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Abstract

Acharya et al. [1] introduced the notion of the robust domination energy of a graph G ,
denoted by εrd(G) through the eigenvalues of an appropriate adjacency matrix and proved
that εrd(G) is the maximum number of edges between D and V − D, where D ranges
over all the minimal dominating sets of G.

In this note, we prove that for any connected graph G of order n, εrd(G) ≥ n− 1, and

this result is best possible for all n ≥ 2. Further, a good characterization of all connected

graphs of order n with εrd(G) = n− 1 is given.
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1. Introduction

In this paper, unless mentioned otherwise, the terminology and notations in graph
theory will be as in West [4].

Given a graph G = (V,E), a subset D ⊆ V is called a dominating set (or, simply a
domset) of G if every vertex in G is either in D or is adjacent to a vertex in D. The
set of all domsets in G is denoted by D(G). A domset is minimal if no proper subset of
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it is a domset of G and minimum if it has the least number γ(G) of vertices amongst all
the domsets in G ; accordingly, the set of all minimal (minimum, respectively) domsets in
G is denoted Dm(G)(D0(G)) (for details, also see [2,3]).

Given a graph G = (V,E) of order p and size q, and a nonempty proper subset
D ⊂ V, say D = {u1, u2, . . . , ut}, we define the boundary matrix BD(G) = (bij)t×(p−t)

of D by letting bij to be the number of edges that join the ith vertex ui of D to the
jth vertex vj of V − D. Clearly then, the ith row sum of BD(G) yields the number
of edges that join ui to the vertices of V − D, so called partial degree dD(ui) of ui

with respect to the given set D, and the sum
∑t

i=1 dD(ui) gives precisely the number
m(D,V − D) of boundary edges of D, viz., the edges that join the vertices of D with
those of its complement D = V −D. Then the D -adjacency matrix of G is defined in [1]
as AD(G) = BD(G) · BD(G)T = (aij)t×t, where “ · ” means usual matrix multiplication
and BD(G)T denotes the transpose of the boundary matrix BD(G).

Definition 1.1. The energy of D, denoted εG(D), is defined as the sum
∑|D|

i=1 |µi|,
where µi are the eigenvalues of AD(G) and |µi| is the usual modulus (called the magni-
tude) of the number µi. The robust domination energy (rd-energy, in short) of the graph
G, denoted εrd(G), is defined as the quantity max{εG(D) : D ∈ Dm(G)}.

The following lemma is basic and gives us an easy method to calculate the domination
energies.

Lemma 1.2. [1] Let D be any minimal domset of any graph G of order n ≥ 2. Then

(i) AD(G) is a nonnegative semi-definite symmetric matrix of order t ; and

(ii) εG(D) = m(D,V −D).

Lemma 1.3. [1] For any simple graph G = (V,E) having size q, εrd(G) = q if and
only if G is bipartite.

Definition 1.4. The energy graph corresponding to a minimal domset D is the subgraph
of G induced by the edges between D and V −D and is denoted by EG(D). Note that,
EG(D) is a bipartite graph.

2. The main Result

All graphs considered here in this section are simple graphs. In this section, we prove
that for any connected graph G of order n, εrd(G) ≥ n−1 and obtain a characterization
of all connected graphs of order n with εrd(G) = n− 1.

Lemma 2.1. Let G0 be an induced subgraph of a connected graph G of order n and
D0 be a minimal domset of G0. Then there exists a minimal domset D of G such that
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(i) D0 ⊆ D and D−D0 is an independent set of vertices of G ( D−D0 may possibly
be empty);

(ii) no vertex of D −D0 is adjacent to a vertex of D0 in G ;

(iii) the energy subgraph of D0 in G0 denoted by EG0(D0) is a subgraph of the energy
subgraph of D in G, namely EG(D) and

(iv) The number of connected components of the energy graph D in G is less than or
equal to that of the energy subgraph D0 in G0.

Proof. Let V1 =
⋃

u∈D0
N [u], where N [u] denotes the closed neighbourhood of u. If

V1 = V (G), then D may be taken as D0. If V1 6= V (G), let u1 be a vertex of V (G)−V1

adjacent to a vertex of V1 ; this is possible as G is connected, and let G1 be the subgraph
of G induced on V2 = V1 ∪ N [u1] ; and D1 = D0 ∪ {u1}. If V2 = V (G) then D1 is a
minimal domset of G1 and {u1} is an independent set of vertices and u1 is nonadjacent
to every vertex of D0 as u1 6∈ V2 ; and also (iii) is obvious. Since u1 is adjacent to some
vertex of V1 and the number C(EG(D)) ≤ C(EG0(D0)), where C(H) is the number of
connected components of the graph H. If V2 6= V (G) then repeated use of the above
selection finally results in a minimal domset D of G satisfying (i)-(iv). This completes
the proof.

In particular, if G0 = K1, then it follows that the energy graph of the selected minimal
domset D of G is connected and hence, we have the following theorem:

Theorem 2.2. For any connected simple graph G of order n, εrd(G) ≥ n− 1.

We now proceed to characterize connected graphs G of order n with εrd(G) = n− 1;
such a graph is called a robust energy maximal graph.

Lemma 2.3. Let G be a robust energy maximal graph of order n. Then

(i) G has no induced subgraph isomorphic to a cycle of even length and also an even
cycle with exactly one chord;

(ii) If G0 is a maximal complete subgraph of G then every vertex of G outside G0 is
joined to at most one vertex in G0 ;

(iii) G has no induced subgraph on 6 vertices v1, v2, v3, v4, v5, v6 such that v1, v2, v3, v4

induces a complete graph and v5, v6 are joined only to v1 and v2, respectively, in
this induced subgraph.

Proof. (i) Let C = (v1, v2, . . . , v2s) be an induced even cycle of G. As in the proof of
Lemma 1.2, we may choose u1 = v1, u2 = v3, . . . , us = v2s−1 and extend it to an indepen-
dent (minimal) domset D as described in the proof of Lemma 2.1. Then the connected
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spanning subgraph induced by the set of edges between D and V −D contains the set
of all edges of the cycle C, and hence this subgraph has at least n edges, which contra-
dicts the extremality of G. If an even cycle C has exactly one chord v2vi, then arguing
with the minimal domset D as above, it follows that εrd(G) ≥ n which contradicts the
extremality of G.

(ii) Let G0 be a maximal complete subgraph of G and suppose there is a vertex u outside
of G0 which is joined to two vertices v, w in G0. As G0 is maximal complete subgraph
there is a vertex x in G0 not joined to u, and hence the subgraph of G induced on
these four vertices u, v, w, x is isomorphic to K4 − e, which is an even cycle with exactly
one chord which contradicts (i).

(iii) If G has such an induced subgraph, then v1, v2 can be extended to a minimal domset
D in G ( proof is similar to proof of (i)) such that the subgraph induced by the set of
edges between D and V − D is connected. However this subgraph contains the cycle
v1, v3, v2, v4, implying that εrd(G) ≥ n, which contradicts the extremality of G.

Lemma 2.4. If G is a block of order n ≥ 3 and G is robust energy maximal, then G
is isomorphic to a complete graph of order n or a cycle of length n, where in the latter
case n is odd.

Proof. Let G be a block of order n ≥ 3 and G be robust energy maximal. Note
that G has at least n edges. If every cycle of G is of even length then G is a bipartite
graph, and by Lemma 1.2, the energy of G is q(G) ≥ n. Therefore we may assume that
G has an odd cycle. Let ω(G) be the maximum order of a complete subgraph in G. If
ω(G) ≥ 4, let G0 be a complete subgraph of G of order c(G). If c(G) ≤ 3, let G0 be
an induced odd cycle of maximum possible length in G. Then we consider two cases and
in both cases we prove that G ∼= G0. Suppose G 6∼= G0. As G is a block there exist two
distinct vertices u, v in G0 and a path P (uv) of length at least two in G such that all
the internal vertices of P (uv) are outside of G0. Then we choose such a path of smallest
possible length joining two distinct vertices of G0.

Case 1. ω(G) ≥ 4.

If the path P (uv) has exactly one internal vertex then K4 − e is an induced subgraph
of G by the maximality of G0. If the path P (uv) has at least two internal vertices then
G has an induced even cycle or an induced subgraph mentioned in (iii) of Lemma 2.3,
contradicting the extremality of G.

Case 2. ω(G) ≤ 3.

The subgraph induced by V (P1) ∪ V (P2) ∪ V (P3) is either an even cycle with a chord
or contains an induced even cycle, which is a contradiction.

We now state and prove the main theorem of this paper.

Theorem 2.5. A connected graph G is a robust energy maximal graph of order n if
and only if



B. D. Acharya, S. B. Rao and T. Singh 143

(a) every non-end block of G is either K2 or an odd cycle, and

(b) every end block of G is either a complete graph or an odd cycle.

Proof. Let G be a connected robust energy maximal graph of order n. Then, by Lemma
2.1, every block B of G is a robust energy maximal graph of order p(B), otherwise B
will have a minimal domset D0 such that the energy of D0 is at least p(B). Then by
Lemma 2.1, this D0 can be extended to a minimal domset D of G satisfying (i) through
(iv) and εG(D) is at least n, a contradiction. Therefore, every block of G, by Lemma
2.4, is a complete graph or an odd cycle. If now a non-end block of G is a complete graph
Kt of order t ≥ 4, then G has an induced subgraph on 6 vertices v1, v2, v3, v4, v5, v6

such v1, v2, v3, v4 induces a complete graph and v5, v6 are joined only to v1 and v2, is
an induced subgraph of G, and by Lemma 2.3 (iii), we get a contradiction. This proves
the necessity of the theorem.

To prove the sufficiency of the theorem, assume that G is a connected graph of order n,
satisfying conditions (a) and (b) of the theorem. Then, it is easy to see that any minimal
domset D of G contains exactly one vertex from each of the end-blocks of G which are
complete graphs and the energy graph of D omits at least one edge from each of the odd
cycles and hence the energy εG(D) is at most n − 1 and therefore, εrd(G) = n − 1 by
Theorem 2.2.
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