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Abstract

The problem of water wave scattering by bottom undulations in the presence of a partially immersed thin vertical barrier is investigated here by
employing a simplified perturbation analysis. The first-order reflection and transmission coefficients are obtained in terms of integrals involving
the shape function describing the bottom undulations and the solution of the scattering problem involving the barrier present in uniform finite depth
water. For sinusoidal undulations of bottom symmetric about the plane of the barrier, the first-order transmission coefficient vanishes identically.
The corresponding first-order reflection coefficient is computed numerically and the numerical results are depicted graphically against the wave
number. Resonant interaction of the incident wave with the bottom undulations is seen to occur for a particular value of the ratio of the surface
wavelength to sinusoidal wavelength. As the depth of the lower edge of the barrier tends to zero, the curve for this reflection coefficient almost
coincides with the same for the reflection coefficient for the scattering problem involving sinusoidal bottom undulations only.
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1. Introduction

Problems involving reflection of surface gravity waves by
an irregular bottom have gained considerable interest in the
literature on linearised theory of water waves due to their
importance in finding the effects of naturally occurring bottom
obstacles such as sand ripples on the wave propagation.
There exists only one explicit solution for the two-dimensional
problem of wave propagation over a particular bottom
topography considered by Roseau [11]. For general bedforms,
a variety of approximate numerical methods have been devised
in the literature. One such method uses conformal mapping
by which the undisturbed fluid region with variable bottom
is transformed into a uniform strip (e.g. Kreisel [5], Fitz-
Gerald [3], Hamilton [4]). Newman [9], Miles [8] and Staziker
et al. [12] employed integral equation formulation to study
surface wave propagation over variable bottom topography. The
first two authors considered a vertical step, the depths on either
side of which being constants but unequal, while Staziker et al.

[12] considered undulations of arbitrary shape at the bottom
connecting two fluid regions of same uniform depth.

One aim of studying this class of problems was to investigate
the mechanism of wave-induced mass transport that forms sand
ripples of some wavelength. If this wavelength is half that of the
incident wave, then these ripples produce strong reflected waves
thus providing a model of breakwater to protect the offshore
areas. Davies [1] considered the problem of wave reflection by
a patch of sinusoidal undulations on an otherwise flat bottom
using linear perturbation theory followed by an application
of Fourier transform after introducing an artificial frictional
term in the free surface condition (to ensure the existence of
Fourier transform in the mathematical analysis). He obtained
the reflection and transmission coefficients from the behaviour
of the velocity field at either infinity, and observed that when
the wavelength of the sinusoidal undulations is half that of the
incident wave, a significant amount of wave reflection occurs.
Davies and Heathershaw [2] confirmed this theoretical result by
conducting experiments in a wave tank.

In all the above problems, the bottom irregularity is the
only hindrance to the propagation of surface gravity waves.
In the present paper, the additional effect of the presence of
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a thin vertical partially immersed plate on the propagation of
surface waves in the presence of an irregular bottom topography
is investigated. To solve the corresponding boundary value
problem, a perturbation method is employed directly to the
governing partial differential equation, the boundary and
infinity conditions satisfied by the potential function describing
the fluid motion. This procedure produces a series of boundary
value problems (BVPs) for potential functions of increasing
orders, of which we consider only the first two BVPs, for the
zero-order and the first-order potential functions. The BVP
for the zero-order potential function is concerned with the
problem of wave scattering by a thin vertical plate partially
immersed in water of uniform finite depth and we call it as
BVPI. This problem has earlier been solved approximately
by Losada et al. [6], Mandal and Dolai [7] and Porter and
Evans [10]. While Losada et al. [6] utilized a method based
on the principle of least squares, Mandal and Dolai [7] and
Porter and Evans [10] reduced it to integral equations which
are solved by employing Galerkin approximations (single-
term and multi-term) and determined very accurate numerical
estimates for the reflection and the transmission coefficients.
These are in fact the zero-order coefficients. The first-order
potential function satisfies a radiation problem in water of
uniform finite depth, which we refer to as BVPII, involving
the first-order reflection and transmission coefficients in the
radiation condition. Analytical expressions for these first-order
coefficients are obtained by using Green’s integral theorem,
in terms of integrals involving the shape function describing
the bottom topography and the solution of the BVPIL. It may
be noted that the solution of the BVPI cannot be derived
explicitly. However, the solution can be expressed in terms of
expressions involving unknown constants which are determined
by using the multi-term Galerkin approximations (cf. Porter
and Evans [10]). For obtaining numerical results the bottom
topography is taken in the form of patches of sinusoidal ripples
symmetric about the plane of the barrier. In this case the
first-order transmission coefficient vanishes identically. The
first-order reflection coefficient (|R|) is depicted graphically
against the wave number for different values of the barrier
depth, ripple numbers and ripple amplitude. As mentioned
earlier, if «, defined as the ratio of twice the ripple wavelength
to the wavelength of surface water waves, approaches unity,
occurrence of large reflection of the incident wave is a common
feature in the absence of the barrier. In the presence of the
barrier, this phenomenon of occurrence of large reflection is
also observed for a value of o somewhat less than unity and
the maximum value of |R;| is also reduced compared to its
maximum value in the absence of the barrier. However, the joint
effect of the barrier and the irregular bottom topography will
always produce stronger reflection. Known numerical results
for |R1| in the absence of the barrier are recovered by choosing
a very small depth of the lower edge of the barrier below the free
surface compared to the depth of the bottom. It may be noted
that a combination of a partially immersed thin vertical plate
and an irregular bottom topography will serve as an effective
breakwater for coastal protection.

2. Formulation of the problem

We consider water of finite depth having small undulations at
the bottom. A Cartesian co-ordinate system is chosen such that
the xz-plane coincides with the undisturbed free surface, y-axis
being taken vertically downwards into the fluid occupying the
region described by —o0 < x,z < 00,0 < y < h + €c(x).
Here c(x) is a continuous bounded function describing the
shape of the bottom, c¢(x) — 0 as [x] — oo and € is a very
small dimensionless parameter giving a measure of smallness
of the bottom undulations. Let a thin vertical plate be partially
immersed upto a depth a below the mean free surface, and the
plate whose position is described by x = 0,0 < y < a, be very
long in the z direction so that the problem of ensuing motion
due to a surface wave train incident normally on the plate,
is two-dimensional and depends on x, y only. The incident
wave train propagating from the direction of negative infinity is
partially reflected by the plate and the bottom undulations and
transmitted through the gap between the plate and the bottom.
Assuming linear theory and irrotational motion, the velocity
potential describing the fluid motion can be represented as
Re{¢"(x, y)e 9!} where o is the circular frequency. Then
¢ (x, y) satisfies

V2¢ =0 in the fluid region, 2.1
the free surface condition

K¢+¢,=0 ony=0, (2.2)
where K = 02/g, g being the gravity, the plate condition
¢r=0 onx=0,0<y<a, 2.3)
the bottom condition

¢p=0 ony="h+ec(x) 2.4
n denoting the normal derivative, the edge condition

r1/2V¢ is bounded as r = {)c2 + (- a)z}l/2 — 0, 2.5)
and the infinity conditions

s = (fii Y WIS eo
where

Wo(y) = Ny " coshko(h — y) @.7)

with
_ 2koh + sinh 2koh

0 4k

)

ko being the real positive root of the transcendental equation

ktanhkh = K. (2.8)

In (2.6), R and T denote respectively the unknown reflection
and transmission coefficients. The main concern here is to find
the coefficients approximately.
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The bottom condition (2.4) can be expressed approximately
as

¢y — e%{c(x)qsx} +0(*) =0 ony=h. (2.9)

This suggests that a perturbation technique can be employed to
solve the BVP described by (2.1)—(2.6) approximately. This is
described in the next section.

3. Method of solution

The approximate boundary condition (2.9) suggests that ¢,
R, T can be expanded in terms of € as given by

P (x, y;€) = o+ €1 + O(e?),
R(€) = Ry + €R1 + O(€?),
T(e) =Ty + €Ty + O(?).

3.1)

Substituting the expansions (3.1) in (2.1)—(2.3), (2.5), (2.6) and
(2.9) we find after equating the coefficients of €” and € from
both sides, that the functions ¢o(x, y) and ¢;(x, y) satisfy the
following BVPs:

BVP-I The function ¢g(x, y) satisfies

V=0, 0<y<h,
Ko + ¢oy =0,
¢0x =0,
$oy =0,
r1/2V¢0 is bounded as r — 0,

y =0,
x=0,0<y<a,

y=nh,

(e + Roe M) yo(y) asx — —o0
Toe" Yo (y)

BVP-II The function ¢ (x, y) satisfies

$o(x,y) — { (3.2)

as x — oQ.

V2 =0, 0<y<h,
K¢1+ ¢1y, =0,
¢]X=07

d
¢1y = a{c(x)QsOx}, y=nh,

r1/2V¢1 is bounded as r — 0,

y=0,

x=0,0<y<a,

Rie %% y0(y) asx - —oo
1% 0%y (y)

It may be noted that the BVP-I corresponds to the problem
of water wave scattering by a thin vertical barrier partially
immersed in water of uniform finite depth h. This has
been solved in the literature approximately in the sense that
numerical estimates for Ry and Tj have been obtained (Losada
et al. [6], Mandal and Dolai [7] and Porter and Evans [10]).

The BVP-II is a radiation problem in water of uniform
finite depth %, in which, the bottom condition involves ¢y, the
solution of BVP-I. Without solving ¢ (x, y) explicitly, R; and
T can be determined in terms of integrals involving the shape
function c(x) and ¢y (x, k). To show this, we apply Green’s
integral theorem to the functions ¢g(x, y) and ¢ (x, y) in the

$1(x,y) — { (3.3)

as x — oQ.

region bounded by the lines
y=0,0<x<X;x=X,0<y<h;y=h,—X <x <X,
x=-X,0<y<h;
y=0,-X<x<0x=0+,0<y<a;x=0-,0<y<a

where X is large and positive, and ultimately makes X to tend
to infinity. This produces

2ikoR; = /OO c(x)¢3 (x, h)dx.

—00

(3.4)

Similarly, applying Green’s integral theorem to xo(x,y) =
¢o(—x,y) and ¢;(x, y) in the same region and making X —
00, we find

2ikoTh = — /OO c(x)pox (x, h)pox (—x, h)dx. 3.5)

Thus both R; and 77 are derived in terms of integrals
involving the shape function c(x) and the zero-order potential
function ¢g(x, y). Unfortunately ¢o(x, y) cannot be obtained
analytically. However it can be expressed as

(@ + Roe ) o) + D Ane (),

n=1
x <0,
. o0
Toe™ Yo (y) + Y Bue " 41 (),
n=1

x>0

$o(x,y) = (3.6)

where +ik, (n = 1, 2,...) are the purely imaginary roots of
2.8), A, B, (n =1, 2,...)are unknown constants,

—1/2
Yn(y) = Ny /? cosky (h — y)

with
2kph + sin 2k, h
= 3.7
n i, (3.7)
It can be shown that Ry = 1 — Tp and A, = —B,(n =

1,2,...). Rp (and hence Tp) can be estimated numerically by
using multi-term Galerkin approximations employed by Porter
and Evans [10]. The same method can be used to estimate
numerically the constants A,(n = 1,2,...). The details are
given in the Appendix. Thus R; and T; can be computed
numerically once the shape function c¢(x) is known. Here we
consider sinusoidal undulations at the bottom so that c(x) can
be taken in the form

- mwx __mm
c(x)={cosm YT SYE (3.8)

0, otherwise
where m is a positive integer. Thus there exists m number of

sinusoidal ripples at the bottom with wave number A. In this
case T vanishes identically, and R; is given by

oo _ COko(Ro — 1) [sinG: —2ko)l _ sinG + 2ko)!
! 2No A — 2ko x + 2ko
n icokoRg | 2(1 — cos Al) 2A
2Ny A A2 — 4kl
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Fig. 1. |Ry| for different plate-length with ¢o/h = 0.1, m = 1: a/h =
0.001 (A), 0.5 (B) Crosses denote data for | Ry | when there is no plate.

cos(A — 2kg)l  cos(A + 2ko)l
A — 2ko A+ 2ko
iC() e [ kn _ kn
Ny k2 4+ (h —ko)2 k24 (A + ko)?

(A — ko) sin(A — ko)l — k,, cos(A — ko)l
* { k2 + (h — ko)?
(A + ko) sin(A + ko)l — kn cos(A + ko)l |
N 2+ O+ ko)’ }e ]

kn A
X —A';l/;’. (3.9)
n

4. Numerical results

For numerical computation of R;, we need to evaluate Ry
and the constants A,, (n = 1, 2, .. .) associated with the solution
¢o(x, y) of the BVPL. As mentioned above, these are evaluated
numerically by using multi-term Galerkin approximations.
Only a few terms (at most three) in these approximations are
sufficient to produce fairly accurate numerical estimates for R
(real and imaginary parts).

In our numerical computations the value of Ak is chosen to
be unity for Figs. 1-5. The Figs. 1 and 2 depict |R;| against
the wave number K# for different values of a/h and a single
ripple (m = 1) and ¢o/h = 0.1. From these two figures it is
observed that |R;|, regarded as a function of K’ is oscillatory
in nature. The zeros of |R;| are shifted towards the left as the
depth of the lower edge of the barrier increases. The crosses in
Fig. 1 represent the data for |R;| in the absence of the barrier
(for which case Ry = 0). These crosses almost lie on the curve
for |R1| for a very small depth of the lower edge of the barrier
(a/h = 0.001). This is obviously expected and also confirms
the correctness of the numerical results.

The Fig. 3 depicts | R | against K h for different values of m,
the number of ripples and fixed a/h and co/h. As m increases,
|R1| increases, becomes more oscillatory and the number of
zeros also increases. This is due to multiple interaction of the

0.15

0.1

IR, |

0.05

Fig. 2. |Rq| for different plate-length with ¢o/h = 0.1, m = 1: a/h =
0.1 (A), 0.3 (B), 0.6 (C).
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Fig. 3. |R;| for different number of ripples with a/h = 0.3, ¢cg/h = 0.1:
m=2(A),4(B),6(C).
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Fig. 4. |Ry| for different ripple amplitude with a/h = 0.2, m = 1: ¢g/h =
0.1 (A), 0.2 (B).

incident wave between the ripple tops, the barrier and the free
surface.
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Fig. 5. |Ry| for different ripple amplitude with a/h = 0.5, m = 1: ¢o/h =
0.1 (A), 0.2 (B).
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Fig. 6. |Rq| against o with co/h = 0.1, m = 2, Kh = 0.25: a/h =
0(A), 0.4 (B), 0.8 (C).

The Figs. 4 and 5 show the effect of ¢/ h (non-dimensional
ripple amplitude) on |Ri|. As co/h increases, |Ri| also
increases, whatever be the plate-length, and the zeros of |R1|
remain unchanged with the change in co/ &, but shift towards
the left as a/ h increases.

It is known that in the absence of the barrier, |R;| has peak
value when o = aﬁ ~ 1. A similar feature of |R{| is also
evident in the Figs. 6 and 7 depicting |R;| against « for fixed
co/h (=0.1), m(=2), Kh = 0.25 (in Fig. 6), Kh = 1.5 (in
Fig. 7), in which the curve A represents the case of absence of
barrier. However, the value of « for which | R | attains its peak,
is somewhat less than unity and the peak values are also reduced
as a/ h increases. These features are prominent for large wave
numbers.

5. Conclusion

The problem of water wave scattering by a variable bottom
in the presence of a thin vertical surface piercing barrier is
investigated by employing a simplified perturbation analysis.
The first-order reflection and transmission coefficients R;

0.06

0.04 * / % \

IRl r;’ ;’ | \ C \
[/ L ‘\" Y
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b/ ; ”F \ "" “ B“'
0.02 Iy o \ A
dor o
i1 \ }'/ A\
i/ LA/ A
Bl PV W
0 0.5 1 15 2
o
Fig. 7. |Ry| against « with ¢o/h = 0.1, m = 2, Kh = 15:a/h =

0 (A), 0.4 (B), 0.8 (C).

and 7 are determined in terms of integrals involving the
shape function describing the bottom and the solution of
the corresponding scattering problem for uniform finite depth
water. For the particular case of a patch of sinusoidal ripples
at the bottom, R; is depicted in a number of figures. As a
function of the wave number Kh, R; is oscillatory in nature
due to multiple interaction of the incident wave with the bottom
undulations, the lower edge of the plate and the free surface.
Somewhat large values of R; are found to occur for some
particular value of the ratio of the incident wavelength and the
bottom wavelength. Also the overall values of R are somewhat
decreased due to the presence of the barrier compared to the
case when there is no barrier.

A similar method can be used to investigate the water wave
scattering problems involving a thin vertical plate or a bottom
standing submerged plate present in water of variable depth.
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Appendix

A brief outline for estimating numerically the constants R
and A,(n = 1,2, ...) is given here.

Let
J(3) =¢o(+0.y) — ¢o(=0,y) and
s =220y, 0<y<h (A1)
Then
f(y)=0 fora<y<h and
g(y)=0 forO0<y<a.
Using (3.6) in the definition of g(y), we have
8(y) =iko(1 — Ro)¥o(y) + iknAn%(y), O<y<h

n=1
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and

g(y) = ikoToYo(y) = ) knBa¥n(y), 0 <y <h.

n=1
Use of Havelock inversion theorem produces

h

gMvo(y)dy,
a (A2)

h
knAn = _kan :/ g()’)wn(y)dy~

iko(1 — Ro) = ikoTy =

Again using (3.6) in the definition of f(y), we similarly find
that

2Ry = —/0 FO)vo(y)dy,

24, = —/0 SO (y)dy. (A3)
If we define
A
F(y)—m, O<y<a, and
G(y) = —@, a<y<h, (A4)
Ro

then F(y) and G(y) satisfy the integral equations

/0 FOKr(y,ndt = Yo(y), 0<y<a (AS5)
and

h
/ GOKG(y, )dt =yo(y), a<y<h (A6)
where
Kr(y,0) =Y ka¥n(M¥u(), 0<yit<a (A7)

n=1

and

Koty,n =3 Lr¥n®

<y, t<h, (A8)
n=1 k”
together with
a 1
/ F()yo(y)dy = — and
0 C
h
/ GYo(dy = C (A9)
a
where
C=iky |1 ! (A10)
=i —— .
0 Ro

It may be noted that the functions F(y), G(y) and the constant
C are all real. The integral Eqgs. (AS) and (A6) are solved by
multi-term Galerkin approximations (cf. Porter and Evans [10])

given by
F(y)=Y anfu(y), 0<y<a (A1)
n=1
and
G(y) =) buga(y), a<y<h (A12)
n=1
where
In(y) = % [G_Ky fu ﬁ(u)eK”du] , 0<y<a
g
with
~ o 2=n 2 2172 Yy
B = @ U (3) (A13)
and
B 2(—1)" h—y
) = @R — =2 (h - a) ’
a<y<h, (A14)

U, and Ty, being the Chebyshev polynomials of second
and first kinds respectively. The unknown coefficients a,, b,

(n =0,1,..., N) are obtained by using the systems of linear
equations
o
Y akKh, =Fn, m=0,1,....N,
n=0
and
o
Y bKS, =Gu, m=0,1,....N (A15)
n=0
where
0 a a
KE, =3 ki < /0 Wy)fn(y)dy) ( /0 m)fm(t)dt),
=0
a
Fy = /0 Yo(y) fim (y)dy, (Al6)

and
00 1 h h

KS,=>" ™ ( / V1(y)gn (y)dy) ( / ore (t)dr) ,
=0 a a

h
Gm = / Yo(y)gm(y)dy. (A17)
a

Once a,, b, (n = 0,1, ..., N) are derived, the real constant C
can be determined by using any one of the equations in (A9)
after substituting from (A11) or (A12). Ry then can be found
by using (A10).

To find the constants A,,, we use either the second relation in
(A2) or in (A3). Noting the relations in (A4) and the multi-term
expansions (Al11) or (A12), A, is ultimately approximated as

N a
A= =iko(1 = R Y- ar [ ) fir)dy
=0
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or

N h
An=—Ro Y b f Y (3)81(y)dy. (A18)
[=0 a

In the numerical computations for Rj, both the sets of multi-
term Galerkin approximations for F(y) and G(y) have been
used. Almost the same numerical results for R; are obtained.
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