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1. Introduction.

The Darboux transformation [1, p. 210] [2], a method based on the factorization of

second-order operators, is an important technique for the exact solution of the one-

dimensional Schrödinger equation [3, 4]. The transformation is also a key concept in

supersymmetric quantum mechanics [5] and the theory of integrable systems [6, 7, 8].

From the point of view of spectral theory, a non-singular Darboux transformation

can be characterized by the following three possibilities [9]. First, a potential with

a lowest bound state admits a unique forward Darboux transformation, which deletes

the ground state. Second, a potential admits a 2-parameter family (the energy and a

shape parameter) of backward Darboux transformations, each of which adds a lowest

eigenvalue. Third, there is also a 1-parameter family of isospectral transformations,

corresponding to two critical values of the shape parameter, which neither add nor

delete bound states [10].

The Darboux transformation relates to exact solutions in several ways [11].

Generally, the forward transformation deforms a given exactly solvable potential to a

new, solvable potential form. However, if a parameterized family of exactly solvable

potentials is shape-invariant [12], i.e., closed with respect to the forward Darboux

transformation, then the forward transformation furnishes an explicit description of

the spectrum and eigenfunctions, rather than a new exactly-solvable form. Therefore,

to obtain a solvable deformation of a shape-invariant potential it is necessary to employ

a backward Darboux transformation. This was first done for specific potentials such as

the harmonic oscillator [13], while the general theory was developed in [6, 9].

However, the general form of the deformed potential features integrals of

eigenfunctions of the original Hamiltonian — in contrast to the original potential, which

is an elementary function, with bound states also described by elementary functions. It

has been noted [14] that only certain discrete values of the energy and shape parameter

correspond to an algebraic deformation, one where the potential and the bound states

remain elementary functions. Such forms are attractive from the modeling standpoint,

and are also important theoretically, since exact results can be obtained even in critical

conditions, where numerical techniques break down.

In the present article we explain the discrete nature of algebraic deformations by

characterizing such deformations in terms of polynomial modules left invariant by a

second-order differential operator. The invariant module approach is an alternative,

inherently algebraic, approach to exact solvability — developed originally to treat quasi-

exactly solvable Hamiltonians [15,16,17]. In this approach, one considers a Hamiltonian

that, in a suitable gauge, preserves an infinite flag of polynomial modules

P0 ⊂ P1 ⊂ P2 ⊂ . . . ⊂ Pn ⊂ . . . , Pn = 〈1, z, . . . , zn〉. (1)

Such a Hamiltonian has an upper-triangular action, and it is, therefore, algebraically

diagonalizable. On the line, there are exactly three potential forms whose Hamiltonian,

in a suitable gauge, preserves (1). These are the classical shape-invariant potential

families: the harmonic oscillator, the Morse [18], and the hyperbolic Pöschl-Teller [19]
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potentials. This invariant module approach provides an alternative explanation for the

exact-solvability of these shape-invariant potentials.

The details of this approach can be found in [15, 17], and some generalizations

in [20]. The method of invariant polynomial flags has also been applied in quantum

many-body problems [21]. The question of determining which second-order operators

preserve a finite-dimensional polynomial module has been previously considered in a

number of papers, including [22, 23].

We consider the algebraic deformations of the three shape-invariant potential

families [11,14,24], and show that, in each case, the mth algebraic deformation produces

a Hamiltonian that, modulo a gauge transformation and a change of variable, preserves

an infinite flag of deformed polynomial modules

P(m)
m ⊂ P

(m)
m+1 ⊂ P

(m)
m+2 ⊂ . . . ⊂ P(m)

n ⊂ . . . , (2)

where each P
(m)
n is a certain codimension m subspace of Pn, i.e. the span of n−m+ 1

polynomials of degree n.

We study the first deformation (m = 1) in some detail, and show that P
(1)
n is an

exceptional monomial module [22], an invariant vector space spanned by

1, z2, z3, . . . , zn (the first power is omitted).

We also show that higher deformations produce more complicated polynomial modules,

but we do not analyze these modules here.

We will discuss monomial modules more thoroughly in a forthcoming publication

[25]. At this point, we would like to mention that exceptional monomial modules also

arise in the context of N-fold supersymmetry, [26]. Our emphasis is somewhat different,

since we are primarily concerned with the interplay between the backward Darboux

transformation and the class of the operators preserving an infinite flag of polynomial

modules.

We also note that invariance of (1) is generally achieved by expressing the gauge

hamiltonian as a quadratic combination of those generators of sl(2), realized as first order

differential operators, which leave invariant the infinite flag of polynomial subspaces Pn.

These operators are called Lie-algebraic and the Hamiltonian is said to have a hidden

sl(2) symmetry algebra. Lie-algebraic potentials in one dimension have been classified

in [17]. However, not all exactly-solvable potentials are generated by a hidden symmetry,

the Coulomb potential being a notable counterexample [27]. Since the potentials studied

here preserve (2) rather than (1), they lack an sl(2) hidden symmetry algebra structure,

and thus furnish a further indication that the exactly solvable class of potentials is larger

than the Lie algebraic one [15, 16, 17].

This paper is structured as follows. In the next Section we describe the forward

and backward Darboux transform. In Section 3 we discuss exactly solvable operators

and algebraic deformations. We also exhibit the invariant flags corresponding to the

algebraic deformations of the three shape-invariant potential families. In Section 4 we

consider exactly solvable operators that preserve the exceptional monomial module, and
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demonstrate that these are precisely the first-fold deformations of the shape-invariant

Hamiltonians discussed in Section 3.

2. Factorization and the Darboux transformation

Let U(x), x ∈ (−∞,∞) be a continuous, real-valued function, and let

τ = −∂xx + U,

be the corresponding formally self-adjoint differential operator. We fix a formal

eigenfunction

τ [φ] = λ0 φ,

and note that every such φ corresponds to a differential factorization

τ − λ0 = α∗α,

where

α = ∂x + σx, α∗ = −∂x + σx, σ = − lnφ. (3)

For this reason we shall refer to φ as the factorization function, and to λ0 as the

factorization energy.

Commutation of the factors defines a partner differential operator

τ̂ = αα∗ = −∂xx + Û ,

where

Û = U + 2σxx.

The operators obey the following intertwining relation:

ατ = τ̂α. (4)

As a consequence, the first-order operator α relates the eigenfunctions of the two

operators: given

τ [ψ] = λψ,

we also have

τ̂ [ψ̂] = λψ̂, ψ̂ = α[ψ]. (5)

To give a rigorous treatment of the Darboux transformation [7, 28], we assume

that U(x) is bounded from below, and let H be the unique self-adjoint, semi-bounded

operator corresponding to τ . The partner potential Û(x) is continuous if and only if φ

is non-vanishing. In this case, the spectrum of Û(x) is bounded from below, and we let

Ĥ denote the corresponding self-adjoint, semi-bounded operator. Letting A denote the

closed operator corresponding to α, we have that α∗ corresponds to the adjoint A∗. We

therefore obtain the following non-formal factorizations:

H− λ = A∗A, Ĥ − λ = AA∗,
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where the compositions are appropriately restricted.

In particular, A maps D(H), the domain of H, to D(Ĥ). The spectral properties

of this transformation are governed by one of the following 3 possibilities [6].

(i) Forward transformation: φ is square integrable, and A defines an isomorphism

between kerA = φ⊥ and D(Ĥ). Thus, a forward transformation exists if and only

if H possesses a discrete spectrum, in which case it is unique. The transformed

spectrum differs from the spectrum of H by the removal of λ, the lowest eigenvalue.

The first-order operator α transforms the nth bound state of H to the (n − 1)st

bound state of Ĥ.

(ii) Backward transformation: φ−1 is square integrable, and A defines an embedding

of D(H) into D(Ĥ). The range of the embedding is precisely (φ−1)⊥. The spectrum

of Ĥ differs from that of H by the addition of a lowest eigenvalue, namely λ, with

the ground state given by φ−1. The operator α transforms the nth bound state of

H to the (n+ 1)st bound state of Ĥ.

A 1-parameter family of backward transformations exist for every λ strictly smaller

than the spectrum of H. To describe the possibilities, let φ+ and φ− be the unique

(up to a multiple) positive solutions of

τ [φ±] = λφ±, (6)

with the property that φ± is square integrable near, respectively, ±∞. The desired

φ is of the form

φ = sφ+ + t φ−, s, t > 0.

(iii) Isospectral transformation: neither φ nor φ−1 are square integrable. In this case

A acts as an isomorphism between D(H) and D(Ĥ). The operator α transforms

the nth bound state of H to the nth bound state of Ĥ. Two isospectral Darboux

transformations exist for every λ strictly smaller than the spectrum of H: one

corresponding to φ = φ+, and the other to φ = φ−.

3. Algebraic deformations of shape-invariant potentials.

3.1. Exact solvability

We will call a Schrödinger operator

H = −∂xx + U,

exactly solvable by polynomials if H is equivalent, by a change of variable and a gauge

transformation, to a second-order operator T that preserves an infinite flag of finite-

dimensional polynomial modules

M1 ⊂ M2 ⊂ M3 ⊂ . . . , dimMn = n. (7)
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The exact solvability comes about because T is upper-triangular relative to a basis

adapted to the above flag, and hence possesses an infinite list of eigenpolynomials. In

this paper we will make the hypothesis that such an operator is of the form

T = P (z)∂zz +Q(z)∂zz +R(z),

where

P (z) = p2z
2 + p1z + p0, p0, p1, p2 ∈ R,

is a polynomial of degree 2 or less, and where Q(z), R(z) are rational functions.

We transform the second-order eigenvalue equation

T [f ] = λf

into a Schrödinger equation

H[φ] = λφ

by a change of variables

x =

∫ z

(−P )−
1
2 , (8)

and a gauge transformation

φ = epf
∣

∣

∣

z=z(x)
(9)

where

p =

∫ z
1
2
P−1(Q− 1

2
P ′), (10)

U = 1
4
P ′′ − 1

2
Q′ − 1

4
P−1

(

Q− 1
2
P ′)(Q− 3

2
P ′

)

+R
∣

∣

∣

z=z(x)
(11)

Let R denote the range of the function z(x), and let us assume that neither Q(z) nor

R(z) have singularities for z ∈ R. We assume that P (z) is not everywhere positive. If

it were, then we change P → −P . With these assumptions we prove the following

Proposition 1 Exactly one of the following possibilities holds, according to the number

and multiplicity of the real roots of P (z):

(i) The are no real roots. Then, R = (−∞,∞), and U(x) is non-singular.

(ii) There is a double root, ρ. Then, R = (ρ,∞) or (−∞, ρ), and U(x) is non-singular.

(iii) There is a unique, simple root, ρ. Then, R = (−∞, ρ], or [ρ,∞). Both z(x) and

U(x) are even functions. The potential is non-singular if and only if

Q(ρ) = 1
2
P ′(ρ), or Q(ρ) = 3

2
P ′(ρ). (12)

(iv) There are two distinct roots ρ1 < ρ2, and R = (−∞, ρ1], or [ρ2,∞). Then, both

z(x) and the potential are even functions. The potential is non-singular if and only

if (12) holds with, ρ = ρ1, or with ρ = ρ2, respectively.

(v) There are two distinct roots ρ1 < ρ2, and R = [ρ1, ρ2]. Then, both z(x) and the

potential are periodic functions, and U(x) has a singularity.
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Proof. Condition (12) follows from (11). In order for the potential to be nonsingular,

the function (Q− 1
2
P ′)(Q− 3

2
P ′) must vanish at those roots of P (z) that lie in R. The

singularity occurs in case (v), because both Q(z) and P ′(z) are first-degree polynomials,

and hence (12) cannot hold for both ρ = ρ1 and ρ = ρ2.

3.2. Shape-invariant potentials on the line.

Let us begin by showing, that the class of exactly solvable Hamiltonians that preserve

the infinite flag (1) consists of shape-invariant potentials on the line. Up to a constant,

the most general form of a second-order operator that preserves (1) is

T = P (z)∂zz +Q(z)∂z , (13)

where P (z) and Q(z) are arbitrary second and first degree polynomials, respectively.

Since Pn is invariant with respect to affine transformations of the z variable, we can use

such transformations to modify P (z) and Q(z) without loss of generality. Additionally,

by rescaling the x variable, and shifting the spectrum, we reduce our analysis to one of

the following four canonical forms:

P (z) Q(z) z(x) U(x)

Ia −1 2z x x2

Ib −4z 4z − 2 x2 x2,

II −z2 −(2A + 3)z + 1 ex 1
4
e−2x − (A+ 1

2
)e−x,

III z(1− z) (A− 3
2
)z + 1−A cosh2(x

2
) 1

4
(1

4
− A2)sech2(x

2
).

Table 1. Shape-invariant potentials on the line

By Proposition 1, the Q(z) in cases Ia, Ib, and III is the most general form for

which U(x) is non-singular. In case II, we use a translation of the x variable to fix the

form of Q(z). Thus, we have derived the classical shape-invariant potential families: the

harmonic oscillator (Ia) (Ib), the Morse potential (II), and the hyperbolic Pöschl-Teller

potentials (III). Each of these potential forms is discussed in more detail below.

Let us now show that these potentials are shape-invariant by construction. A

parameterized family of potentials is called shape-invariant if the ground state Darboux

transformation acts by changing the potential parameters, but leaves the form of the

potential invariant. For the operators in question, the ground state energy is λ = 0, and

hence the corresponding factorization is given by

H =
(

−(−P )
1
2∂z +

1
2
(Q− 1

2
P ′)(−P )−

1
2

)(

(−P )
1
2∂z +

1
2
(Q− 1

2
P ′)(−P )−

1
2

)
∣

∣

∣

z=z(x)
,

where z = z(x) is the change of variable defined in (8). The commutation of the factors

produces a Schrödinger operator Ĥ, which corresponds to the algebraic operator

T̂ = P (z)∂zz + Q̂(z)∂z ,

where

Q̂ = P ′ −Q. (14)
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For this reason, the forward Darboux transformation for these potentials produces

another potential (11) of the same form, but with potential parameters modified by

(14).

3.3. Algebraic deformations.

Now, let us isolate the values of the energy and shape parameters for which the

backward Darboux transformation of the shape-invariant potentials yields an algebraic

deformation. We will say that a Darboux transformation is an algebraic deformation,

when the derivative of lnφ in (3) is either a rational function, or a composition of a

rational function with an exponential. As per (9)(13), for the shape-invariant potentials

under discussion, the factorization function is of the form

φ(x) = ep(z(x))f(z(x)),

where p(z) is a polynomial, z(x) is an elementary function, and f(z) is a hypergeometric

function. We will say that such an f(z) is of polynomial type if f ′(z)/f(z) is a rational

function. We observe that

(lnφ(x))′ = p′(z(x))z′(x) +
f ′(z(x))

f(z(x))
z′(x).

Thus, to obtain an algebraic deformation we must demand that f(z) be of polynomial

type, with f(z) non-vanishing in the range R of z(x) (see Proposition 1).

The regular solution of the confluent hypergeometric equation [29, Sec. 6.1],

zy′′(z) + (c− z)y′(z)− ay(z) = 0, (15)

is given by the confluent hypergeometric function

y(z) = Φ(a, c, z) = 1F1(a, c; z).

It can be shown [29, Sec. 6.9] that solutions of polynomial type exist if and only if either

a or c − a is an integer. These solutions, expressed in terms of generalized Laguerre

polynomials La
m(z), m = 0, 1, 2, . . ., are given below:

y1(z) = Φ(a, c; z) a = −m,

∝ Lc−1
m (z)

y2(z) = z1−c Φ(a− c+ 1, 2− c; z) c− a = 1 +m,

∝ z1−cL1−c
m (z)

y3(z) = ezΦ(c− a, c;−z) c− a = −m,

∝ ezLc−1
m (−z)

y4(z) = z1−cez Φ(1− a, 2− c,−z) a = m,

∝ z1−cezL1−c
m (−z)

(16)

In general, we have y1(z) = y3(z) and y2(z) = y4(z) [29, Sec. 6.4].

The regular solution of the hypergeometric equation [29, Sec. 6.1],

z(1− z)f ′′(z) + (c− (a + b+ 1)z)f ′(z)− abf(z) = 0, (17)
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is given by the Gauss hypergeometric function

f(z) = F (a, b, c; z) = 2F1(a, b, c; z).

Solutions of polynomial type exist if and only if (17) is of so-called degenerate type. This

means that the monodromy group around one of the regular singular points 0, 1,∞ is

trivial [29, Sec. 2.2]. These solution, expressed in terms of Jacobi polynomials P
(α,β)
m (z),

are shown below:

f1(z) = F (a, b, 1 + a+ b− c; 1− z), a = −m,

∝ P
(α,β)
m (2z − 1) α = b− c−m, β = c− 1

f2(z) = z1−c(1− z)c−a−b F (1− a, 1− b, 1− a− b+ c; 1− z) a = m+ 1,

∝ zβ(1− z)α P
(α,β)
m (2z − 1) α = c− b− 1−m, β = 1− c

f3(z) = (1− z)c−a−bF (c− a, c− b, 1− a− b+ c; 1− z) c− a = −m,

∝ (1− z)αP
(α,β)
m (2z − 1), α = −b−m, β = c− 1

f4(z) = z1−cF (a+ 1− c, b+ 1− c, 1 + a+ b− c; 1− z) c− a = m+ 1,

∝ zβP
(α,β)
m (2z − 1), α = b− 1−m, β = 1− c

(18)

We will need (16) to construct algebraic deformations of the Harmonic oscillator and

the Morse potential, and (18) to construct the algebraic deformations of the hyperbolic

Pöschl-Teller potential.

3.4. The Harmonic oscillator.

The general solution of

− φ′′(x) + Uho(x)φ(x) = λφ(x), Uho(x) = x2, (19)

is given by

φho(x;λ,A0, A1) =
(

A0Φ
(

1
4
− λ

4
, 1

2
; x2

)

+ A1 xΦ
(

3
4
− λ

4
, 3

2
, x2

))

e−
x
2

2 , (20)

The nth bound state is

ψho,n(x) ∝ e−
x
2

2 Hn(x) ∝

{

φho(x; 1 + 2n, 1, 0), n even,

φho(x; 1 + 2n, 0, 1), n odd,
(21)

where Hn(z) denotes the n
th Hermite polynomial. For λ < 1, the nodeless solutions of

(19) are given by

φho(x;λ, 1, t), |t| ≤ 2
Γ(3

4
− λ

4
)

Γ(1
4
− λ

4
)
, (22)

with the extreme values of t corresponding to φ±. This follows from the asymptotic

properties of Φ for large x [29, Sec. 6.13.1].

Applying (16) with c = 1/2 and a = 1/4− λ0/4, c.f. (20), it follows that algebraic

deformations only occur when the factorization energy λ0 is an odd integer. We rule

out y1(z) and y2(z) because we need λ0 < 1. We rule out y4(z), because (22) shows that

the corresponding eigenfunction always has node. Thus, we are left with factorization

functions of the form

φ
(m)
ho (x) = e−

x
2

2 y3(x
2) = φho(x;−1− 4m, 1, 0) ∝ e

x
2

2 H2m(ix).
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In this way we obtain the following algebraic deformations of the harmonic oscillator:

U
(m)
ho (x) = x2 − 2 ∂xx(logH2m(ix))− 2, m = 0, 1, 2, . . . . (23)

-3 -2 -1 1 2 3
x

10

-10

-20

-30

U

Figure 1. Deformations U
(m)
ho (x) of the harmonic oscillator for m = 0, 1, 2, 3

The harmonic oscillator is shape invariant, and so the zeroth deformation is again

a harmonic oscillator, albeit with a spectral shift. The potentials and eigenfunctions

of the higher deformations are described in [30, 31]. The full, two parameter family of

backward transformations is discussed in [9].

The new spectral minimum is −1− 4m, and the new ground state is a multiple of

ψ
(m)
ho,0(x) ∝ (φ

(m)
ho (x))−1 ∝ e−

x
2

2 (H2m(ix))
−1.

The rest of the spectrum is unchanged. The Darboux transformation corresponds to

the operator

α
(m)
ho = ∂x − ∂x log

(

e
x
2

2 H2m(ix)
)

= ∂x − x−
4imH2m−1(ix)

H2m(ix)
.

Consequently, the higher bound states are

ψ
(m)
ho,j ∝ α

(m)
ho [ψho,j−1] = e−

x
2

2 (H2m(ix))
−1 p

(m)
j (x), j = 1, 2, . . . ,

where

p
(m)
j (x) = 2(j − 1)H2m(ix)Hj−2(x)− 2xH2m(ix)Hj−1(x)

− 4imH2m−1(ix)Hj−1(x).

Thus, the even polynomials

qk(z) = p
(m)
2k (x), z = x2, k = 1, . . . , n

together with q0 = 1, span an invariant (n + 1)-dimensional submodule of Pn+m. The

odd polynomials

rk(z) = x−1p
(m)
2k+1(x), k = 0, . . . , n
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also span an (n + 1)-dimensional invariant submodule of Pn+m. Therefore, algebraic

deformations of the harmonic oscillator are exactly solvable by polynomials.

3.5. The Morse potential.

The Morse potential [18] has the form

Umo(x) = −(A + 1
2
)e−x + 1

4
e−2x. (24)

The function

φmo(x; k, C+, C−) =
∑

±

C±e
±kx− 1

2
e−x

Φ(∓k − A, 1∓ 2k, e−x) (25)

is, generically, the general solution of the corresponding Schrödinger equation

−φ′′(x) + Umo(x)φ(x) = −k2φ.

In the singular case where 1− 2k is a non-positive integer, the general solution can be

given as

φmo(x; k, C+, C−) = C+ e
kx− 1

2
e−x

Ψ(−k −A, 1− 2k, e−x) (26)

+ C− e
−kx− 1

2
e−x

Φ(k − A, 1 + 2k, e−x),

where Ψ is the irregular solution of the confluent hypergeometric equation.

There are no bound states if A ≤ 0, and dAe bound states otherwise, with the nth

bound state is

ψmo,n(x) ∝ φmo(x,A− n, 0, 1) ∝ e(n−A)x− 1
2
e−x

L2(A−n)
n (e−x), 0 ≤ n < A. (27)

We will focus on deformations of potentials with bound states only. For A > 0, the

spectral minimum is −A2, and hence we must have

A < |k|. (28)

In the non-singular case we have by [29, Sec. 6.13.1]

φ+ = φmo(x; k, 0, 1), (29)

φ− = φmo

(

x; k, 1,−
Γ(1− 2k)

Γ(1 + 2k)

Γ(k −A)

Γ(−k − A)

)

. (30)

In the singular cases, when 2k − 1 or A+ k is 0, 1, 2, . . ., we have

φ− = φmo(x; k, 1, 0). (31)

The above hold for k > A. For k < −A, the order of C+, C− is reversed.

To obtain algebraic deformations we apply (16) with a = −k − A and c = 1− 2k,

and consider the four possible factorization functions

φi(x) = ekx− 1
2
e−x

yi(e
−x), i = 1, 2, 3, 4,

in turn.
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Let m be a non-negative integer. For φ1 we need k+A = m, which by (28) implies

that A < m
2
. Hence, by (25) (31),

φ1(x) = φmo(x;m− A, 1, 0) = φ−(x),

and therefore it generates an isospectral deformation.

For φ2(x) we need 1 − k + A = m, which by (28) implies A < m
2
− 1

2
. Hence, by

(25) (29),

φ2(x) = φmo(x; 1 + A−m, 0, 1) = φ+(x),

and therefore it also generates an isospectral deformation.

For φ3(x) we need k − 1−A = m, and hence by (25)

φ3(x) = φmo(x;m+ 1 +A, 1, 0).

By (30) this function is nodeless if and only if

Γ(1− 2k)

Γ(−k − A)
=
Γ(−1− 2A− 2m)

Γ(−1− 2A−m)
> 0, (32)

which holds for even m, and fails for odd.

For φ4(x) we need k + A = −m. Hence,

φ4(x) = φmo(x;−m−A, 0, 1) = φ+(x)

and therefore it generates an isospectral deformation.

It follows that the only algebraic deformations of the Morse potential corresponding

to backward transformations, correspond to the factorization function

φ(m)
mo
(x) = φ3(x) ∝ e(m+A+1)x+ 1

2
e−x

L−2(1+m+A)
m (−e−x), A > 0, m even.

The resulting potentials have the form

U (m)
mo

(x) = −(A + 3
2
)e−x + 1

4
e−2x − 2∂xx

(

logL−2(1+m+A)
m (−e−x)

)

. (33)

The Darboux transformation corresponds to the operator

α(m)
mo

= ∂x − ∂x(logφ
(m)
mo
)

= ∂x − (1 +m+ A) + 1
2
e−x +

e−x r′m(e
−x)

rm(e−x)
,

where

rm(z) = L−2(1+m+A)
m (−z).

Applying α(m)
mo

to the bound states (27), we infer that the bound states of the deformed

potential are

ψ
(m)
mo,j(x) =

(

e(j−A)x− 1
2
e−x

rm(e−x)

)

p
(m)
j (e−x),

where

p
(m)
j (z) = qj(z)rm(z)(z + n−m− 2A− 1)− z q′j(z) rm(z) + z qj(z) r

′

m(z)

qj(z) = L
2(A−j)
j (z).
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Note that the p
(m)
j (z) are polynomials of degree j +m+ 1, and hence, for every n, the

polynomials

1, p
(m)
0 (z), p

(m)
1 (z), . . . , p(m)

n (z),

span a codimension m invariant subspace of Pm+n+1(z). We have demonstrated that

algebraic deformations of the Morse potential are exactly solvable by polynomials.

-3 -2 -1 1
x

-100

-200

100

U

Figure 2. Algebraic deformations U (m)(x) of the Morse potential for A = 2.5 and

m = 0, 1, 2 and 3.

3.6. The hyperbolic Pöschl-Teller potential.

The hyperbolic Pöschl-Teller potential [19], which includes the class of reflectionless

1-soliton potentials [32], has the form

Upt(x) =
1
4

(

1
4
− A2

)

sech2(x
2
). (34)

The general solution [29, Sec. 2.9] of the corresponding Schrödinger equation

−φ′′(x) + Upt(x)φ(x) = −k2φ(x)

can be given as

φpt(x; k, C0, C1) = cosh(x
2
)

1
2
−A

{

C0 F (−
A
2
+ 1

4
+ k,−A

2
+ 1

4
− k, 1

2
;− sinh2(x

2
))

+ C1 sinh(
x
2
)F (−A

2
+ 3

4
+ k,−A

2
+ 3

4
− k, 3

2
;− sinh2(x

2
))
}

,

where F (a, b, c; z) also denotes the analytic continuation of the hypergeometric function

to Re(z) < 0. For A > 1/2 , the potential (34) has dA− 1
2
e bound states

ψpt,j(x), 0 ≤ j < A− 1
2
.

The even bound states are

ψpt,2i(x) ∝ φpt(x;
A
2
− i− 1

4
, 1, 0) (35)

∝ cosh(x
2
)

1
2
−A P

(− 1
2
,−A)

i (cosh x).
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The odd ones are

ψpt,2i+1(x) ∝ φpt(x;
A
2
− i− 3

4
, 0, 1) (36)

∝ sinh(x
2
) cosh(x

2
)

1
2
−A P

( 1
2
,−A)

i (cosh x).

We focus on deformations of potentials with bound states only, i.e., A > 1
2
. The

spectral minimum is −(1
2
−A)2. For |k| > 1

2
−A, the nodeless solutions of (19) are given

by

φpt(x; k, 1, t), |t| ≤ 2
Γ(3

4
+ k − A

2
)Γ(3

4
+ k + A

2
)

Γ(1
4
+ k − A

2
)Γ(1

4
+ k + A

2
)
, (37)

with the extreme values of t corresponding to φ± [29, Sec. 2.3.2, Sec. 2.10].

To obtain algebraic deformations we apply (18) with

a = 1
4
+ k − A

2
, b = 1

4
− k − A

2
, c = 1− A, (38)

and consider the four possible factorization functions

φi(x) = cosh(x
2
)

1
2
−Afi(cosh

2(x
2
)), i = 1, 2, 3, 4.

We rule out φ2(x) and φ3(x) because these are odd functions, and hence have a node.

The factorization functions of the form

φ1(x) = φpt(A,
A
2
− 1

4
−m, 1, 0)

∝ cosh(x
2
)

1
2
−AP

(− 1
2
,−A)

m (cosh(x))

are nodeless for m > A− 1
2
. The factorization functions of the form

φ4(x) = φpt(A,−
A
2
− 1

4
−m, 1, 0)

∝ cosh(x
2
)

1
2
+AP

(− 1
2
,A)

m (cosh(x))

are nodeless for all m = 0, 1, 2, . . ..

Thus, we see that there are two series of algebraic deformations. In order to study

deformations for all possible m, we focus on the latter series. The resulting potentials

have the form

U (m)
pt

(x) = −1
4
(A+ 1

2
)(A+ 3

2
) sech2(x

2
)− 2 ∂xx

(

logP
(− 1

2
,A)

m (cosh x)
)

. (39)

The Darboux transformation corresponds to the operator

α(m)
pt

= ∂x − ∂x log φ4(x)

Applying α
(m)
pt to the even bound state functions (35) yields

ψ
(m)
pt,2j(x) = µ(m)(x) s

(m)
j (w) (40)

where

µ(m)(x) =
cosh(x

2
) sinh(x)

(w + 1)qm(w)

w = 2z + 1 = cosh(x)

s
(m)
j (w) = (w + 1)

{

p′j(w)qm(w)− q′m(w)pj(w)
}

− Aqm(w)pj(w),

qm(w) = P
(− 1

2
,A)

m (w)

pj(w) = P
(− 1

2
,−A)

j (w).
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-4 -2 2 4
x

-20

-40

U

Figure 3. Algebraic deformations U
(m)
pt (x) of the hyperbolic Pöschl-Teller potential

(39), with A = 4 and m = 0, 1, 2 and 3.

Hence, the deformed operator, conjugated by the gauge factor µ(m)(x), preserves

the codimension m submodule of Pm+n(z) spanned by s
(m)
j (w), j = 0, . . . , n. A

similar result holds for the deformation of the odd bound states (36). Therefore,

algebraic deformations of the hyperbolic Pöschl-Teller potential are exactly solvable

by polynomials.

4. Exceptional monomial modules.

In this section we characterize the algebraic structure of the first-fold deformations

(m = 1) described in the preceding section. We will show that this is precisely the class

of exactly solvable operators that preserves the infinite flag of polynomial modules

P
(1)
0 ⊂ P

(1)
2 ⊂ P

(1)
3 ⊂ . . . ⊂ P(1)

n ⊂ . . . , (41)

where

P(1)
n = span{1, z2, z3, . . . , zn}, P

(1)
0 = span{1}. (42)

Will will call such modules exceptional monomial modules. They are exceptional in

the sense that the family of second order operators that leave them invariant is very

rich [22, 25]. To this effect, let us begin by the following

Proposition 2 A second-order differential operator preserves P
(1)
n if and only if it is a

linear combination of the following 7 operators:

T
(+2)
2 = z4∂zz + 2(1− n)z3∂z + n(n− 1)z2 , (43)

T
(+1)
2 = z3∂zz − (n− 1)z2∂z, (44)

T
(0)
2 = z2∂zz , (45)

T
(−1)
2 = z∂zz − ∂z , (46)

T
(−2)
2 = ∂zz − 2z−1∂z , (47)
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T
(0)
1 = z∂z , (48)

T
(0)
0 = 1. (49)

A proof of the Propostion is found in [22, 25]. If the linear combination contains the

raising operators T
(+2)
2 and T

(+1)
2 then the operator will preserve P

(1)
n but not the whole

flag (41). These cases are called quasi-exactly solvable in the literature [15, 16, 17] and

will be analyzed in detail in [25]. Since we restrict to exactly solvable cases, we shall

consider only the following linear combination

T = p2T
(0)
2 + p1T

(−1)
2 + p0T

(−2)
2 + q2T

(0)
1 , (50)

where the additive constant has been neglected. This can be written as

T = P (z)∂zz +Q(z)∂z , (51)

where

P (z) = p2 z
2 + p1 z + p0, (52)

Q(z) = q2 z − p1 − 2p0 z
−1, (53)

are quadratic polynomials whose coefficients p2, p1, p0 and q2 are arbitrary real numbers.

The exceptional monomial module P
(1)
n is invariant with respect to scaling of the z

variable. By also allowing rescaling of the physical variable x, it suffices to consider the

following canonical cases.

P (z) Q(z) z(x)

Ia (1− z)(z + 2 + 2A) q2z + 2A+ 1− 4(1 +A)z−1 (3
2
+ A) cosh(x)− A− 1

2

Ib z(1− z) q2z − 1 cosh2(x
2
)

Ic −(1 + z2) q2z + 2z−1 sinh x

IIa −(z − 1)2 q2z − 2 + 2z−1 −(2A + 3)ex + 1

IIb −z2 q2z ex

IIIa 8(1− z) q2z + 8− 16z−1 2x2 + 1

IIIb −4z q2z + 1 x2

IV −1 q2z + 2z−1 x

Table 2. Second-order operators preserving the exceptional monomial module

In cases Ib, IIb, IIIb, the operator is of the form shown in (13), and therefore

preserves the full Pn and not just the exceptional module P
(1)
n . Thus, these cases

describe undeformed shape-invariant potentials. Cases Ic and IV correspond to singular

potentials, and will not be discussed further.

Proposition 1 shows that the non-singular potentials in case Ia correspond to

q2 = ±(A+ 3
2
)

Both possibilities yield the same potential form, so we take the former. Using (11) (39)

we have

U(x) = − 1
4
(A+ 1

2
)(A+ 3

2
) + 2

k cosh x− 1

(cosh x− k)2
, k =

2A+ 1

2A+ 3
,
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= U (1)
pt
(x) + (5

4
+ A

2
)2.

For similar reasons, for case IIIa potentials we must take q2 = 4. Using (11) (23)

we obtain

U(x) = 3 + x2 +
8

2x2 + 1
−

16

(2x2 + 1)2
,

= U
(1)
ho (x) + 5

For the case IIa, we translate the x variable and do a spectral shift to set q2 = 2A+3.

In this way, (11) (33) yields

U(x) = (2 +A)2 + 1
4
e−2x − (A+ 3

2
)e−x +

2kex

(1− kex)2
, k = 2A+ 3,

= U (1)
mo
(x) + (2 +A)2.

We should note that the above potential form is non-singular only if 2A+3 < 0. This is

unavoidable, in as much as we showed in section 3.5 that the odd deformation of Morse

potentials with bound states produce singular potentials.

In summary, we have demonstrated that non-singular Hamiltonians that are exactly

solvable by an infinite flag of exceptional monomial modules and not by the ordinary flag

(1) are precisely the first-fold algebraic deformations of the non-singular shape-invariant

potentials.

Although these new potentials preserve a full flag of polynomial subspaces, and

therefore are exactly solvable in the sense defined by Turbiner in [15], they do not possess

a hidden sl(2) symmetry algebra structure. This shows that the exactly solvable class

is wider than the Lie-algebraic one.
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