An Intemational Joumal
computers &

mathematics
with applications

Computers and Mathematics with Applications 37 (1999) 115~127

Text Compression Using
Two-Dimensional Cellular Automata

A. R. KHAN

Department of Electronics and Computer Sciences
University of Kashmir, Srinagar-190006, India

P. P. CHOUDHURY*, K. DIHIDAR AND R. VERMA
Computer Science Unit, Indian Statistical Institute
203, B. T. Road, Calcutta-700035, India
pabitra@isical.ac.in.

(Received July 1997; accepted August 1997)

Abstract—This paper presents an elegant mathematical model using simple matrix algebra for
characterising the behaviour of two-dimensional nearest neighbourhood linear cellular automata with
periodic boundary conditions. Based on this mathematical model, the VLSI architecture of a Cel-
lular Automata Machine (CAM) has been proposed for text compression. Experimental results of
comparisons with adaptive Huffman coding scheme also presented.

Keywords—Cellular automata, Encoding, Decoding, Text compression, Kernel.

1. INTRODUCTION

As the semiconductor technology is moving towards the submicron era, the system designers try
to embed complex functions from software domain to hardware blocks on the silicon floor. At
the same time, for keeping the design complexity within a feasible limit, the designers are forced
to look for simple, regular, modular, cascadable, and reusable building blocks for implementing
various complex functions. The homogeneous structure of Cellular Automata (CA) is a right
candidate to fulfill all the above objectives. Moreover, the demand for parallel processing ar-
chitecture has gained importance with the ever increasing need for faster computing. To this
end, we are motivated to use the two-dimensional cellular automata model to arrive at the easily
implementable parallel processing architecture in VLSI. This parallel architecture built around
the CA machine suits ideally for a variety of applications which has been demonstrated in one of
our earlier papers [1}.

The study of cellular automata (CA) dates back to Von Neumann in the early 1950s. Van New-
mann [2] framed CA as a cellular space capable of self-reproduction. Since then, many researchers
have taken interest in study of CA for modelling the behaviour of complex system. Wolfram et
al. [3] studied one-dimensional CA with the help of polynomial algebra. Pries et al. [4] studied
one-dimensional CA exhibiting group properties based on a similar kind of polynomial algebra.



116 A. R. KHAN et al.

Later, Das et al. [5] extended the characterization of one-dimensional CA with the help of matrix
algebra. In recent years, many applications of one-dimensional CA have been reported [6-9].
On the other hand, two-dimensional CA is not yet a well-studied area. Packard et al. [10]
reported some empirical studies on two-dimensional cellular automata depending on five neigh-
bourhood CA. Chowdhury et al. [11] extended the theory of 1IDCA built around matrix algebra
for characterizing 2DCA. However, emphasis was laid on special class of additive 2DCA, known
as Restricted Vertical Neighbourhood (RVN) CA. In this class, the vertical dependency of a site is
restricted to either the sites on its top or bottom, but not both. This paper mainly deals with the
characterization of 2D periodic boundary nine neighbourhood linear CA. A general framework
had been proposed for the study of the state transition behaviour of this class of 2DCA. In this
paper, we developed the analytical tool to study all the nearest neighbourhood. 2DCA linear
transformation with periodic boundary conditions. One application of periodic boundary 2DCA
is also reported.

A CA machine (CAM) has been proposed [1] around the parallel architecture of 2DCA. Such a
CAM can be economically built with the available VLSI technology. A wide variety of applications
can be developed around the parallel architecture of CAM. Such CAM can serve as a simulation
engine to study a wide variety of hybrid CA configurations. Some of these applications have
also been reported [1]. The next section briefly describe both the 1D and 2DCA preliminaries.
Section 3 highlights a few sample results on the characterisation of uniform periodic 2DCA
transformations. Section 4 reports one simple application which deals with text compression. A
VLSI architecture of cellular automata machine (CAM) is reported in Section 5 to implement
the above application. Section 6 concludes the paper.

2. BASIC CONCEPTS

Prior to introducing the 2DCA framework, a brief introduction on 1DCA is reported below.
The 1DCA structure can be viewed as a discrete lattice of sites or cells, where each cell can
assume either the value 0 or 1. The next state of a cell is assumed to depend on itself and on
its two neighbours (for two-neighbourhood dependency). The cells evolve in discrete time steps
according to some deterministic rule that depends only on local neighbourhood. Mathematically,
the next state transition of the it" cell can be represented as a function of the present states of
the it*, (i + 1), and (i — 1)t* cells:

gt +1) = f(@(t), gi+1(t), qi-1(2)),

where f is known as the rule of a CA.
If the next state function of a cell is expressed in the form of a truth table, then the decimal
equivalent of the output is conventionally called the rule number for the cell.

Neighbourhood state: 111 110 101 100 011 010 001 000
Next state: 0 1 0 1 1 0 1 0
Next state: 0 1 1 1 1 0 0 0

The top row gives all the eight possible states of the three neighbouring cells at the time
instant ‘¢’, while the second and third rows give the corresponding states of the ith cell at time
instant (¢ + 1) for two illustrative CA rules. A few definitions are next introduced.

DEFINITION 1. If the same rule is applied to all the cells in a CA, then the CA is called a uniform
or regular CA.

DEFINITION 2. If different rules are applied to different cells in a CA, then the CA is called a
hybrid CA.

DEFINITION 3. Ifin a CA, the neighbourhood dependence is on EX-OR or EX-NOR only, then
the CA is called an additive CA. Specifically, a linear CA employs XOR rules only.



Text Compression 117

DEFINITION 4. A periodic boundary CA is the one in which the extreme cells are adjacent to
each other.

DEFINITION 5. A null boundary CA is the one in which the extreme cells are connected to logic
O-state.

DEFINITION 6. A CA whose transformation is invertible is called a group CA; otherwise, it is a
nongroup CA. For a group CA, the dimension of kernel is 0 (that is, the transformation is a full
rank one); for a nongroup CA, the dimension of the kernel is nonzero.

2.1. Mathematical Model for 2DCA

In a two-dimensional nearest neighbourhood linear CA, the next state of a particular cell of
the 2DCA is affected by the current state of itself and eight cells in the nearest neighbourhood.
Different dependencies are taken into account by means of various CA rules. We take into
consideration only the linear rules, i.e., the rules which can be realized by EX-OR operation only.
A specific rule convention is envisaged as in the following.

64 128 | 256
32 1 2
16 8 4

Here, the central box represents the current cell (that is, the cell being considered) and all other
boxes represent the eight nearest neighbours of that cell. The number within each box represents
the rule number associated with that particular neighbour of the current cell. That is, if the
central cell gas got dependency on itself, it is referred to as rule 1, if it depends only on its top
neighbour, it is rule 128, and so on. In case the cell has dependency on two or more neighbouring
cells, the rule number will be the arithmetic sum of the numbers of the relevant cells. For example,
the 2DCA rule 171N (128 + 32 + 8 + 2 + 1) refers to the five neighbourhood dependency of the
(central) cell (top, left, bottom, right, and self) under null boundary condition, whereas 171P
refers to the same neighbourhood dependency under periodic boundary condition.

The dependency structure can be realized with the help of an elegant mathematical model
where we use two fundamental matrices to obtain row and column dependencies of the cells. Let
our binary information matrix be X;—the current state of a 2DCA configured with a specific
rule. The next state of any cell will be obtained by EX-OR operation of the states of its relevant
neighbours associated with the rule. The transformation associated with different rules can be
made effective with the following two fundamental matrices:

010 000
0 01 =T1 and 1 00 =T2.
0 00 010

2.2. Characterization of Periodic Boundary 2DCA (PBCA)
The following lemma specifies the value of the next state of a 2D PBCA referred to as
Xe+1,
given that its current state is
X:.

LEMMA 1. The next state of all the primary rules with periodic boundary condition can be
represented as in [1], except that
T1 and Tz

are to be replaced by
Tlc and T2c1



118 A. R. KHAN et al.

010 0 01
Tie=|0 0 1}, Toe=|1 0 0].
1 00 010

In 7., super diagonal contains all 1's with lower left corner 1 and T3, contains subdiagonal
all 1’s with upper left corner 1.

Proofs are omitted due to shortage of space.

For our convenience of analysis, we will convert each of the rules (both primary and secondary)
into some one-dimensional transformation. We want to look at the transformation T such that T
operating on X information matrix of dimension m x n giving us the new configuration [X'|m x n,
in the following manner:

respectively, where

X1 XV
X2 X2
T(X)mxn=[Tlmnxmn| . = : ,
Xm mnx1 Xm/ mnx1
where X1, X2,...,Xm are the rows of X and X1’, X2',..., Xm' are rows of the new transformed

matrix X'.

LEMMA 2. The matrix for any periodic boundary CA rule (PR) can be represented as

D U 0 0 0 0 U.
L DU 0 0 0 0
0 L DU 0 0 O
Ter=|: = = =+ = =+ 1 1,
0 0 0 0 ... L DU
L, 0 0 0 ... 0 L D

where D, L, U, L., and U, are one of the following n x n matrices, [0}, {I], [T1¢|, [Tac], (I + T1c)s
(I + T2, [Sc), and [I + S.).

THEOREM 1. (Tic)nxn and (Tac)nxn are full rank.

THEOREM 2. All PBCA primary rules are group rules.

3. CHARACTERIZATION OF 2D CELLULAR AUTOMATA

Next, we are going to highlight some of the most interesting results for some specific linear
transformations viz. 170 (periodic boundary condition), i.e., 170P. For analyzing rule 170P, we
first convert it into a uniformly partitioned one-dimensional map matrix:

rSe I 0 I
I S, I 0
0 I S, 0

LI 0 0 ... S.J

Next, applying matrix algebraic formulations, we can prove the following results.

PROPOSITION 1. If P be a permutation matrix of order n, P~* = PT and (P = (PT)") = I,
then S, = P + pT.



Text Compression 119

PROPOSITION 2. Rank ((S¢)nxn) =n -~ 2, if n is even, =n —1, if n is odd.

PROPOSITION 3. px(Sc) = (P* 4 (PT)k) 4+ (P*=2 — (PT)k~2) 4 (P*~4 - (PT)s~Y) +a-- -+ (P2 +
(PT)2) + I, if k is even. pi(Se) = (P* + (PT)k) + (PF-2 — (PT)k~2) 4 (Pk—4 4 (PT)k=4) 14. .. 4
(P® + (PT)3) 4 (P + PT), if k is odd.

LEMMA 3. For all even n, pa(Sc) = 1.

LeEMMA 4. For all even n, pp41(Se) = Se.

LEMMA 5. For all even n, pp—1(S.)} =0.

LEMMA 6. For all odd n, pa(Se) = pn—2(Sc) = I + pn-1(Sc).

LEMMA 7. For all odd n, ppt1(Sc) = Se + Pr—-1(Sc) = Se + I + pn—2(Se).
LEMMA 8. For allevenn and r =1,2,3,..., pa(S:) = 1.

LEMMA 9. For allevenn andr =1,2,3,..., prn-1(S:) =0.

LEMMA 10. Forallevenn and r =1,2,3,..., Pra+1(Se) = S..

LEMMA 11. For all odd n and odd r, prn(Sc) = pr-2(Se) =1 + pn-1(Se).
LEMMA 12. For all odd n and odd r, prp+1(Sc) = Sc + pn-2(S:) + 1.

LeEMMA 13. For all odd n and even r, ppo(S,) = I.

As a consequence of the above results, we can prove the following result, which was first arrived
at by Sutner [12] in connection with o-game.

THEOREM 3. The dimension of the kernel of T170P is gcd(m,n) when m or n or both are even
and 2ged(m,n) — 1 when both m and n are odd.

4. ONE APPLICATION OF 2DCA

4.1. Text Compression

In the previous section, we have seen that the dimension of kernel of T170P is 2gcd(m,n)
when m or n or both are even, and 2ged(m,n) — 1 when both m and n are odd. In particular,
we have the following tables.

m=2.
n 2 3 4 5 6 7 8 9 10 11
Dimension of Kernel 4 | 2 4 4
m = 3.
n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Dimension of Kernel | 2 | 5 | 2 1 6 11215 2 1 6 1 2 5

We were looking for some suitable application where dimension of kernel cyclically comes back
as n increases. However, in the absence of any such application, we noticed the following things.
For m = 2 and n = 4, dimension of kernel = 4, that is, in the state transition diagram, each
reachable state is having 2¢ = 16 predecessor states.

Referring to Figure 1, we see that all the upper case, lower case appear in the second quadrant.
Each quadrant has four characters. Only upper case letters appear in the second quadrant
of Figure 1a-d and Figure 1i-l, similarly lower case letters appears in the second quadrant of
Figure le-h and Figure 1m-p.



120 A. R. KHAN et al.

(e) )

Figure 1. State transition diagram, for the rule 170P on 2 x 4 2DCA.



Text Compression 121

(&) (h)

(x) ®

Figure 1. (cont.)



122 A. R. KHAN et al.

(0) (p)

Figure 1. (cont.)

5. ARCHITECTURE OF 2DCA BASED
CAM FOR TEXT COMPRESSION

In Section 2, we have proposed a local neighbourhood 2DCA where the next state of each
cell depends on the current state of its neighbours viz. four orthogonal neighbours, four diagonal
neighbours, and itself. In order to design the most general structure, we should be able to
configure a cell with a rule out of the 512 available rules. That is, each 2DCA cell is connected
through nine switches to its nine nearest neighbours. In order to apply a particular rule, we have
to apply 1 or 0 to the corresponding switch control and thereby closing or opening the switches.
Thus, a nine bit word is required to control the nine switches corresponding to a single cell.
Another bit is required to configure the cell in XOR or XNOR mode. Hence, we have a separate
control plane where entry (i, j) stores a ten bit control word corresponding to the particular rule
employed to configure the cell (4, ) of the 2DCA. The CAM architecture is shown in Figure 2.
In effect, by providing a generalized 2DCA structure, we have incorporated programmability.
Hence, we can introduce the concept of a rule program which is a tuple containing the rules to
be applied to the cells, the initial seed, and the number of cycles the 2DCA has to be iterated.



Text Compression 123

The motivation for the parallel architecture of the CAM is derived from following considera-
tions. The reader may recall that computation related to any m x n 2DCA requires manipulation
of mn x mn binary matrix which is computationally intensive, if not infeasible, when m and n
cross 10—such a situation arise in a variety of applications. Therefore, we require an all-purpose
hardware simulation engine which is provided by our architecture.

It may be noted that such a machine can achieve a high simulation performance with an
appreciably low hardware overhead compared to the universal synthesizer proposed by Toffoli [13].

From Top Left

Topleft  |-rifoee

Top Middle ~ [----feeeeecfereres D

TopRight  [-ofrerenferemnsdfnnennns ) Q

Self

Left

Right

Bottom Left

Bottom Middle

Bottom Right

XNOR/XOR

From Bottom Left
Figure 2. Architecture of the CAM.

5.1. Architectural Details of the CAM

This section provides the architectural details of a CAM corresponding to an m x n 2DCA. As
shown in Figure 2, there are three major blocks.

e An m x n matrix of CA cells—the details of a representative cell is shown in Figure 2.

e The Control Memory is required to configure the 2DCA cells. Since any nearest neigh-
bourhood 2DCA cell has dependencies on nine of its nearest neighbours, a typical control
word should contain at least nine bits, moreover, another bit is required to configure the
cell in XOR or XNOR mode. Thus, for each cell we require a ten bit control word. Hence,
the size of the control memory is m x n x 10.

e A Seed Memory is also kept to store b initial seeds of the 2DCA. For that purpose, the
size of the seed memory will be m x n x b.

If we restrict ourselves to uniform 2DCA, then the size of the control plane reduces drastically

to only 9+ (m x n). The term m X n is kept to take care of the XOR/XNOR for each cell. Thus,
a drastic cost reduction is possible with a uniform 2DCA based CAM architecture. However,



124 A. R. KHAN et al.

we will be losing the programmability which is one of the essential requirements for carrying
out exhaustive simulations with the CAM. So, we can adopt a hybrid approach where each of
the m rows will be configured with the same rule. This reduces the size of the control memory
to m x 9+ (m x n) while preserving the programmability to the same extent. Next, we report
applications of CAM.

5.2. Applications of CAM in Text Compression

In the text compression, we are utilizing rule 170P of 2DCA of dimension 2 x 4, i.e., to every
cell we are applying rule 170P.

To implement our coding and decoding scheme, we will be having 16 blocks of memory locations
each for the state from which we can reach to 0 in one step. There will be one main memory
block having 16 bytes and all other 16 blocks will be having four bytes. Memory blocks (other
than main) contains the values of the second quadrant of their respective state (Figure 3). Main
memory block will be having values of the states which can reach to state 0 in one step, starting
from first quadrant. The starting address of these blocks other than main can be obtained with
the help of some hashing technique. The starting address of main memory block is fixed. As
most texts are having lower case letters in abundance than that of upper case and other special
characters, so we give stress on efficient encoding of only lower case letters. Generally an upper
case letter comes just after the fullstop (.) or full stop and space, so we encode this also with
same efficiency. Also the encoding of space, full stop, and comma are done with equal efficiency.
Upper case letters other than those starting just after a full stop or full stop and space are encoded
with the help of ten-bits and all other special characters are encoded in 13-bit form. But as the
probability of existence of these inefficient codeable symbols in a text is extremely less, we will
get a good compression ratio.

— TO

—
BINARY T LOGIC [~ " HASHING
INPUT ! CIRcurT| CAM | | CIRCUIT
(8BITS) — —*  (8BITS)
SERIAL
8(BITS) OUTPUT
FROM MEMORY BLOCKS(SBITS)

Figure 3. Architecture of CAM encoder.

ENCODING. Our encoder will be having a simple logic to separate codeable and noncodeable
symbols. The codeable symbols will be given to CAM which apply rule 170P on the binary value
of the symbol to produce a number. We access to the memory block belonging to this number
and search for input symbol. The two bit index of it in that block is stored in the buffer. Then
we search this number in the main memory block. We get the four-bit index of it in that block
and store the 1-MSB and 2-LSBs in the buffer. This is how we encode a symbol (Figure 3).
Our logic circuit will allow only lower case letters and upper case letters to reach to the CAM.
Space will be converted to ‘(3’, full stop will be converted to ‘@’ or ‘’’, CR will be converted
to ‘}’ and comma will be converted to ‘[’ before passing it to CAM. As in the memory blocks,
we have put the decimal value of full stop in place of ‘@’ and ’’, the comma in place of ‘[’,
CR in place of ‘}’ and space in place of ‘[T, so we will be able to recover the original values in
the decoding phase. Whenever an upper case letter is coming which is not just after a full stop
or space, we put a five-bit code 01011(") in the buffer and then store the code for the symbol



Text Compression 125

in buffer. Whenever a noncodeable character comes, we put a five-bit code 01111(!} before its
actual eight-bit representation in the buffer.

EXAMPLE. Now let us try to compress a word with the help of our technique. Let the word be
‘.As’. On loading ‘.’ to the encoder, the logic circuit will convert it into ‘@’ or *’’ (say ‘@’) and
supply it to CAM. CAM will apply rule 170P to give 160. Now we will search the decimal value
of input symbol ( ¢’} in the memory block belonging to 160 and find its index which is 00. Then
we search 160 in the main memory block and find out its index, which is 1000. Now we omit
the third bit from right, the resultant bits are 100, so our complete code will be 10000. As ‘A’ is
coming after ‘.’, so it is encoded by the same technique as 11000. Next for ‘s’ we get 01100.

DECODING. To decode the compressed text, we start taking the five-bit chunks from the stream
of bits. If it is 01111(!), then we just output the next eight-bits from the stream. If it is 01011(7),
then we take the next chunk of five-bits and decode it as an upper case letter. If it is a full stop,
then decode it and output it, now take the next chunk and find whether it is a space, if yes then
decode it and check for another space, and so on. In doing so, as we get a nonspace five-bit chunk,
decode it as an upper case letter. Thus, by above scheme we will be able to distinguish between
lower case and upper case. If code is for lower case and its MSB is 0, then add binary 100 to
3-MSBs, else if it starts from 1, then add 1100, and fetch the value of number at this indexed
memory location in the main memory block. Now go to the memory block corresponding to this
fetched number and fetch the number indexed by the 2-LSBs of the code. Output the binary
equivalent of it. In case of upper case letters, if it starts from 0, then add 0000 to 3-MSB’s and
if it starts from 1, then add 1000 and do the same procedure as for the lower case letters.

Main 0 5 10 15 80 85 90 95 160 165 170 175 240 245 250 255

10 81 84 91 44
15 83 86 89 92
80 112 117 122 32
85 114 119 120 125
90 113 116 123 126
160 46 69 74 79
165 66 71 72 77
170 65 68 75 78
175 67 70 73 76
240 46 101 106 111
245 98 103 104 109
250 97 100 107 110
255 99 102 105 108

Figure 4. Different memory blocks.

5.3. Experimental Data
The following text file was taken for experiment.
File:

This document provides supplementary information on configuring
Btrieve for use with Visual Basic. Before you import,

export, or attach Btrieve tables with Visual Basic, please



126 A. R. KHAN et al.

read this file.

Contents:

General Considerations
Using Compressed Data Files

Using Btrieve in a Multiuser Environment
Setting Btrieve Options in WIN.INI

Configuring Novell Network LAN Manager (NLM).

General Considerations

When using Btrieve data with Visual Basic, keep the following
considerations in mind:

Btrieve data files must be in Version 5.1x format.

You must have the data definition files FILE.DDF and FIELD.DDF,
which tell Visual Basic the structure of your tables. These

files are created by Xtrieve or another. DDF file-building
program.

You must have the Btrieve for Windows dynamic-link library
WBTRCALL.DLL, which is not provided with Visual Basic.

This file is available with Novell Btrieve for Windows, Novell
NetWare SQL, and some other products for Windows that use Btrieve.
You cannot use Btrieve files that have Xtrieve security. To use
data files with Visual Basic, disable Xtrieve security.

Using Compressed Data Files

If you are using compressed Btrieve files, you must be sure that
the compression buffer Btrieve is using is adequate for your data.
The buffer size must be at least as large as the largest record

in your data files.

To ensure proper operation, set the compression buffer size

option (/u) in the [btrieve] section of your WIN.INI file. The
units for this setting are kilobytes, so if your largest record

is 2K, you would add /u:2 to the Btrieve options line in WIN.INI.
For more information on setting options, see “Setting Btrieve
Options in WIN.INI” later in this file.

End of File.

No. nf 50-Bit Codes No. of 10-Bit Codes No. of 13-Bit Codes
1564 125 21

Thus, the total number of bits in the compressed file = 1564 x 5 + 125 x 10 + 21 x 13 = 9343
bits. Whereas, total no. of bits in the input file = 13304 bits. Therefore, the compression ratio
= 29.77% 2¢ 30%. Running the same input file by the adaptive Huffman coding scheme (variable
length coding), the compression ratio is little over 30%.



Text Compression 127

6. CONCLUSIONS

In this era of signal processing, text alphabets are considered as real-life signals and online text
compression is the need of the day. In this paper, we have developed an analytical tool based on
matrix algebra to characterize all the nearest neighbourhood periodic 2DCA transformations and
highlighted its application in the field of text compression. We have proposed an architecture of
a programmable CAM which suits the VLSI implementation for the text compression. Finally,
a comparative study of Huffmann coding scheme is given. It is to be noted that Huffman coding
scheme is a variable length coding, whereas our coding scheme is an almost fixed length coding
scheme, which is easily implementable in VLSI chip form.

10.
11.
12.
13.
14.

15.
16.

17.

18.
19.

20.
21.

REFERENCES

. AR. Khan, P.P. Chowdhury, K. Dihidar, S. Mitra and P. Sarkar, VLSI architecture of a cellular automata

machine, Computers Math. Applic. 33 (5), 79-94, (1997).

. J. Von Neuman, The Theory of Self-Reproducing Automata, (Edited by A.W. Burks), Univ. of Illinois Press,

Urbana, (1996).

. 8. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys. 55, 601-644, (July 1983).
. W. Pries, A. Thanailakis and H.C. Card, Group properties of cellular automata and VLSI applications, JEEE

Trans. on Computers C-35, 1013-1024, (December 1986).

. A K. Das, Additive cellular automata: Theory and application as a built-in-self-test structure, Ph.D. Thesis,

LI.T. Kharagpur, India, (1990).

. AK. Das and P.P. Chaudhuri, Vector space theoretic analysis of additive cellular automata and its ap-

plications for pseudo-exhaustive test pattern generation, JEEE Trans. on Computers 42, 340-352, (March
1993).

. D.R. Chowdhury, S. Basu, 1.S. Gupta and P.P. Chaudhuri, Design of CAECC—Cellular automata based

error correcting code, IEEE Trans. on Computers 43, 756-764, (June 1994).

. D.R. Chowdhury, S. Basu, 1.S. Gupta and P.P. Chaudhuri, CA based byte error correcting code, IEEE Trans.

on Computers 48, 371-382, (March 1994).

. S. Nandi, B.K. Kar and P.P. Chaudhuri, Theory and applications of cellular automata in cryptography, IEEE

Trans. on Computers 43, 1346-1357, (December 1994).

N.H. Packard and S. WolForm, Two-dimensional cellular automata, Journal of Statistical Physics 38 (5/6),
901946, (1985).

D.R. Chowdhury, I.S. Gupta and P.P. Chaudhuri, A class of two dimensional cellular automata and applica-
tions in random pattern testing, Journal of Electronic Testing: Theory and Applications 5, 6580, (1994).
K. Sutner, The ¢ game and cellular automata, American Mathematical Monthly 97, (January 1990).

T. Toffoli and N. Margolus, Cellular Automata Machines, The MIT Press, (1987).

R. Barua and S. Ramkrishnan, The ¢ game, 0+ game and two dimensional additive cellular automata,
(personal communication).

K.B. Dutta, Matriz and Linear Algebra, Prentice Hall, India, (1991).

B. Elspas, Theory of autonomous linear sequential networks, TRE Trans. on Circuits CT-8, 45-60, (March
1959).

D.R. Chowdhuri, Theory and applications of additive cellular automata for reliable and testable VLSI circuit
design, Ph.D. Thesis, I.I.T. Khargpur, India, (1992).

D.E. Knuth, The Art of Computer Programming—Seminumericel Algorithms, Addison-Wesley, (1981).

A. Strole and H.J. Wunderlich, TESTCHIP: A chip for weighted random pattern genaration, evaluation and
test control, IEEE Journal of Solid-State Circuits 26, 1056-1063, (July 1991).

Y. Fisher, Fractal Image Compression, Springer-Verlag, (1994).

P.P. Choudhury, On cellular automata of different dimensions and their applications, In Lecture at CSU
Seminar, ISI, (April 1994).



	1.pdf
	2-13.pdf

