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SUMMARY. In rocont times thore ocour si ially in oatil i bl
in oertain stochastic prooessos, in which the limit of tho suitably normalisod log-likelihood ratios
i a family of mixed or weightod normal-type distributi When the limit is of normal-typo,
sovoral basio results of LeCam and Hijok concerning asymptotic propertios of risk fanctiona are
well.known; some of theso results are oxtended in ths presont papor to the forementioned more
general situation. It also appoars that the proofs of tho present papor, when they are specialised
to the normal csase, are eimpler than the existing direot proofs. The presont paper might also

be useful in tho sense that several closoly related reaults aro presented at a single place.

1. InNTRODUOTION

In a fundamentel paper LeCam (1953) obtained several basic results
concerning the asymptotic properties of risk functions. In another funda-
mental paper LeCam (1960) introduced what is now called locally asymptotically
normal (LAN) families of distributions and obtained several basic results
regarding the asymptotic theory of estimation and testing and thereby
demonstrating that a very large part of the asymptotic theory depends only
on the a‘pproxjma.ting form of the suitably normalised log—likelihood ratios.
Based on LeCam (1960), Héjek (1972) then improved and extended the local
results of LeCam (1953) and presented them in a rather completely general
form, i.e., the only assumption assumed by Hijek (1972) is the very wesk
LAN condition; the results presented in this paper of Héjek are known as
the locally asymptotically minimax and admissibility results. Recently,
Strasser (1978) has shown that the other global results of LeCam (1953) can
also be improved using the technical essence of LeCam (1960), Héjek (1870)
and certain ‘‘invariance’ results of LeCam (1973 and 1979); in this connection
see also the remsark 2 in Seoction 2 below.

In two important papers LeCam (1872 and 1974b) (see YLeCam (1979)
for a more detailed presentation) further obtained certain extremely general
results in a general framework oconcerning, among several other things, the
local asymptotic minimaxity and admissibility and in partioular showed that
the results given in Héjek (1872) can be viewed a8 special case of these general
results; in faot LeCam’s results are applicable even to the situations which
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are remote from the usual LAN cose, see Section & of Chapter 10 of LeCam
(1979) and Miller (1979).

In recent times, there occur situations (o.f. Jeganathan, 1979 and the
references therein) where the LAN condition is not satisfied but & motre
general condition, which may be called the locally asymplotically mized normal
(LAMN) condition is satisfied, see Definition 1 below for the precise definition
of the LAMN condition. The mein purpose of this paper is to extend the
forementioned results of LeCam, Héjek and Strasser to the more general
LAMN case and to present explicitly some further results, which are implicit
in the various works of LeCam and Héjek, regarding the asymptotic proper-
tics of risk functions and posterior approximation. It also appears that the
proofs of the present paper, when they are specialised to the LAN case, are
simpler than the existing direct proofs given in the forementioned papers.
The present paper might also be useful in the sense that several closely related
results are presented at a single place.

More specifically, in Theorem 1 we present a result concerning the
asymptotic Jower bound for risk functions; a more familiar result, Theorem 2,
follows from this result under the usual invariance restriction. Sequences of
estimators which attain the lower bound of Theorem 1 are characterised in
Theorem 3.

In Theorem 4 we present & result, for the LAMN case, which is an exten-
sion of the local asymptotic minimax results of Héjek (1972) and LeCam
(1972 and 1974b) ; this resuit turns out to be an immediate consequence of
Theorem 1, and one more simple proof is also indicated. In Theorem 5 we
present, when dim © 2, an extension of the uniq results of Héjek
(1972) and LeCam (1974b); it may be noted here that this uniqueness result
does not hold when dim © > 2 for the reasons explained in LeCam (1972).
It m1y be further noted here that the uniqueness result of Theorem 3 is weaker
than the uniqueness result of Theorem 5, ns is easily seen by considering
James-Stein type estimators.

In Theorems 7 and 8 we present analogous global asymptotic properties
of risk functions; actually, we deduce these results from a general result
(Theorem 8) concerning a certain kind of posterior approximation.

In connedtion with Theorems 4 and 5 of this paper, the following remarks
should be made. As wo have already romatrked, LeCam (1972, 1974b) has
obtained some very deep and general results which amount to the following.
If one is interested in proving saymptotic properties such as loca) asymptotie
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minimsxity snd admissibility for the given sequence experiments, it is just
enough to prove the statements for the limit of the experiments and then the
corresponding limiting atat ts for the seq of experiments can be con-
cluded from his results. Thus once we have proved minimax and admissibility
results for the limit of the LAMN experiment, the conclusiona of Theorems
4 and 5 are the consequences of LeCam's results, since LeCam’s results are not
restricted to any particular form of the limit of the experiments. The main
reason for presenting a rather complete proof of Theorems 4 and 5 is the
following. Once the powerful Lemma 2 below of LeCam is given, it turns
out that the proof of the unique admissibility and minimaxity results for the
limit of the LAMN experiments and the proof of the local asymptotic admissi-
bility and minimaxity results for the LAMN experiments are almost identical,

This paper constitutes Chapter 8 of our Ph.D. thesis (1980). A reforee of
an eorlier version of this paper has remarked that some of the results of thig
paper might be already known to some of the workers working in this field,
e.g., R. B. Davies. During the final stage of prepararation of our Ph.D,
thesis we received a copy of Ph.D. thesis from S (1980, September),
where he has independently obtained our Theorems 4 and 5. His proof
consists of first proving minimax and admissibility results for the limit of
the LAMN experiment and then using the above mentioned results of LeCam
to get the desired conclusion, whereas our proofs are based directly on
Lemma 2 below.

In Section 2 we present the results and in Section 3 we present some
preliminary 1 In Section 4 we present the proofs of the results.

2. NOTATIONS AND DIFINTTIONS
Let E, = (X;, A, Py,; 00}, n> 1, be a sequonce of experimonts;
throughout what follows it will be assumed, without any further mentioning,
that @ is an open subset of RE.

We use the following notations. If P and @ are probability measvres
on & measurable space (X, 4), then dP/dQ denotes the Radon-Nikodym
derivative of the Q-continuous part of P with respect to Q. If p and g are
densities of P and Q with respect to some ¢-finite measure A, then

IP—Qll = [|p—g|dr

is the Ly-norm. If ¥ is a random veotor its distribution will be denoted by
£&¥) or by LY|P) when ¥: (X, 4) ~ (R7, Be), ¢> 1, B¢ being the
a-field of Borel subsets of R9. For s vector h ¢ R*, h’ denotes the franspose
of hand | k| denotes the euclidesn norm; for a square matrix D, |D|| denotes
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the norm defined by the square root of the sum of squares of its elements.

‘==)’ denotes the convergence in distribution. Log ‘LP" "

will be denoted by A(s, 6).

,0,8€0, n >,

We now introduce the LAMN condition.
Definition 1: The sequence of experiments {E,} satisfies the LAMN
condition at § = 6, ¢ @ if the following two conditions are satisfied.

(A.1). There exists o scquence {W,(0,)} of A,-measurable k-vectors
and o sequence {T(6,)} of A,-measurable &x k symmetric matrices such that
Py, Al T.(6) is p.d]l =1 for every n > 1 and the difference

An(00+8,h, 00)—[WTa0)W (0,)— Ih'T (0 )h)
converges to zero in P’a o-probability for every h e R¥, where {8,} is n scquence
of p.d. matrices such that [|5,]| = 0 as 2 = c0.

(A.2). There exists an almost surely (8.8.) p.d. random matrix T(0,)
such that

LW (0,). T .(0,) |1’95',) == LW, T(0))

where W ia & copy of the standard k-variate normal distribution independent
of T(6,).

In the special case when T',(6,) is equal to a non-random metrix T(6,)
for ell » > 1, {E,} is said to satisfy the LAN-condition at 8 = 6, ¢ ©.

Remark | : A detailed study of the LAMN-condition can be found in
Davies (1978), Jeganathan (1982, 1980) and Swensen (1980).

Let L be the class of nll loss functions !: R* — (0, @) of the form
Kz) = | 2]), 10) = 0 nnd Uz) < U) if || < |y].

In what follows E, _H_ndenotes the expectation with respect to the measure

PHs.h‘n,n}l,heRk. We sot D, = {(he R¥; |h| < a}, > 0.

Theorem 1: Assume that the sequence {E,} of experiments salisfies the
LAMN condition at 0 = 6, ¢®. Further assume thal the funciions
Ao P5u+5-'l (4), AeA,, n > ) are Borel measurable. Then for every sequence

{V .} of estimators and for eevery e L

tim tim i iy Py slB2Y, - 6,8, W)Yk

> EUT-0)W)), e ()
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Theorem 2: Suppose that the sequence {E,} satisfies the LAMN condition
o §=06,c0. Let {V.,} be a sequence of estimalors such that the difference

BBV . — 00— 8.0) | Py g p,a)— BBV —6)) | Py, 1)

converges lo zero for every h € R¥ and for every conlinuous funclions f : RE— R
vanishing outside compacts. Then for all le L

lim inf Eq [(85Y(V ,—0,))] > E[(T-"40)W)).
n—e

Theorem 3: Suppose that the plions of Theorem 1 are salisfied.
Further suppose thal for a seq {V.} of esli 8 and for a non-constant
lek

. . 1
lim lim

lim lim ey § Eoproan (62(V =008, dh

= E[(T-"%{6,)W)] < c0. e (D
Then for every € >0

o 1 _ -
Jim lim 2§ Pegyon w187V, —0) =TSO (091 > el =
-3
Theorem 4 : Suppose thal the sequence {(E.} satisfies the LAMN condition
at 0 =6,¢0. Then for every sequence {V,} of estimalors and for every le L

lim lim 1 E Us;4(V,—6,—8,h E(T-V%6,)).
.zn.g:nflmn 0+ 6, h 118 o )] > EIWT-146,))

Theorem 5: (i) Suppose that dim © = | and thal the assumplion of
Theorem 4 is salisfied. Further assume that E(T-1%(6,)) < oo if 1 is bounded
ond E[T-WAT-1"W)) < o if | is unbounded. Let {V) be a sequence of
estimalors such that for & non-conslant e L and for every heR and 5> 0,
setling ly = min(b, ),

tim sup B¢ Uo7V~ 0= 8 AN} < BT 00 . ()

Then the difference
8V, —00) =TV (0W (0;) e 8

converges o zevo in P’o wprobability.
]
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(i3) Suppose that dim © = 2 and thal E(| T-/%0,)W|®) < co. Further
suppose that (4) holds, for all b > 0, for the quadratic loss I(z) = |z|® and for
all h s Rt. Then the difference (6) converges to zero in P,n,-probabt‘lity.

Theorem 6 : Let A| Bt be a measure such that A € p* and A(B) < co.
Assume thal the sequence (E,} of experimenls satisfies the LAMN condilion
Jor pr-almost all 0¢®. Furiher assume that the functions (6, k) — Py +5u8, 0 (4)s

AecA, n > 1, are B¥-measurable and that the functions A (648.h, 6), h ¢ RE,
n> 1, and W (0), T(0), n > 1, are AXBt-measurable. Set

836, B) = Jﬁ%&ﬁ ezp[— Hh—THOW (0)) T ,(6)(h— T O (0))].

Let H be a class of uniformly bounded Borel ble functions of RE. Then
the difference

eI E[f(851(V ,—0))] A(d6)
— [ I (] f85%V,—0)—Rh)SYO, k) dR)AP,, N(d0)
0x, »

converges to zero uniformly for all f € H and for all seq {V.}of

Theorera 7: Let the measure A be as in Theorem 8. Assume that the

assumplions of Theorem 6 are satisfied. Then for every sequence {V,} of estima-
lors and for every ¢ L

lim inf [ Ey(USTHV,—0)]A(d0) » [ EUT-HO)W)IN(dE). ... (8)
b ] )
Theorem 8 : Let the measure A be as in Theorem 6. Assume that the

assumplions of Theorem 6 are salisfied. Further assums that for a sequence
{V,} of estimators and for a tant l¢ L

tim | EU87YV,—0)] A(d0) = | ETXAOW))AdF) < 0. ... (7)
e e [c]
Then for every 6 > 0

lim [ Pg, [|GNV,—0)~TSHOW (6)] > €] Nd0) = 0.
—e Q

Remark 2 : In connection with Theorem 2, one should see Heyde (1978)
where one can also find important examples satiefying the LAMN condition.
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The restriction jmposed in Theorem 2 is known as the “invariance”
restriction; in Jeganathan (1982) it is shown that when this invariance restric-
tion is satisfied ‘jointly’ with the sequence (T,‘(Oo)) the limit distribution can
be conditionally decomposed as & oconvolution, extending a f result of
Hajok (1970), and Theorem 2.-and several other related mequalities can also
be obtained from this convolution result; see Jeganathan (1982) for details.

Note that this invariance restriotion cannot be in genera] relaxed, sce
LeCam (1953), but it can be shown (ree LeCam, 1973 and 1979 Ch. 8 and
Joganathan, 1981) that these convolution results hold for almost all
(Lobesgue] points of the parameter space, and Theorem 5, which does not
involve any such restriction, can be deduced from these results aleo.

3. SOME PRELIMINARY BESULTS

Lemms 1: Suppose that the sequence of experiments {E,} salisfies the
LAMN -condition at 6 = 0,¢8. Then the sequence {Py .} and (P0°+s.h,i»}
are conlinguous for all B ¢ R%. Furthermore

LT (00), T HONW (0| Py 15,00 = LT (00} T-V%0,)W+h).
Proof : The proof is & simple application of Theorem (2.1) of LeCam
(1960); see Jeganathan (1082) for details.

Temmo 2: Assume that the sequence of experiments {E,) satisfies the
LAMN-condition at 0 = 6, ¢ ©®. Then there exist

(8) an increasing seq {k,} lending lo infinily as n — oo,
(i3) funclions C, : @ X R¥ — R such that

sup |C (0, M)—1] >0 as n >0
|hi<a

Jor all & > 0, such that the measures Q,(6,, B)| A, defined by
HLeN). _ 0,10, B cxplh T 00 W0)—} KT (O}
Do,n

with Wi(0g) = W,

AOM(| TSNR(0, )W (0,)| < k), are probability measures and
salisfy

“'P0¢.+8.h.n— Q.00 B =0 as n >
for allh ¢ R%.

Proof: ‘Tho proof is similar to the proof of Theorem (3.1) of LeCom
{1960}, see Joganathan (1082) for details.
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Lemms 3: Suppose that the seq (E,} satisfies the LAMN-condition
at all 8¢®. Then a sequence (A (0)} of k-veclors and a sequence (To(6)} of
almost surely [Py,,) positive definile kX k malrices can be constructed from the
log-likelihood ratios A, in such a way that the differences TH(0)—T,(6),
T6+6.h)—TH(6), b ¢ R¥, A (6)—T; %O, (0) and A, (0+8,h)—[A,(6)—h],
h ¢ RE, converges lo zevo in Py, -probability for all 6 ¢ ©.

Proof : 'The proof is contained in Chapter 12 of LoCam (1974).
Throughout what follows we set

8,(6, h) = exp (K'T"O\W,(0)—} h'T (0)h),

| det T(0)] 172

S:0.m) = —Empn P {(—HR—T OO T (O)h—T; OWO)]

snd

§(6, h) = exp [(h'T"6)W—} k' T(O)h]
where the sequence {Wi(6)} is the one constructed in Lemmsa 2. Further
lot C be the class of all seq of A, able k-vectors and let H be
a olass of uniformly bounded Borel able functi of Rk, Without

further mentioning, we will use the sequence {Q,(6,, h)} of probability measures
that was constructed in Lemma. 2.

Lemma 4: Suppose that the pli of Theorem 1 are salisfied.
Then for every > 0, the difference

[L‘(ID.) l{ Eaﬁ.s‘h[f(zn"'l)] dh

bff(zn—u)sﬁ(ao»“)d"
LR R AT ‘{S;(oa,u)du— Q.(0,, h) dh e (8)

converges lo zero uniformly for all fe H and Z,¢ C.

Proof : Firat note that the difference between the r.h.s. of the above
difference (8) and the quantity

lj’f(z,.-—u)s‘,.(oo,u)du
5D, ,J,'. xI. ‘ I{S:(o“' u) du S,(60, h) d-Pa,,,. dh
1
= FDy Ih Ix . NZ,—h)S, (0, h) aPy, , dh

A~10
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converges to zero uniformly for all fe H and Z, ¢ € by the statement (il
of Lemma 2. Henoe the result follows agsin from Lemme 2.

Lemmsa b6: Suppose that the plions of Theorem 1 are salisfied.
Then the difference

—,;,(’T.) L L (L AZ— S0 widiigui6y )k ... (0

converges lo zero uniformly for all f ¢ H and Z,, ¢ C by first lelting n — 0 and
inen lelding a = co.

Proof: In view of Lemma 4 it is enough to show that the difference
between the r.h.s. of (8) and the r.h.s. of (8) converges to zero uniformly
for all f¢ H and Z, ¢ C by first letting » — o0 and then & —» c0. It is easily
ochecked that this difference is absolutely bounded by

2 . .
KDY {’. L( 'J;‘sn(om w)du}dQ,(6,, h)dh, e (10)

where D{ denotes the complement of the set D,. Let, for each fixed T'(6,),
Mgy, denotes the k-variate morms] distribution with mesn vector 8 ¢ R

and co-varisnce matrix T-Y(§,). Then first letting n—>co and using the
statement (8) of Theorem 2.1 of LeCam (1960) it is easily seen that (10) converges
to

2
FDy f W re ) Di=T X0 W)S(6,, WALW, T(0))dh

2
= Br{zps 5, ¥ D= T0)W)S(0, WLW)in)

(using the independence of T'(6,) and W)

2 .
= za"'{it'(bz) ,I,_ Nopgy'¥ Trﬂal(m‘h)’”‘}
where ET denotes the expectation w.r.t. the law of T(6,). The lemma now
follows from the following lemma whose idess are contained in Hijek (1970),
and stated snd proved separately in Strasser (1978, Lemma b5).
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Lemmsa 6 : Let P|B¥ be a probability measure. Then

1
J P(Ds— = 0.
S EDy §, TR

The following simple lemma will be used in the proof of Theorem 5; in
the present context it serves the purpose of Lemmas 3.1, 3.2 and 3.3 of
Hijek (1972).

1
Lemma 7 : Lelﬂ(h)=o—_(—2maxp(w),a>0. Asswme that

dim @ = 1 and tha! the assumptions of Theorem 1 are salisfied. Then the
difference

{ Eyja U2 —1)Inh)dn

= § I { [ UZ, =00y dt, W3, Ta)dl}dP g,y pn(h)dh e (1)
R Xa R '

tends to zero as n—» co for every sequence {2} of A,-measureable k-veclors and
for l ¢ L, where

o= o [ ()55

Proof : TFirat note that the difference between the Lh.s. of the above
difference (11) and the quantity

e Basa iz, —ntidh, . (1)
is absolutely bounded by
[ w(hdh. e (13)
i>e
Further, since

Wf‘ . ){”z(z,—h)s,,(on, mdP’o." n(h)dh

oL WZa=0S38, iyt | S,

- <.

.AL.;{,, IH‘[‘ 858, ym(t)dt an(oo-) PR oLIN
Hea
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the difference between (12) and the quantity

I UZn—0)S3(6, im(t)it
MG a X,.{ ,

“)" s OO } dP’o"“’nh." a(h)ydh ... (14)
(%
Hika

converges to zero a8 n —» co for every a > 0 by Lemms 2. Now the difference
between (14) and the quantity
l(Zu—l)S’ (6o, (1)l
i x.. I S.(*"m Um(t)de

}d}’%+ 4an (k) dh .. (18)

is absolutely bounded by (13). Moreover it is easy to see that the difference
between (15) and the r.h.8. of the difference (11) is absolutely bounded by

ik O () dh. (18)
2 ‘{W} toriahin

R
,,(0,,, h)m(h)

J‘S'wm R)n(h) Ydh = V’u(hn W:u Ty).)

(Note that

Obviously (13) tends to zero 88 «—»co. Using the statement (6) of
Theorem 2.1 of LeCam (1860) it is easy to see that, for every & > 0, (16) con-
verges to & limit 88 7 — co, and it is clear that this limit tendas to zero as @ — .
Hence the proof of the lemma is complete.

Remark 3: Note that Lemma 7 holds for more than one-dimension
also and for any arbitrary finite prior; the proof is same as above. It will
be indicated that Theorem 4 can be obtained as a simple consequence of this
lemma also.

4. PROOPS OF THE RESULTS

Proof of Theorem 1 : Tt is enough to prove the result for bounded loss
functions. Then we have

a9 Ao

. s e 1
Bm minf gy o oy +un (K63 (Va0 =)} d

= lim lim inf

1
S liminf oepy § (LS. =00~ w)S (0, w)duldQu(0y, )R

(by Lemma 5)
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> .]i."i lj"yg i:nf‘ukwl) 1 { ){l('l’ =1R(0, WV 3(6,) — u) Sp(0,, w)du}dQ(6,,h)dh
(by Anderson, 1955)

= lim lim inf ——— ‘(D) j’ an_‘_s_h_[l(’l';ll’(on)W:(ﬂ,,)—h)] dh

e Ao

(by Lemma 5)

|

= lim liminf ,,(D) [ § Py s pn 1 T3 EOIWHO)~ 1| > aldlie) dh

o Ao D,

> JUTHG) WA LW, T(0,). (by Lemma 1)
Hence the proof is complete.

Proof of Theorem 3: Let Ay < Ap, < ... < Amx be the eigen values of
Talfy). An application of a result of Anderson (1955) shows that whenever
18517, —00)— T VHOIWB)| > € >0, 0 < 8K gy, dpx < M and le L is
non-constant there exists a continuous function (¢, Agy, ..., Agk) of (Agy, ..., Ank)
sueh that (e, Agy. ..., Agg) > 0 end that the difference

.[' 18UV ,—00)—T5 1% (0,)W(0,)—u) exp (—3uw' T, (0)u) du
R
— § Ku) exp (—3w' T, (0)n) du
RE

is greater than or equal to (e, Ag,, ..., Apg). Let

7'(6, 8, M) = infly(e, Any, .., Ap) 16 < Apy <o < Ak < MY,
In view of continuity ¢'(c, 8, M) > 0. Let

An = {|1874(V,,—00) =T (0 Wr(00)| > €, 8 < Ay, Ank < H).
Let l; = min(e,l). Since the given I is non-constant there exists sn @, > 0
such that la, is non-constant. Let %’ above be the one corresponding to la,.
Also it is easy to see that 9'(a) corresponding to Ig, @ 3 @,, can be chosen in

such a way that 9’(a) is increasing with @. Then it follows from the above
arguments that, for ¢ > a,,

1
DY J XI (g Ta(87 4V ,—0p)— 1) S3(0,, w)des}dQ (6, h)dh

7'(6, 8, M)

> Dy ‘I }’» 1(A,)dQ,(6,, h)dh

l .
+mDy 4 ,L{ L Ta( T3 Y8(0) W (05} — 1) Sx0,. u)dus)
dQ.(0o, h)dh. o (17)



18 P. JEGANATHAN

In view of the given condition (2) and Lemma b we have

i /t*m.) 3, 4, § 1T 000 )i 4.0, MR

< BTG W)). e {18
Purthermore, in view of the arguments of the proof of Theorem 1 we see that

.5": h.nl.':.‘f/"(l)) 1{ I ‘{ Ta(T; (0, W5(60)— w)83(6,. u)du dQ,(0,, n)dh

2 Elo(T-VX0,)W)). - (19)
From (17), (18) and (19) it now follows that by letting a = 0

lim l!'_r)n'ﬂk(D) j‘ ; 1(A,)3Q.(0,, Rk = 0. o (20)

Further, in view of the invariance relation (Lemma 3)
LT(60)] P3°+5.. p.) = LHT(6,)

and since T(6,) is p.d. almost surely we see that for every & > 0 there exist
positive constants & and M such that

. . 1
_h_a hwp D)) n; ’{.[1(» ) Hl e > M))Q, (0, BYIR K € ... (21)

From (20) and (21) it follows that for every € > 0

R
bm lm Dy ,{. }I"I |85 4V .—0)— T RO \W(6,)| > ¢)

Q.65 Bk = 0.
Hence the proof follows from Lemma 2.

Proof of Theorem 4: Note that when the measurability condition of
Theorem 1 is assumed, the proof is immediate from Theorem 1. To prove
the genersl oase, first note that the seq {Q@n(65, B)} satinfies the measurs-
bility condition of Theorem 1 and that Theorem 1 is valid when the sequence
{Pg, 8.0, 18 replaced by {Q,(0,, hj}. Partition D, into blocks Cym, ..., Cus

such that \Sup #¥Cim)—>0 28 m— 0. Let A be n fixed point it
<m
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Cim, j =11 It is enough to consider bounded and continuous !¢ L.
Then it is easy to see that the differencs

1 1 _ "
DY ’2 { I. U8RV n—00)—11)dQ {6y, ))1*(Cym)
1 =1,
2
~ D] 3 I I HBZHV . —0o)—h)3Q,(8,, h)dh (22)
converges to zero by first letting 7 — o and then m — c0. Further, it is clear
that the difference between the 1.h.s. of (22) and the quantity

DT 5 Footnm U6V, =00~ BIHC)

converges o zero 88 n — oo for every m and a > 0. Hence

tim inf E, U851 (V—0)—h)
S B L, Bawtsn UOT =007

> lim Um lLiminf 5~

e moe 1o F"(l)): B, _ 50 b, (162 (V 1= 00)—y) u*(Cym)

T .
_—_..ll_l;l;ljl:‘l_)l-l’lf ) ‘{ ,I'x. HBUV o —0p)—h)dR, (0, B)dh.

;Heuce the proof.

Remark 4: As was mentioned (see Remark 3 of Section 3) Lemma 7
halds for more then one-dimention also and for any srbitrary finite prior, snd
hence Theorem 4 can be obtained from this lemma also in the standard way
by taking normel priors on R¥ with co-varisnce matrix ml, using Anderson’s
lemma (1955), and letting m — oo,

Proof of Theorem 5 for dim© = 1 : TFirst note that the condition (4)
snd the corresponding conclusion of Theorem 5 hold for the sequence
(P'% o, o if and only if they hold for the sequence {@a(0p, 4)}. Further note
that Lemma 7 is valid when the sequence (Pﬁ.ﬂ..»,n) is replaced by {@4(0,, b)}.
Hence it is enough to prove the theorem as it stands with the additional.
assumption thet the funotions A —>P,°+, aald) 4 eA,, n»1, are Borel

measursble, since this mesaurability ption is satisfied for the

9
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{@nlbo, »)}. We then have, (in what follows we suppress 8, snd write Wy, T,
and T instead of Wa(6,), Tw(6,) and T(6,)), setting lp = min(b, }),

EYT-AW)) 2 lim sup '{ By 5ap (o83 (Va—Oo—Eahn(R)R

(by (4)
=limsup J [ [l (85 (Va—bOo—8at))¥olt, Wp, Tn)mo,ﬂ.n.n n(h)ydh
a=>e© R XuR

(by Lemma 7)

1/2 <]
>t £ 1 [ et~ A W TRy 0

TsWat
> 510 ] 7w —t] Vult, W, TYLS(60, AT, W(h)h

(by statement (8) of Theorem (2.1} of LeCam (1960))

=154 e b exp (~CE2T) ) asio, ma.ar, Winthidh

= E[“—w Jhioxp (—% 1') dl]

o(2m)ir2

[since o(T) = LT | Ry,,,) where dPy , = S(6y, LT, )W)

> E[(%:n -le () exp (_“++':T) ”) dt]

> 5 (e 0o (2o -5 o)

Let, for some ¢ >0, M > 8> 0,

3
da= {‘s:‘( Va— ,)—11"+¥""

>¢, 5<T,.<M|W,.|<M}

Now whenever ¢ > 2> 0 and the event Ag is true the inequality

14-Tyot
i< (%) < M+aholds. Also note that since ! is non-constant thert
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oxists & by such that ) is non-constant for all b » b, Henco 1t is easily
seon that there exists a positive constant K depending only on ¢, 4, e, b and
M such that

§ L § WO Pum 008l W, TusdidPyy i

2K n{:{ '(A-)dppouﬂh,. a(h)dh

TV*Wao*

+ il[ XJ nf'b W_l] V.l Wy, T.)dld}’%”-h_‘ m(h)dh

for every # » | whenever o > a. Also it ie ensy to sec that K can be chosen
in such & way that it, ns a funotion of b, increases with b. Hence it follows
from the inequalities presented in the beginning of the proof and by letting
b— 0, that

lin_x.sixp RI X{ I(A,.)P,“”“MI n(k)dh

<cE|f (27;,—"':,, 10 [exp (—4T)—oxp (_”;Z#:z)] &)

< CEyT,0), o>a, . (23)
where C is o positive constant depending only on €, 8, a, b, snd M, and

a1 + To®)' (1 4 Totpt 4 Tiig |-
if L is Lounded by a,
Hatt,on = E[T-W T~ W)} j20%
( / if | is unboonded.

[When I is unbounded, we have used the inequulity
(1+0T) ® ™
exp( - 1) > (1= g ) oe( = )]

Now note that the difference

[ { RA)S0, P, , nk)dh
N€a Xy /]

- IAiI- )]; 14 ")‘{‘Pﬂ,u_’h, m(h)dh

a-11
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tends to zero for every a > 0 by Lemma 2. Further

wj) . AJ. K4,)8,(0, h)dl’,",ﬂ(hldh
< " { ; I8 <T, <M, |W,| < M)S,0, 1Py, ,n(k)dk

8/1
& mhydh for all a > 2'&;
A5

— 0 as a—> o0,

I [ APy 4 4n(R)dh € | m(R)dR = 0 ax x— 0.
W>a X, 077n %, W>a
Therefore from (23) we have
limsup [ [ I(4,)8,(0, h)dP,  n(k)dk < CE((T, o)) ... (24)
"o R X, o
whenever ¢ > a. Now note that

Bf XI. H(A,)8,{60, WPy, Ja(h)ih

- 1 T oW
= J ey e (5 e,

SM2g?
> exp(—l_i_—Ma—’ (1+02)3n | KA )AP,, ,,

since § < T, < M and |W,| M whenover the event A, ocours. Hence
from (24) we have

lim sup Py, o[ S4V.—0)—T5 W, | > 2¢, 8 < T, < M,|W,] < M]

ki . . VW o*
< :fl.t:llp P”o,"(A”)+ ]l’lll.:llp Pﬂg,n[ |T,,”'W"—TT’IU’— ’ > e]
SM?
< 0o exp( Ty ) Bur. o)
. . TV o2 -
+limaup Py, [ |7, = v el (25)
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whenever 0 > a. Now note that when I is bounded by «, (T, o) is bounded
by both aT-lo~2 and «T-'3¢-1, Hence applying the dominated convergence
theorem we see that the last term of the inequality (25) tends to zero a8 & — co.
Hence the proof of the theorem is complete by ohoosing & and M in such a
way that

lim sup [Py, (T, < 8)+Py, o(Tn > M)+Pea( W] > HN< .

We now present the proof of Theorem 4 for dim® = 2. The proof of
this case is given separately since in this case we are desling with an un-
bounded loss function and this fact mekes the proof very simple; note that
the arguments of the proof of this case are applicable without any change to
the case dim @ = 1 also when the Joss functions are unbounded.

The proof of Theorem 4 for the case dim @ = 2. By Chebyshev’s in-
equality we have

Py, o185 YVu—00)| > @) = ) Blleal 874V . — o).

Hence setting I(2) = | z| 2 it follows from the given condition that the
{851(V,—6,)} is relatively compact for {P,O ). Hence for every subsequence

() {n) there exists a further subsequence {m}( {r} such that
(LB (Vm—6o), Wi, T,,.|P,§’“)} converges in distribution to a distribution

Fw.w,myv, , ) of a random vector (V, W, T). Hence nsing the statement
(6) of Theorem (2.1) of LeCam (1980) we have

H.E. inf Pyyg w081 Vm—6,—8ah)))

> [ biv—h)Q(h, w, t)iF(v, w, )
for all h ¢ R® and b > 0, where we set
Q(h, w, t) = exp (h'#'2w— th'th).
Henea it follows from the given condition by letting b — co that
flo—R12Q(h. w. HiFwD, w. t) < [| T2 %dF(0. w, 1)
= § |t-w—h|Qh. w, t)iF(v, w, t)
for all h ¢ R*. We now invoke & result of Brown and Fox (1974) (see Remark &

below) to conclude that the striet inequality in the above inequality cannot
hold. ie.,

§lo—h12Qh. w, iaF(®. w, 1) = | |£00)dFDw. 1)
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for all h ¢ R Similwly, using the identity

.
v#’w..,,r

|o—hjt+ -0 —h|t—2 = |o—tup)2,

we have
I ’L‘;m"—hl' Qh, w, HidF(v, w. t) = [|t2w]dF(v, w, 1)

for all h ¢ R:. Henoe it follows from the above identities that

[le—t"%w|%Q(h, w, H)dF(v, w. t) = 0.
From this it follows easily that
V = T-1"W a4, [F}.

Now note that the difference 831( Vip—0,)— T~1*Wy, converges wenkly, under
P,' e to the rv. V=T-12W =0 ar Hence

85 (Vm— )~ T~ Wy 0
in Pi,m probability. Since this is true for every convergent subsequences
{m} G {n}, the desired conclusion follows.

Remark 5: In order to apply the results of Brown and Fox (1974),
take T = X »nd T =¥ where X and ¥ are as in their paper with
mutnally ahsolutely continuous probability measures (@n; h ¢ R%), such that

dGn

a, = Qh. W, T
where the function @.is as defined in the above proof and the A-mble T and
W wre such that W is 2-variate N(0, 1) independent of the 2 x 2 random matrix
T. T-'*W and T ure togother sufficient and since the loss funotion is
quadratio we need only consider estimates which are functions of these.
For the quedratic losk they have given some simple conditions and have
verified thet these specific conditions imply their more general conditions
necded for the validity of the their result : for this the existence of the fifth
monent of | T-'*W| assnmed by us will suffice.

Before going inta the details of the proof of Theorem 6, let us first observe
that, when the measurability condition of Theorem 6 is satisfied, the random
functions Th(0), A,(0), n > 1, constructed in Lemma 3 will be A, xB*-
measurable; furthermore, it is easy to see that it is enongh to prove the
statement of Theorem 8 with the sequences (W (0)} and {T(6)) roplaced by
(A(0)) and (T74§)}. Therefore in what follows we awill rssume, without loss
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of generality, that the random funotions W ,(0,), T,(0), n > 1, satisfy the
regulsrity properties of Lemma 3 and that they are jointly measurable.

Let us also observe that Lemms 5 is valid when the sequence {Wo(0,)}
is replaced by (W (0,)} since the difference W ,(6)—W,(0,) converges to zero
in P,, « probability, and that the functions C,(6, ) will be jointly measurable
whene.ver W, (6) and T () are jointly measurable.

The following well-known result of Lebesgue will be used in the proof;
for the sake of convenience we state it sepsrately.

Temma 8 : For any function f ¢ Ly(u¥), p 3 1, the funclion

[1f(z+R8)—f(z)|?dz

is uniformly conlinuous in h.

Proof : See, e.g., Corollary 39.2 of Parthasarathy (1977).

Proof of Proposition 1: For simplicit that @ = RE. Now
consider

n{ By 1 g BV, —0—8,h))g(0)d0
= R{’ Eo[l(851(V ,—2))lg(0—8,k)d0

where g(0) is the density of A with respect to u¥. Hence it follows from
Lemma 8 that the difference

L Dy 5, Fosoa U6V =081 000

- RJ; Ey(U8;1(V ,—0)))g(0)d0 .. (26)
converges to zero for every @ > 0. Now note that, for u ¢ R¥,
1 83V, —0)—m)836, hidh
RE
= EJ; UBZHV ,—6)—h—u)S}(6, h+u)dh.

Hence in view of Lemma 3 and the preceeding remarks, it is easily seen that
the difference

[ USTN(Vaw—0)—h)S}0, h)dh
R

—){k U8t (Vn—8)—h—u)Sy(0+8nu, B)ih
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ronverges to zero in Py, u probability and hence, by contiguity, in Pan*s,u.,.
probability nlso for every u e RE. In particular the difference

’{. }Jl“ 185 1'a—O)R)SYE, h)(IMP,_,Snu‘"

_x£ '{. U85 (Va—B)~h—w)S3(0-+ bat, VAHdPyy g o

converges to zero as n —» co. Hence by an application of Lemma 8 it follows
that the difference

n'lk XI. ‘{.I(S;’( V,—0)—h)8;(6, h)dhdPy, ¢, , g(0)10

— [ f [ UBZYV,—0)—Rm)SYO, hIRdP,, ,g(0)d0
RE Xn RE

converges to zero for every w ¢ RE. This in turn implies, in view of Lemma 2,
that the difference between the r.h.s. of this expression and the qusntity

o T [ § T, —6)—R)SY0, WARdQu6, wO)ibiu ... (21)
15(Dy) b, gk Xu gt

converges to zero for every @ > 0. Hence the result follows since, by Lerama 5,
the difference between the Lh.s. of (26) and (27) converges to zero by first
letting » — 00 and then a— 0.

Proof of Theorems 7 and 8 : Using the arguments similer to the proof
of Theorems 1 and 3, the proof easily follows from Theorem 6.
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