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SUMMARY. (X, A, %) be an exparimont and m & messure such that % exigts for

each P. It is shown that a subfleld 43 is pairwise eufficient and contains carriors iff g can by

factored 83 gp(z) h(z, 4) ou sats A of m o-finite measare. Tho thoorem ia proved using pivotal
moasures and two construotions of the pivotal mesaure is also givon. Finally,

o an examplo is
given to show that the thoorem cannot be improved.

1. INTRODUOCTION
An experiment or & statistical structure is & triplet (X, A, 2) consisting
of & set X, a o-field A of subsets of X and a family # of probability measures
on (X, A). A measure m on (X, A) is said to dominate 2, if m dominates

each P in # and further if each P in X has a density “% with respect to m.

Let & be & subfield of A. We would say that {‘% Pep)hus

Neyman factorisation with respect to & or that there is a /3-measurable
factorisation if there exist &-messurable funotions gp and an 7 measurable

function b such that %(z) = gp(z)k{z)[m]. Tu this paper we are concerned
with the relationship between the notion of suffiviency and subfields admitting
factorisation.

The earliest Neyman factorisation theorem is in the case when m is
o-finite. It was proved by Halmos and Savage (1949), that when m is o-finite
“A subfield & of A is sufficient iff there is & 4&2-measurable factorisation”.

In this oase, to obtain the factorisation, Halmos and Savage, first show the
existence of & measure A satisfying

(&) A=, ie, N4)=0iff P(4)=0 for all P in X.
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(b) A& is sufficient iff there ia & version gp(z) of % which is G-mea-
surable. Having obtained A, the required factorisation is obtained by writing

@ _@» a0
am = W Im @ gy

The situation is somewhat different when m is not o-finite. On the
one hand simple examples can be constructed where (i) there is & 8-measur-
able factorisation but & is only pairwise sufficient, (ii) & is pairwise sufficient
but there is no &-measursble factorisation. On the other hand, it is known
that the existence of a &-measurable factorieation implies that & is pairwise
sufficient. It is thus clear that factorisation involves a notion somewhere
in between pairwise sufficiency and sufficiency. It is shown in Ghosh,
Morimoto and Yamada (1981) that the appropriate notion is “pairwise suffi-
cient, containing carriers”.

When m is localizable it is proved in Ghosh, Morimoto and Yamada
(1981) and Yamada (1981) that ‘4 is pairwise sufficient and contains carriers
iff % = gp.h where gp is @ measurable and b is A-measurable”. In a

further generalisation, when m is only locally localizable (see Ghosh et al,,
1981, Yamada, 1081) a similar theorem holds excpet that & is only locally
A-measurable with respect to m. In both these situations, motivated by
the g-finite case, one proceeds to construct a factorization as follows. First
get o measure A, satisfying

(&) P=2Aje, A(4)=0iff PA)=0% PeX.
(b’) @ is pairwise sufficient and contains carriers iff there is & version
gp(z) of %1—; which is 4&-measurable.

Such measures will be called pivotal measures. Having got a pivotal measure
A, to obtain a factorisation, I | 4 i8 defined for sets 4 of m o-finite measure.
These g/—'-/}l | 4 are then put together using localizability or local localizability,
to get a Af-messurable or locally A-measurable version of g
In this paper we give two constructions of a pivotal measure, without

any assumptions on m and prove a weeker form of the Neyman faotorisation
theorem, From this theorem, the Neyman factorisation theorem in the
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localizable cases follow as corollaries. We give in the last seotion an examply

to show that, without additional assumptions on m, our form of the Neymay
factorisation theorem cannot be improved.

2. NOTATIONS AND PRELIMIARIES
Let (X, A, ®) be a statistical structure. Then for any P in # we denote
by Np={d4 e A:P(4)=0} and by NW’pOpNP' We write P=mn if

N = Ny, for & measure m.
We now define the notion of a carrier (Yamada, 1881),

Definition :  Let (X, A, #) be o statistical structure and Pe®. A g
Cp in 2 is 8aid to be a corrier of P with respect to (X, A, ®) if P(Cp) =1

and further if 4 ¢ A, 4 C Cp and P(4) = 0 then 4 eN’,

Since the underlying statistical structure would generzally be clear from
the context, we sholl write carrier of P rather than carcier of P with respest
to (X, A, P).

Definition : (X, A, #) is said to contain carriers if every P in X has
a carrier Op.

It ia eaay to construct statistical structures not containing carriers. The
next proposition states that the condition of containing carriers is equivalent
to the existence of & dominating measure. This proposition already appears
in (Diepenbrock, 1971).  Also see Ghosh et al., (1981). As Diepenbrock’s paper
is unpublished we will here sketch his proof for convenience.

Proposition 1: (X, A, ) conlains carriers iff there is a measure p on
(X, A) such that

i) P=p
(ii) % exists for every P in P.

Proof : Supposs there is a u-satisfying (i) and (ii). Then for Cp choose
; dP
= L - 0}.
Cp {a: Em > }
To see the converse, consider
F=F: ) FCA
(ii) Fi, Foe Fand Fy # Fy== F\ () F; ¢ N(#)
(ii) F ¢ F implies there oxists a P in # such that P(F)>0

and F—Cpe NW}'
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7 is partislly ordered under inclugion. An spplication of Zorn’s lerama
yields & maximal element & = {F,:y¢T} in F. Then the messwe

defined by (X, A) by
A= Er P(A()F,) satisfies (i) and (ii) of the proposition.
e

3. CONSTRUCTIOR OF FIVOTAL MEASURE-(l)

Let (X, A, P) be a istioal structure containing oarriers. Let & be
the smallest subfield which is pairwise sufficient and contains carriers. The
ist of such a subfield is shown in Theorem 5 of (Ghosh et al., 1981).
Let {Cp : P ¢ %} be the carriers of ® which belong to 4. Now consider the
statistical structure (X, &, #). This statistical structure then contains carriers
and imitsting the proof of proposition 1, we can get & maximal decomposi-

tion {Fy:y ¢ I}, F,¢ 3 and then construct a measure A on (X, A) by

A(d) = ,);‘,r PYA(YF,).

It io easy to see that, on &
i =2
Py
(ii) g exist for every P in .
8
We shsll next show that (i) and (ii) above hold on A itself and then
show that A is indeed a Pivotal measure.
Proposition 2: On (X, A)
(i) =2

(i) % exists for each P in 2.

Proof: P A is trivisl. To see that # €A consider 4 in A with
Nd)=0. Fix Pin #. There is a countable set of Fy’s, say, F,,F,, ...
such that p((;') Fp) = 1. Now sinos A(d) =0, for all § PARF,) = 0.

-
Futher F, G 0,y 80 P(A()F,) = 0. Honce, P(4) = E PA(\F,) = 0.
The above ergument shows also that P is concentrated on & set of positive
o-finite measure. Hence % exists.
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Proposition 8: A subfield 8, of A is pairwise sufficient and conlains
carviers iff for each P in 2, there exisls o Bymeasurable version of 73—

Proof : Recall that @ is the smallest pairwise sufficient o-field containing
carriers of #. It can be easily seen from the construction of A that if

- dP .
Fy Fppo6 @ and if P(LlJIr‘,') =1 Thendi—P,‘I(t." ., )(z) is 8 ver-
1

sion of ?—‘f Since 4 is pairwise sufficient 1 .

(8.)

B-measurable and hence is & &-measurable version of -‘:—; Now suppose

can be taken to be

R}

8, is pairwise sufficiont and contains carriers then 8 C &,V NJ" By the
above remark, there is o vorsion of ﬁ which is 8, VN » measurable and
consequently there is also & &, measurable version.

Suppose P, 2 belong to # and admit &8,-measurable densities —+ and

cb\
dP
dQ &P Tdx_ .
n Then ~5— Fro d.P+Q is o B, -measurable version of dP+Q This shows
T

that 8, is sufficient for (P, Q).
Cp= {z : % >0 }

4. CONSTBUOTION OF PIVOTAL MEASURE~(2)

Support of P oan be obtained by setting

In this seotion we obtain a Pivotal measure for a atructure (X, A, ®)

containing carriers, out of a pivotal measure for statistioal sturctures domina-
ted by & locally localizable measure.

Let (F,: y¢T) be the maximal decomposition of Proposition 1, and

4 the measure construoted therein. Firstly we assume that the measure §
is complete. Let us define a new space X’ by

X' = '\‘J‘_ (Fy, )
=(BCX:
(i) B)(F,,y) =(B,,y) implies B,& A
(i) There exiats a set A in A auch that for all y. (ByA A)OF, € Ng-
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We now define a measure x’ on (X', A) by p'(B) = p{A) where A isthe set
satisfying ¥ 7, (ByA A)(\Fy6 Ny The set A will be ocalled as the set
approximning B. Then we have the following results most of which are easy
to prove.

(1) (X', A, #) is a cowplete measure space such that for all y
B (Fyy)= ME,).

(2) {(F,;7y):7 eT}isa disjoint maximal decomposition of x’.

(3) 4’ is locally localizable.

This follows from & theorem of Dipenbrook (1971, Theorem 4.5.2) that a
complete measure having a disjoint maximal decomposition is locally localiz-
able.

(4) For any 4 in A, we define T"(4) by
)= U (A(\Fy.y)
var

Then T'(4) e A.
(5) For any B ¢ A, there exists a set 4 such that 4'(B A T'(4)) = 0.

(6) For any PeX let us define & probability measure P’ on (X', A')
by P'(B)=P(4) where 4 is a set approximating B and put
X =(P:Pec¥). Then (X', A, 7) is dominated the locally
localizable measure u’ (= *).
This follows from the fact that 7'(T'p) 6 A, (') and P'(T"(Te))=P(Tp)=1
where Tp = {:—: > 0} and A(s') is all eets in A of o-finite, p’ measure.
From (6), there exists a pivotal measure A for (X', A, #)(Yamada, 1881,
Theorem 3). Let us define a measure A on (X', A) by
A(d) = XN(T'(4)), e A
We will prove that this measure A is a pivotal measure for (X, A, #).
For this purpose we will need some more results.

(7) For any subfield & of A, we can define a subfield & of A& by
8 =BCX:
(i) BfXF,, y) = (B,,v) implies B, ¢ Aforallyel'}

(ii) There exiats & set A € 8 such that (B, A A)()F, ¢ N, for all y ¢ I".
A2
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(8) For any _¥'-measureble non-negative function f, there exists a nop.
negative .#-measurable function f such that

{f #f}\Fye N, for all y.
where f, is an _f-messurable function defined by
f(zy) if zeF,
Slz) =
0 otherwise,

(8') For any non-negative & measurable function ¢’ there exists a non.
negative &-measurable function g such that

{7 # 9)\Fys Ny for all yel.

(9) For any A ble gative funotion f there exists a non-
negative f-measurable function f’ such that

{f=f)W,eN, for all yeI

Thess, (8), (8") and (9) can be proved step by step starting from an indjeator
funotion.

(10) If 8 is pairwise sufficient and contains carriera then B’ is pairwise
sufficient for (X, L4, #’) and contains carriers.

Let Cp be a carrier of P belonging to 8. Then 7"(Cp) is & oasrier of P
and belongs to &'. Pairwise sufficiency will follow from (8),

We now turn to the measure A.
(11) # = A and each P in # has a density with respeot to A.

Proof : Let p(z’, P’} be any version of the density of P’ with respect to
X'. Then from (8), there exists a non-negative ,f-measurable function g(z, P)
such that

{g(z. P) 5 p,(z, P)YAF, e N(u) for all y in T,
Let us denote by Tpr = {’ : plz, P') > 0) e A,(X'). Hence Tp'= l;]ﬂ.

Eje A snd AL(E)) < 0. Let By be a set approximating & and put Fp=l’% B
Then Fp € Aq(A) and P(Fp) = 1. Define a function p(z, P) by

qlz, P) if zeFp
Pz, P) =
0 otherwise.

Then p(z, P) is & version of % .
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(12) Ais a pivotal measure for (X, A, #).

Proof : Let &3 be any subfield whioh is pairwise sufficient and contains
carriers. Then &3’ is pairwise sufficient and contains carriers with respect
to (X', A',#) by (10). Hence there exists for each P’, a &-measurable
version p(z’, P’) of %,_ For this p(z', P’) there is from (11), a version of the
density p(z, P) of P with respect to A. In the proof of (11) the ¢(z, P) can
be taken to be &-measurable by (8'). Since Fp ¢ B, p{z, P) is S-measurable.
Therefore A i8 & pivotsl measure.

We shall next construct s pivotal measure when the measure 4 is not
necessarily complete. For this purpose, let 4 be the completion of A with
respect to x and £ be the extension. Also let P denote the natural extension
of Pto A. Then (X, A, P); where # = P, P ¢ ® and g play the same role
88 (X, A, ®)and g in the preceding case. We have thus a pivotal measure A
for (X, A, #) and it can be readily verified that ’\Iﬂ is & pivotal measure

for (X, A, P).

5. THE NEYMAN FAOTOBISATION THEOREM

In this section we will prove a factorisation theorem under the only
assumption that there exist a dominating measure for the experiment.

Theorem :  Assume that there exists a measure m on (X, A) such that each
Pinﬁhmadnwaygwitbrupmlom. Then a subfield 8 is pairwise
sufficient and contains carriers iff for each P in ® and A € A, (m)

[
G = elzMa, A)im) on 4
uhere gp(z) is @ non-negative B ble funclion and Mz, A) is a non-negative

A-measurable function and vanishes outside A.
Proof : “Only if”* part.

Let, us assume that & is pairwise sufficient and contains carreirs. Also
lot A be a pivotal measure for (X, A4, #). For sny 4 in A, (), there exists
& non-negative Radon-Nikodym derivative on 4 say Kz, 4) of A with respect
tom. Define an ,f-measurable non-negative function on h(z, 4) by

Mz, A),zcd
Mz, 4) =
0 ,xeX—A4A.
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Let gp(z) be & B-measurable version of ;‘—f‘) Then it is clear that

dP
T = grlzible, A)m] on 4.
“Tf part”,
Let Bp = {z : gp(z) > 0} ¢ 8. Then we have

P(X—Bp) )= | gelz)hiz, A)dm = 0 for all 4 in A,(m).
(X-Bp)4

Hence P(Bp) = 1. Next take anv 4 in A such that 4 G Bp and P(4) = ¢,
Then for any B ¢ A, (m) we have

0=PA()B) = A{ 5 Jr2Ikz, Bldm = (gpx)iz, Bydm.

4n nn(La.x)M)
Hence m{A () B {h{z, B) > 0}) = 0. It then follows that for any Q in ¥,

letting B = {;—tﬁ >0 }

o(4n( > s 42 > ) -0
Therefore
[ o= (r,[s% >0))dn=0
An(;;>°
or

Q(A)=Q(Am%ﬁ- >0) =o.

Therefore Bp is a carrier of P.  Next we will prove that & is pairwise sufficient.
Let P, and P, be two measures from #. Denote by BP: and B‘,l the
suppor'a of P, and P, respectively, given by (% > 0) and let B = Bp, Y By,
Define s funotion % on X by
k(z, BP,) on B‘,,l
hz) = Mz, BP’) on B‘P.—B‘,l

0 otherwise.
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Noting that Py and Py are equivalent to m on BP: OBP! it follows that

dp,
T = gp, @2)m)

and

dP,
I = e, (AI2)m).

Sinco B‘,l and Bp, aro in A, (m) so i B. Henco mp, m restricted to B
is o-finite and further

ar,

G = g, (NIna]
B = gy aiemal

The Halmos-Savago theorem now yiclds the sufficiency of & for P, P,.

Corollary 1: It can be easily seen that {h(z, A): A € A, (m)) gives an
m-cross section. Thus if m is localizable or locally localizable, we can replace
{hz, A) : A € A, (m)) by an A-measurable or locully A-measurable function
Mz). This yield the factorisation theorem in Ghosh e al. (1981).

Corollary 2: For each I let A(P) denole the complelion of A by subscts
of P null sets. It can then be easily scen that if there is a function k(z) such that
h(z) = h(x, A)[m] for all A in A, (m); then h(x) is A(P) measurable for each P
and hence A = () Ap, measurable.

Pigp
6. AN EXAMPLE

Apropos to the corollarics in Section 4, if m i3 not locally localizablo
then it may not bo possible to get s singlo function Kzx) to represent
Az, A): A ¢ A}. In this scction wo give cxample of such o situation.

Proposition :  Suppose P =m, then A = A(m) where

Am)={ACX:¥ Fe A, (m)3Bpec A such thal
(AN F)ABpC Np and m(Np) = 0}.

Proof : That A(m) C AP) for all P in P is casy. Therefore

Am) C A

Ltde A= Q_/((I’) and let F e A, (m).
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Since # =m, and F 6 A, (m), there is (see Hulmos and Savage, 1949)
a countable subset of X, say Py, Py, ... such that F C || BP‘ where BP‘
is a support of Py for i = 1, 2, .... For each Py there is a set By ¢ % such that
(4AB)C Ny and PN = 0. Then B = JdBi() Bp) i8 in A aud satisfies
A()FABCN, where m{N)=0.
Remark : Tt follows from the proceding proposition that if there is a
function h(z) representing {h(x, 4), 4 € A, (m)}and if X =m, then Mz) is
necessarily f(m)-mensurable.
We will now give an example where {k(z, A) : A, (m)} cannot be repre-
sented by a single function and consequently o situation where Neyman
factovisation of the form discussed in the introduction does not hold. Our
example is based on some results of Fremlin (1978). Fremlin (1978) gives
example of n localizable spuce (Z, @, p) for which @ = @(u) but which is
not decomposable.  Consequently, it follows from proposition of Fremlin
(1978) that there exist a probability space (Q, a,y) such that the product
measure £ Xy on (ZxL, €xa) is not localizable even if we extend pxy
to e'i..(;my).
Now let X = ZxQ
A = Cxalpxy)
m = puxy
8=2ExN
then (X, A, m) satisfies the following properties
(i) (X, A, m') is not localizable, in fact not even locally localizable;
(i) (X, 8, m’) is localizable;
(i) If {F,:yel} is a maximal decomposition of (X, 8, m’) then it
is also a decomposition of (X, A, m').

Since (X, A, ') is not localizable there is & maximel decomposition
{Ey:v €T} of m" and o set T, C T' such that {E, : y e I'y} does not have en
m essentinl Rupremun.

Define & mensure m on (X, ) by
mA) = w(4) + (4 () By
veTy

(+) Then m is equivalent to m’, and a local density of m’ with respect to m’

does not exist. That is, there does not exist a A-measurable function fl2)
such that

‘I fdm = m’(4) whenever m(4) < co.
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To see this, note that if such a f exists then & == {z : f(z) < 1} is an essential
supremum for (B, :y 6T}
Now let &F =(Fed :0<m'(F) <} and define # = {Pp: F ¢ &}
where

m'(F ) 4)
m'(F)

Pp(d) =
Then
(8) #=m on A, since a & decomposition is also a ¥ decomposition.
(b) & is pairwise suffisient for (X, A, ) and contains carriers of .
We will now show that % cannot be factorised. For suppose

L _ orioiia)

where gp is 8-measurable.
Since Am) = A snd P = m, b is A-measurable.
Now

dPp 1 dm' |
= W"—yp(zm:)

or

o L = w(Fige (2)h(z).

Hence {m'(F)gp(z) : F ¢ & is a 8-measurable orosa seotion. Therefore there
is & g(z) such that Is{z)g(z) = gr(z).m'(F)[m']. and so g(z).hz)Ip(z) = __‘Z: F
80 that g(z).h(z) is a looal density of m' with respect to m. And this ocon-
tradiota (s).
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