmentation

To justify empirically the use of bit-plane augmentation as in
SERVE, we performed some experiments comparing it with few
other types of Euler vector as defined below for a gray-tone image.

Euler Vector of type-2. This is defined as a four-tuple
{E7,Es, E5, Ey}, where E; is the Euler number of the partial
two-tone image formed by the jth bit-plane, 4<j<7,
corresponding to the binary code representation of the intensity
values.

Euler Vector of type-3. This is a four-tuple {E7, Es, Es5, Ey},
where E; is the Euler number of the partial two-tone image formed
by the jth bit-plane, 4 < j < 7, corresponding to the reflected gray
code representation of the intensity values. This definition was
used earlier as a characteristic feature of a gray-tone image [2].

Euler Vector of type-4. This is a four-tuple {Er, Es, E5, E4},
where E7 is the Euler number of bit-plane B; and any other £} is
the Euler number of the partial two-tone image formed by OR-ing
the jth bit-plane with the (j+ 1)th bit-plane, 4 < j < 6, corre-
sponding to the binary code representation of the intensity values.

We have run our retrieval experiment considering the above
three types of Euler vector and compared the results with SERVE.
From Figs. 8a, 8b, and 8¢, it is evident that the retrieval results
based on SERVE (Euler vector of type-1) outperform significantly
those obtained by the other three types of Euler vector including
the earlier one reported in [2]. The intuitive justification in favor of
SERVE lies in its improved capability of capturing connectivity
information across the bit-planes of a gray-tone image.

5 CONCLUSIONS AND DISCUSSIONS

A new combinatorial signature for a gray-tone image, called the
Stacked Euler vector (SERVE), is proposed. The definition is derived
from the classical Euler number of a binary image and the
augmented graphs derived by successive OR-ing of bit-planes.
Computation of SERVE does not involve any floating point
operation and, hence, can be accomplished very fast. Experimental
results showing its use as an aggregating feature have been

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO.2, FEBRUARY 2007

according to descending rank. (a) Retrieval with “obj9” as query where 10 objects are of “obj9.”

355

(@)
M A o L i i M e i
(b)

~}o b
- EEE!!=
~F

['l['IE][]ﬂ-EE]l‘IED

Fig. 7. Retrieval results corresponding to entries “obj9,” “obj19,” “obj3,” “obj6,” and “obj7” with the query image at the left and the retrieved images shown from left to right

(b) Retrieval with “obj19” as query where 10 objects are of “obj19.”

(c) Retrieval with “obj3” as query where only four objects are of “obj3;” note the failure objects. (d) Retrieval with “obj6” as query where only seven objects are of “obj6;”
note the failure objects. (e) Retrieval with “obj7” as query where only three objects are of “obj7;” note the failure objects.

0 80 80

75 - 75

70 70 70

65 65
2 g 2

60 60
o o o SERVE, moments;
8 (SERVE, moments) g e (SERVE, moments) 8 :)
Sss 3 3 55
n 0 55 " *
S 50 k] i * S s i
2, 2w 2, i

*.
“© . (EV(Type 2), moments) % VTvoe 3 e 40 EV(Type 4), moments)
e 3), moments,
. s o (EVTYPed)) e N .o
* * " *
‘WO 10 20 30 40 50 60 70 80 350 10 20 30 40 50 60 70 80 300 10 20 30 40 50 60 70 80
No. of images retrieved No. of images retrieved No. of images retrieved
(a) (b) (c)

Fig. 8. Retrieval results on COIL database for different types of Euler vector versus SERVE both coupled with moments. As in Fig. 6, any legend (X,)) means feature X

was used first followed by). (a) Euler vector of Type 2 versus SERVE. (b) Euler vector of Type 3 versus SERVE. (c) Euler vector of Type 4 versus SERVE.

reported. The JPEG2000 image compression standard uses a wavelet
transform and a bit-plane entropy coder for compression [9]. As
SERVE uses bit-planes and is topologically invariant, computing
SERVE in the compressed domain of the image itself would be
interesting.

REFERENCES

(1]

(2]

(3]
(4]
(3]
(6]

(7]

(8]

A. Bishnu, B.B. Bhattacharya, M.K. Kundu, C.A. Murthy, and T. Acharya,
“A Pipeline Architecture for Computing the Euler Number of a Binary
Image,” J. Systems Architecture, vol. 51, pp. 470-487, 2005.

A. Bishnu, B.B. Bhattacharya, M.K. Kundu, C.A. Murthy, and T. Acharya,
“Euler Vector for Search and Retrieval of Gray-Tone Images,” IEEE Trans.
Systems, Man, and Cybernetics, Part B, vol. 35, pp. 801-812, Aug. 2005.

S.B. Gray, “Local Properties of Binary Images in Two Dimensions,” IEEE
Trans. Computers, no. 5, pp. 551-561, May 1971.

F. Harary, Graph Theory. Addison Wesley, 1972.

RJ. Adler, The Geometry of Random Fields. John Wiley and Sons, 1981.
M.K. Hu, “Visual Pattern Recognition by Moment Invariants,” IRE Trans.
Information Theory 8, pp. 179-187, Feb. 1962.

S.A. Nene, SK. Nayar, and H. Murase, “Columbia Object Image Library:
COIL-100,” Technical Report CUCS-006-96, Dept. of Computer Science,
Columbia Univ., Feb. 1996.

S. Obdrzilek and J. Matas, “Object Recognition Using Local Affine Frames
on Distinguished Regions,” Proc. British Machine Vision Conf., pp. 113-122,
Sept. 2002.

]
(0]

(1]
(12]

[14]

(1]

(6]

M. Rabbani and D.S. Cruz, “The JPEG2000 Still-Image Compression
Standard,” course given at Int’l Conf. Image Processing (ICIP), Oct. 2001.
T.H. Reiss, “The Revised Fundamental Theorem of Moment Invariants,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13, no. 8, pp. 830-
834, Aug. 1991.

A. Rosenfeld and A.C. Kak, Digital Picture Processing. Academic Press Inc.,
1982.

C. Schmid and R. Mohr, “Local Grayvalue Invariants for Image Retrieval,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 5, pp. 530-
535, May 1997.

A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Image
Retrieval at the End of Early Years,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 22, no. 12, pp. 1349-1380, Dec. 2000.

R.C. Veltkamp and M. Tanase, “Content-Based Image Retrieval Systems: A
Survey,” Technical Report, UU-CS-2000-34, Universiteit Utrecht, 2000.

S. DiZenzo, L. Cinque, and S. Levialdi, “Run-Based Algorithms for Binary
Image Analysis and Processing,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 18, no. 1, pp. 83-89, Jan. 1996.

A K. Jain, Fundamentals of Digital Image Processing. Prentice Hall of India,
1990.

	1.pdf
	2-5.pdf
	6.pdf

