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Abstract

In this article, we characterize D-optimal designs for s” symmetric factorial experiments when
observations within blocks are correlated. The motivation to this problem lies in a pharmaceutical
experiment where the experimenter needed to develop a once-daily tablet using a factorial design.
These experiments are usually conducted in healthy human volunteers and the bioavailability is
estimated. Since each subject is administered more than one formulation, the observations within
subjects are correlated. We provide an explicit construction of D-optimal designs for s factorial
experiment with blocks of size s or multiples of s, where observations within blocks are correlated.
We discuss in detail the construction of optimal designs for 2" factorial experiments. We also provide
an analytical proof of the D-optimality when there exist a pair of blocks of odd size and remaining
blocks are of even size.
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1. Introduction

The theory of optimal designs for factorial experiments usually assumes uncorrelated
errors. This paper was motivated by a problem in the pharmaceutical industry where the
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experimenter needed to develop a once-daily tablet formulation that would improve patient
compliance compared to the current marketed formulation administered twice daily. Thege
experiments are usually conducted in healthy human volunteers (or subjects) who were
administered several test formulations separated by drug-washout days. The bioavailability
of each test formulation, as measured by area under the time-plasma concentration curve
(AUC) is the response variable of interest. In general, there are several factors involved in
developing these test formulations. For example, the factors may include type of polymers
to prolong drug release, amount of film coat on the tablet, administration under fed or fasted
state, etc. Since each subject is administered all or selected formulations, the observations
from each subject are correlated. The availability of each subject for the duration of tria]
determines the block size. If all subjects are available for the entire duration then the block
size are equal. However, a situation may arise while planning the trial where few subjects
are available for couple of visits and others may be available for entire duration thereby
leading to different block sizes.

The purpose of the experiment is to estimate a first-order model in the factors
that explain the variation in drug bioavailability. The experimental design question in the
above problem is how to allocate the levels of the factors under consideration to the subjects
or blocks.

There exists numerous articles in the area of continuous optimal regression designs. In
particular, Cheng (1995) and Atkins and Cheng (1995), provide approximate theory for
design of blocked experiments but is of limited use when block sizes are small. Khuri
(1992) discussed the analyses of response surface models with random block effects but
did not consider the design aspect except for orthogonal blocking. Our work complements,
Goos and Vandebroek (2001) who established connection between the design of experi-
ments in the presence of fixed block effects and random block effects and developed an
algorithm to compute D-optimal designs using computation. However, their approach was
restricted to the homogeneous, orthogonally blocked designs. Street and Burgess (2004)
investigated the efficiency of various small sets of choice pairs for estimation of main ef-
fects and two-factor interactions in forced choice experiments in which all attributes have
2 levels. Martin et al. (2004) consider factorial experiments where units are spatially ar-
ranged. However, they assume that there is just one block and that row and column effects
are random.

In this paper, we consider a factorial design when observations within blocks are corre-
lated. We assume throughout that interactions are negligible, so that interest is limited to
precise estimation of main effects. Our theoretical background can be extended to models
that include interactions. After providing preliminary introduction to the model, dependence
structure and estimation in Section 2, we provide an explicit construction of D-optimal de-
signs for s" factorial experiment with blocks of size s or multiples of s in Section 3. We
provide an analytical proof of the D-optimality which complements the proof given by
Goos (2002) for equal block size. In our proof, we also consider the cases where the blo?k
are of different sizes. We provide an analytical proof of the D-optimality when there exist
a pair of blocks of odd size and remaining blocks are of even size. An extension when the{e
exist more than a pair of blocks of odd size can be obtained using the methods detailed in
this paper. In general, the optimal design considered in this paper does not depend on the
intra-class correlation (p) and can be easily constructed.
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2. Notation

In this section, we introduce the notation used throughout the article. Let n be the number
of factors (or covariates), s be the number of levels (or values) associated with each factor {or
covariate) and s” be the number of treatment combinations of all factors (or covariates). Let
each level of the factor (or non-stochastic values of covariates) be denoted by a3, az, . . . , as
for s even or odd. For s odd the levels are symbolically denoted by 0, 1, £2, ..., and by
+1, £3, 45, ..., for s even. Note that the levels for both s odd and even are equally spaced.
Assume that an experiment consists of s" experimental runs arranged in & blocks of sizes
ki, ka, ..., kp such that } ; k; = s". The linear model can be written as

Y=X0+¢, Y

where Y is a vector of s” observations on the response of interest (such as AUC), the vector
of & contains (n + 1) unknown fixed parameters and € is a random error.
The above model (1) can be re-written as

Yi=X0+¢, i=1,2,...,b, 2)

where Y; denotes the observations within block i and is independent of Y; for all i #
j» X; is the design matrix for block i and @ = (u, §), where 8 = (B, B2, ..., ), is
a vector of n linear effects of the main effects and u is the overall mean. We assume
that the observations are grouped into b blocks such that any two observations in the
same block have positive correlation p, and any two observation from different blocks
are uncorrelated. The variance—covariance matrix of the observational vector is given by
Var(Y) = ¢’D (%), %;, ..., 5p) where &; = (1 — p)li, + pJi» DC(., ., ..., .) is a diag-
onal matrix of its arguments, Ji, is a k; x k; matrix of all ones and I, is the identity
matrix of order k;. We assume that the intra-class correlation, p, is known. The prob-
lem of determining optimal designs for estimating the unknown parameters $, 82, ..., p»
will be considered here. The dispersion matrix of the generalized least-squares estimators,

it, ﬁl. cees l}n is given by az[X’D (21'1, Z{l, crey Z;l) X] provided all the parameters
are estimable.
Let

apn a112 v -1 -1 -1
[au An]_xn(zl L5 X 3)

The information matrix (Shah and Sinha, 1989) for estimating the parameter vector § =

(Brs B2r - s Br) s is

1
An | = Ap — —apaj,.
a
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The dispersion matrix of the estimated § is JZA-;;. |- A design is called D-optimal if it
minimizes the determinant of A3}, or equivalently maximizes the determinant of Az 1.

3. Optimal designs for s" factorial experiments with blocks of size s or size a
multiple of s

In this section, we restrict our attention to the construction of s" factorial design with b
blocks of size s or multiples of size 5. Let u; = X/1 = (k;, x;.1, %i 2, .. ., %i.n)’, Where k;
denote the block size of the ith block and x; » denote the sum of the levels for factor & in
block i, fori=1,2,...,&

Theorem 1. For a given number of blocks bof sizek; =dis, fori =1,2,...,b, where
d; are non-negative integers such that Zl__l k; = s", the design providing blocks with the
sum of levels for each factor equal to 0 is D-opnmal for estimating B parameters, i.e., if
(x.-j 10 Xij2s s Xi j,,) is the jth treatment combination in the ith block then Z’;’;l Xijn =
0 Vi, h.

Proof. The information matrix for the estimation of @ given by (3) is
a aiz ] XI z--l
[812 A Z

b
' P
= —-——X-X,'—
L T T A s Em oD

X/11'X;

b
1 P
=—XX- wu,
1—p E(l—p)mp(k,-—l)) o

k]

_— [“"| 0 ] p | _Tiek lz.c: "
= —1 5 2 -
p|os PRYIRT P 1-p Z‘qk,um' ):cu‘” /()

where

1) 1
B = (X1, Xi% .y Xin), C=———,
i (i1, Xi.2 in) i 1+ptki— 1)

b b
1 P 2 P /(1)
ap=——0o "= —F 2| == —f i
1= l—p[ §1+p(k,-—1)‘] 12 El+p(k,-—l) i

and

Ap =

n— N ’(l)
[ IE 21"_1+p(k,—1)2“ ]
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Now

n
1\ ul
[A22.1] € |42} < (.IT;) (S"_'l E a}-)
Jj=1

The equality holds in the above equation when u;(l) =0,orx;;,=0Vi,h. O

The above result for equal block size is given by Goos (2002). We use the above notation
for the analytical proof of 2" case where blocks are of odd and even size.

3.1. Construction of optimal designs for s" factorial experiment

Let us define Permutation Matrices, Py, P;, P3, ..., P;, such that Py = I, and P; is
formed by moving the last column of P; to first place and cyclically moving columns of
Py one step to the right. Similarly, P; (i =3, ..., s) are formed from P;_; matrices. Now,
the s"~! blocks of size s can be formed by taking the rows of [a Pi7a Pj3a ... Pi,a), as
blocks for iz, ..., in ={1,2,...,s).

Let us consider a 3* factorial experiment as an example. Here s = 3, n = 3 and the levels
are —1, 0 and +1. The construction of optimal design with block size 3 is given below. The
permutation matrix and factor levels (a) be defined as follows:

-1 1 00 010 0 01
=(0 ), P1=[0 1 0], P2=|:0 0 l], P3=[1 0 0].
+1 ¢ 01 1 0 0 010

The first block of size 3 (i.e., 3 experimental runs) for 3° factorial experiment is formed as

-1 -1 -1
[a Pa P18]=[0 0 0 ],
+1 +1 +1

where each row in the above matrix represent an experimental run and each column represent
a factor. The first experimental run is a combination of factors (x;, xa and x3) at level —1
(low). Similarly, the second and third experimental runs are combination of all three factors
at levels 0 (medium) and +1 (high), respectively.

Now the second block of size 3 is formed as

-1 -1 0
[a Pa Pza]=[0 0 +1:|.
+1 41 -1

The first experimental run is a treatment combination of factors with x; and x; at level =1
(low) and x3 at level 0 (medium). Note that for the first and second block, the sum of levels

for each factor is equal to 0 (u'](l) = u’z(” = 0). Similarly, the remaining 7 blocks of size

3 can be formed such that u:(l) =0, i =3,...,9. Designs with block size a multiple of s
can be constructed by combining blocks of size s such that u;m =0,i=12,...,b
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4. Optimal design for 2" factorial experiments when observations within the
blocks are correlated

In this section, we will discuss in detail optimal designs for 2" factorial experiments,
when observations within blocks are correlated. The 2" factorial designs are commonly

used in all experimental settings. The D-optimal design when the block sizes are all even
can be obtained by combining blocks of size 2 as outlined in the Section 3.1.

4.1. 2" factorial experiments with blocks of odd size

First let us consider a 2" factorial experiment where a pair of blocks is of odd size and

the remaining blocks are of even size. The information matrix as defined earlier can be
re-written as below

1 lan a’]
0 = —— 2 |
16 l—p[alz Axn
where
b

b
E P 2 ' P 1)
a —2’!— -"—-_"——'—k.’ a . ___...__._._k. A
! S ltpi~D" 2 T+p®-D

i=1
and
2 £ p )
A = 2n-la2- _— —_— ug u’. R

Without loss of generality, let us assume that the first two blocks are of odd size (k; and k2)
and the remaning blocks (k3, . . ., k») are even sized. The blocks of even size are constructed
using methods described in Section 3.1. In the above I(6), note that 41) does not change,

2 P ") . .
however, a’n =—2.i=1 mki“i since x; , =0Vi23 and h.
2 P (hH (D P (1),/(1)
= 2"—1 2 - ——— u’ —_———U d .
Az 2 o [1+p(k1—1)“1 U T -1 2 2

j=1

Since this is a complete factorial set-up, we know that x; » +x2.4, =0 Vh, which imply that

M _ g
n =

Ap =2'L, ~ [ p " p ] VgD,

I+pthh—1) 1+pta—1)

1
Ay = Az — —apaj, (4)
an )
1 [ p ] (). A1)
=Ay — — ky — k| utVu
z an[l-i-p(kl—l)l T+pGa—1 2f 11

=2"I - c(pyuiPu]P, &)
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where

2
L B G S S
“w [§1+P(ki—-l) 6111(1+10(k1—1)kl 1+P(k2‘1)k2)j|'

Theorem 2, For a given number of blocks b, with block sizes multiples of 2 except for two
blocks of odd size, the design is D-optimal if for those two blocks, the sum of levels for each
Jactor is £1.

Proof. Consider the determinant of (5),

|A22] =

21 - c(puiPu®)|

o' II - c*(p)ugl)u'l(l)
- ) 1) (1)

=1-c*(p)u; 'u;

=1~c*(p) (x%.l +xfy 4+ xf.n) ,

where ¢*(p) =c(p)/2". We note that, x} 1, X1.2, ..., X1., cannot be O since k; and k; are odd.
Therefore, |x1.1] 21, Ix12] 21, ..., |x1.n] >1, which implies x? , + x3, +--- +x}, >n.

|A22.11 €1 = nc*(p).

The equality in the above equation holds if and only if x3 1, x12, ..., X1 s areeach 1. 0O

As an extension, we considered two or more pairs of blocks of odd size and the remaining
blocks are of even size. Although we did not derive the optimal designs, we can construct
near optimal designs by combining runs such that the sum of levels for each factor is £1.
It can be easily verified that when ky = ko, k3 = kg and k; = 2d;, fori =5, ..., b, where
d; are positive integers such that 3"5_, k; =2, the design is D-optimal if u{l) and ugl) are
orthogonal.

5. Concluding remarks

In this paper, we have shown optimal construction of s” factorial experiments when
observation within blocks are correlated. We provided an analytical proof of optimality for
factorial experiments when block sizes are homogeneous and heterogeneous. These ideas
can be extended to construction of 2”7 symmetric fractional factorial experiments.
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