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Abstract

In a two-layer fluid wherein the upper layer is of finite depth and bounded above by a thin but uniform layer of ice-
cover modelled as a thin elastic sheet and the lower layer is infinitely deep below the interface, time-harmonic waves with
a given frequency can propagate with two different wavenumbers. The wave of smaller wavenumber propagates along the
ice-cover while wave of higher wavenumber propagates along the interface. In this paper problems of wave scattering by a
horizontal circular cylinder submerged in either the lower or in the upper layer due to obliquely as well as normally inci-
dent wave trains of both the wave numbers are investigated by using the method of multipole expansions. The effect of the
presence of ice-cover on the various reflection and transmission coefficients due to incident waves at the ice-cover and the
interface is depicted graphically in a number of figures.
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1. Introduction

Stokes [1] first investigated wave propagation in a two-layer fluid with a free surface and an interface. For
such a two-layer fluid it is known that time-harmonic waves with a given frequency can propagate with two
different wave numbers (cf. [2]). Linton and Mclver [3] developed a general theory for two-dimensional wave
propagation in such a two-layer fluid. Due to the presence of an obstacle, an incident wave of a particular
wave number gets reflected and transmitted into waves of both the wave numbers, so that on scattering by
an obstacle, transfer of energy from one mode to another takes place. When the obstacle is in the form of
a horizontal circular cylinder, situated in either the lower or the upper layer, Linton and Mclver [3] calculated
reflection and transmission coefficients associated with both the wave numbers for a wave train of again both
the wave numbers normally incident on the cylinder. They observed that when the cylinder is in the lower layer
then the reflection coefficients are identically zero.
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This is in conformity with the classical result (cf. [4]) that a horizontal circular cylinder submerged in deep
water is transparent to a normally incident wave train. However, the cylinder does experience reflection if it is
submerged in the upper layer. This problem arose in connection with modelling an under water pipe bridge
across Norwegian fjords consisting of a layer of fresh water on the top of a deep layer of salt water. Linton
and Cadby [5] also investigated the problem of scattering of obliquely incident waves by a long circular
cylinder in a two-layer fluid and observed that for an incident angle above a critical angle defined by a relation
involving the density ratio between the two fluids, there is no transfer of energy from the waves of higher wave
number to the waves of lower wave number while for incident angles less than the critical angle, energy trans-
fer only occurs at somewhat higher frequencies, and the phenomenon of zero transmission occurs at some
particular frequencies.

There is a considerable interest in the study of various types of water wave problems in the presence of a
thin ice-sheet floating on water, termed as water with an ice-cover, the ice-sheet being modelled as a thin elastic
plate (cf. [6-13] and others). Das and Mandal [14] investigated the wave scattering by a long circular cylinder
in a single-layer fluid of infinite depth with an ice-cover and observed that the cylinder does not experience
reflection for normal incidence, but does experience reflection for oblique incidence. This has motivated us
to consider a two-layer fluid whose upper layer is bounded above by a thin uniform ice-cover and the lower
layer is infinitely deep. In this case, time-harmonic waves of a particular frequency can propagate with two
different wave numbers, waves with higher wave number at the interface while waves with lower wave number
at the ice-cover.

Wave scattering by a horizontal circular cylinder situated in either of the two layers of an ice-covered two-
layer fluid is considered here. A brief account of oblique scattering by a circular cylinder submerged in the
lower layer was reported by Das and Mandal [15]. Oblique and normal incidence of a wave train of both
the wave numbers are considered here. It is observed that, for normal incidence of a wave train, there is no
reflection when the cylinder is in the lower layer. Thus the classical result about the transparency of a circular
cylinder due to normally incident surface wave train in an infinitely deep water with a free surface also holds
good for a two-layer fluid with an ice-cover if the cylinder is situated in the infinitely deep lower layer. When
the circular cylinder is in the upper layer, for normal incidence, there is also no transparency property of the
cylinder. Moreover, as observed by Linton and Cadby [5], for a two-layer fluid with a free surface, for oblique
incidence, here also there exists a critical angle. For incident angles less than this critical angle, there exist now
two cut-off frequencies, and for frequencies lying between these two frequencies will there be a transfer of
energy from the waves of higher wave number to the waves of lower wave number in the scattering process.
The higher cut-off frequency increases rapidly as the ice-cover parameter decreases, and becomes very large as
this parameter becomes very small since the cut-off frequency curve becomes almost asymptotically parallel to
the Ka-axis in the (Ka, o)-plane (see Fig. 1), where K = ¢%/g, o being the angular frequency, g being the gravity,
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Fig. 1. Cut-off frequency K.a due to an incident wave of wavenumber 2, (h/a =2, p = 0.5).
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a is the radius of the submerged circular cylinder and o is the angle of incidence. In fact the K.a curve almost
coincides with the corresponding K.a curve for a two-layer fluid with a free surface. For angles less than the
critical angle, energy transfer occurs only when the frequency lies between these cut-off frequencies, and when
there is no energy transfer, the phenomenon of zero transmission is observed at some particular frequencies.

In Section 2, the general problem of oblique wave incidence in a two-layer fluid with an ice-cover is dis-
cussed. The problems of wave scattering (for oblique and normal incidence) by a cylinder are treated in Sec-
tion 3 when the cylinder is in the lower fluid and in Section 4 when it is in the upper fluid.

Numerical estimates for the reflection and transmission coefficients are obtained and are depicted graphi-
cally against the wave number for various values of the angle of incidence and other parameters in a number of
figures. For normally incident wave trains, the numerical estimates for reflection and transmission coefficients
are also obtained and are depicted graphically against the wave number. The energy identities (derived in
Appendix A) are used as a check on the correctness of all numerical results for the reflection and transmission
coeflicients.

2. Oblique waves scattering in a two-layer fluid

We are here concerned with irrotational motion in two superposed non-viscous incompressible fluids under
the action of gravity, neglecting any effect due to surface tension at the interface of the two fluids, the upper
being of finite depth /4 and covered by a thin uniform ice sheet modelled as a thin elastic plate, while the lower
layer being infinitely deep. The upper and lower layer fluids have densities p; and p,(>p;), respectively. Carte-
sian co-ordinates are chosen such that (x,z)-plane coincides with the undisturbed interface between the two
fluids. The y-axis points vertically upwards with y =0 as the mean position of the interface and y = h(>0)
as the mean position of the thin ice-cover. Under the usual assumptions of linear water wave theory a velocity
potential can be defined for oblique waves in the form

(p('x)yazy t) = }{G{(]ﬁ(x,y)e*i(flJriyz}7

where ¢(x,y) is a complex valued potential function, y is the wavenumber component along the z-direction
and o is defined earlier.

The upper fluid, 0 <y < h, will be referred to as region I, while the lower fluid, y <0, will be referred to as
region II. The potential in the upper fluid will be denoted by ¢ and that in the lower fluid by ¢". ¢' and ¢
satisfied Helmholtz equation

(V2=9)¢' =0 for0<y<h, (2.1)
(V2 =p)¢p" =0 for —oo <y <0.

Linearized boundary conditions at the interface and at the ice-cover are
¢, =¢, ony=0, (2.3)
pld, —K¢') = ¢! —K¢" ony=0, (2.4)

where p = (< 1),
2

2
D o _p +1—eK |p —Kp'=0 ony=h, 2.5
o2 y Y
. )

where K is defined earlier, D = o L where L is the flexural rigidity of the elastic ice-cover and € = p”ho, Po 1s the

density of the ice and Ay is the very small thickness of the ice-cover. The boundary conditions (2 3) and (2.4)
are obtained from the continuity of normal velocity and pressure at the interface, respectively.
Also condition at large depth is

Vo' -0 asy— —oo. (2.6)
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In a two-layer fluid progressive waves have the form (except for a multiplicative constant)
P = eiM’fZﬂ'Zﬁ[{k(Dk“ + 1 —eK) + K} 4 {k(Dk* + 1 — eK) — K}e K0, (2.7)
and
¢ = RO (DK 4 1 — eK) + Kle ™ + {k(DK* + 1 — K) — K}e], (2.8)
where k satisfies the dispersion equation
H(k) = Kp{k(Dk* + 1 — ¢K) cosh kh — K sinh kh}
—{k(1 — p) — K}{k(Dk* + 1 — €K) sinh kh — K coshkh} = 0. (2.9)

Eq. (2.9) has exactly two positive real roots 4; and (4 < 4,) (say). Also, it has one negative real root and four
complex roots in the four quadrants of the complex k-plane.
For the case k = 4; (j = 1,2) progressive waves are thus of the form

¢'(x,y) = e g(y), j=1.2, (2.10)
Plxy) =, j=1,2, (2.11)
where 8, = (/112 — yz)% in which that branch of the square root is chosen for which f; = /; for y =0,
{4(1—p) - K} 4 1yt
() = x ({;(D2 +1 — eK) + K}eU™
&) Kp{4(D2¥ + 1 = eK) cosh /h — K sinh i} [14/(D4 ) K
+{(Di; +1—eK) —K}e 701 j=1,2. (2.12)

We require y < 4; for j =1 and y < A, for j = 2, for the progressive waves to exist.
In any wave scattering problem therefore, the far-field will take the form of incoming and outgoing waves
at each of the wave numbers 4; (j = 1,2). It is given by

O ~ (AT 1 CEeThN)g (1) + (BT 4 DEeThN)g, (y), (2.13)

P ~ (AEeth  CEeTIIx)ehY | (BEetifx | DTyl (2.14)
as x — = oo, for which, in the notation of Linton and Mclver [3],

¢~ (4 ,B,C,D; A",B",C*,D'). (2.15)

Incident plane wave ¢, of wave number A; making an angle «(0 < o < %) with the positive x-axis has the
form

Bhe = €, 0), 2.16)

¢llxllc _ gihreos oty (2.17)
In this case

y=/Jisina, By =2Aicosa, f,=(J3— isin’ oc)%. (2.18)
It is obvious that f3, is real since 4; < 4, and so scattered waves of wave number A, will exist for all values of 1,

(i.e. for all values of K, since for different values of K, we get different 1; and A,(>4,)) and for all incident an-
gles a. The angle o, for the scattered waves of wave number 4, is given by

s
tanoy, = - = ~1O0% (2.19)

Br (32— Zsina)t

Since f, > f; we know that tano,, < tano and hence o), < o.
An incident plane wave of wave number /4, making an angle o (0 < o < %) with the positive x-axis is given
by

Bire = gy (v), (2.20)
¢II _ eilzxcosoch/lzy. (221)

inc
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In this case
y=lasing, B, = (22— 2sin’aw), B, =lycoso. (2.22)

For a given angle o there may be a value of K for which 4; = A,sina and thus f; = 0. We will call this K as the
cut-off frequency and denote it by K. For a value of K for which 4; > A,sina (for fixed o) we get real f; and so
waves of wave number 4, will propagate. For a value of K for which 4, < 2, sina (for fixed o) f/; becomes imag-
inary and in that case there exists no propagating wave of wave number A,. Fig. 1 shows the cut-off frequency
K.a, plotted against incident wave angle

o= sin”’ (ﬂ) (2.23)
42

for density ratio p = 0.5, h/a = 2, and different values of u% and ¢/a, a being the radius of the circular cylinder

considered in the next section. Instead of using a, we could have used /4 to non-dimensionalise ¢ and D, but

that would not have changed this discussion.

The different curves in Fig. 1 correspond to £ = 2,1.5,1,0.5,0.1 and ¢/a = 0.01 (except one curve for which
e/a=10.0001, 5 =0.0001). It is observed from this figure that for any angle o for which the point (, Ka) is
situated on the right side of the curve there are no propagating waves of wave number A, for this value of
Ka. It may be noted that for very small value of £ i.e. 0.0001 with small ¢/a = 0.0001, the curve almost coin-
cides with the curve for the case of upper fluid with a free surface (Fig. 1 in [6]). Due to the presence of ice-
cover, we observe from this figure that for some values of o for which the point (Ka,«) is situated on the left
side of the curve there are two cut-off frequencies and only for frequencies lying between these two cut-off fre-
quencies will there be conversion of wave number 1, from wave of wave number 4,. In Fig. 2, the critical angle
o 1s plotted against a%, for K.a =0.3,0.5,0.9. These curves show that . decreases as a% increases for higher
values of K.a.

When waves of wave number 4, propagates, the angle «,, of the scattered waves of wave number /, is given
by

i
tano;, = — 0% (2.24)
! 72 202 A
(A} — 23 sin” )2

In the case of a single-layer fluid, for any scattering problem, the reflection and transmission coefficients satisfy
the energy identity, which is generally used as a partial check on the correctness of the analytical or computed
values of these coefficients. For a two-layer fluid with a free surface, there exists two energy identities corre-
sponding to scattering of incident waves of two different wave numbers (cf. [3,6]). These energy identities were

20

O/ (in degree)

Dia’
Fig. 2. Critical angle o, for a fixed cut-off frequency (¢/a = 0.01, h/fa =2, p =0.5).
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derived by appropriate uses of Green’s integral theorem. For a two-layer fluid in which the upper layer has an
ice-cover instead of a free surface, energy identities are derived here in Appendix A by using a generalized form
of Green’s integral theorem. These identities are used here as partial numerical checks for all the data points in
obtaining the various curves for the reflection and transmission coefficients.

3. Cylinder in the lower layer
Let a horizontal circular cylinder of radius « have its axis at y = f{<0) and its generator runs parallel to
z-axis. Polar co-ordinates (r,0) are defined in the (x, y)-plane by
x=rsinf and y=jf—rcosh. (3.1)

Let the symmetric and antisymmetric multipoles be defined by ¢ (n > 0) and ¢} (n > 1), respectively. The
multipoles are defined by (in the notation of Linton and Cadby [6])

P = (— 1)"%:0 cosh nk cos(yxsinh k) (A4 (k)e™ + B(k)e ™) dk, (32)
¢ = K, (yr) cosn0 + (1)"%:0 cosh nk cos(yx sinh k)C(k)e® dk, (3.3)
P = (—1 )”Hf:c sinh nk sin(yx sinh k) (4 (k)e”™ + B(k)e™) dk, (34)
PN = K, (yr) sinnd + (—1)"“%:: sinh ik sin(yx sinh k) C(k)e” dk, (3:5)

where v = ycoshk and A(k), B(k), C(k) are functions of k to be found such that the integrals exist in some
sense. K, (z) is the modified Bessel function of second kind.

The functions ¢} and ¢° are singular solutions of the modified Helmholtz equation and satisfy the ice-cover
condition (2.5) and the interface conditions (2.3) and (2.4) and are of outgoing nature at infinity. Then A(k),
B(k) and C(k) have the forms

A(k) = K{o(Dv* + 1 — eK) + K}V ™" /H (v), (3.6)
B(k) = K{v(Dv* + 1 — eK) — K}V /H (v), (3.7)
C(k) = [Kp{v(Dv* + 1 — €K) coshvh — K sinh vh}

—{(1 = p)v+ K}Hv(Dv* + 1 — eK) sinh vh — K coshvh}]e” /H(v), (3.8)

where H(v) is given by (2.9) (with k replaced by v).
The path of the integration in the integrals in (3.2)—(3.5) is indented below the poles at k = uy and k = po,
where

ycoshp, =4;, j=1,2. (3.9)
The far-field forms of the multipoles, in the lower fluid, are given by

¢:7[s -~ (_l)nni(cul cosh n'ule:ti[ﬁx+/lly 4 Che cosh nﬂzeii[fz"Jr;LZ/V)’ (310)

A" ~ F(—1)"n(C" sinh np e A 4 O sinh n,etr (3.11)

as x — +oo, where C*' and C'* are the residues of C(k) at k = u; and k = u,, and these are given by
C" = [Kp{4;(DZ + 1 — €K) cosh Z;h — K sinh /;h}
—{(1 = p)2; + K}{2,(D2} + 1 — €K) sinh A;h — K cosh ;h}]e™! | B,H' (), j=1,2. (3.12)
Using the expansion

. 1
X (PP — Eem(Pm + P™),(X), (3.13)

m=0
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where
=1, =2, m=>=1 (3.14)

1,(X) is the modified Bessel function of first kind, (3.3) and (3.5) can be expanded in terms of polar
co-ordinates as

" = K, (yr) cos n6) + ZA,(f,ilm (yr) cosm0, (3.15)
m=0
a _ - N 4D (o) s
¢, = K,(yr)sinnd + ZAnmIm(/r) sin m0, (3.16)
m=1
where
oC
AY) = e,,,(—l)m”][ ¢” cosh mk cosh nkC (k) dk, (3.17)
0
oC
A9 = (—1)"’*"% e"/ sinh mk sinh nkC (k) dk. (3.18)
0

3.1. Obliquely incident wave train of wavenumber 1,

Let us consider the case of an obliquely wave train of wavenumber A; making an angle « with the positive
x-axis, so that y = J;sina. The incident wave potential (2.17) has the form

Pl = elfretiy — ehf Z ém(—1)"L,,(yr)(cosh mv cos m0 — isinh mv sin m0), (3.19)
m=0
where
A 1
coshy="1=_—.
7 sina

To solve the scattering problem we write the potential function describing the fluid motion as
i = Pine + (@) + 0u4)), (3.20)
n=0

where a, and b, are unknown constants to be determined.
To find a, and b, the polar expansions of the multipoles (3.3), (3.5) and the incident wave (3.19) are
1T
substituted into (3.20). Applying the body boundary condition a:l =0 on r =a, and using the orthogonal
properties of the trigonometric functions, we obtain two infinite systems of linear equations for the unknowns

a, and b, as given by,

I NS @0, (1) s _
Z,,,+;A”’”a"_2l( )" sinhmv, m=1,2,..., (3.21)
b - iy
Om ©)p — 1yl oS _
Zm—i—;Anmb,,—( )" e, e coshmv, m=0,1,..., (3.22)
where
_ 1,04
"K,(a)

dash denoting derivative with respect to the arguments.
These two systems can be solved by truncation. Here 5x 5 systems were used as in [6] for numerical
computations.
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The far-field form for (;’)27 in the lower layer, can be written as

eiﬁl)‘+/lly + RA e*iﬁlx+)fly -+ 7 e*iﬁzpr/'»zy as x — —oo,
¢£Il ~ Bt iry 1 iBox-+iny 1 (3.23)
T ePrmay 4 g, el as x — oo.
Using (3.20), (3.10) and (3.11) we obtain the reflection and transmission coefficients as follows:
R;, =nChH Z(—l)m{ibm coshmyp, + a,, sinhmu, }, (3.24)
m=0
r;, = nCh Z(—l)m{ibm coshmy, + a,, sinhmy, }, (3.25)
m=0
T, =1+nC" > (=1)"{ib, coshmp, — a, sinhmp, }, (3.26)
m=0
t, = nC* Z(—l)m{ibm coshmu, — a,, sinh my, }. (3.27)
m=0

3.2. Obliquely incident wave train of wavenumber 7,

We consider the case of an obliquely incident plane wave of wavenumber A, making an angle o with the
positive x-axis, so that y = 4,sina. The expansion of incident wave potential is the same as (3.19), except that
/1 1s to be replaced by 4,. The velocity potential ¢, for this problem can again be expanded in terms of mul-
tipoles similar to (3.20) and the equations for «, and b,, are similar to (3.21) and (3.22) with 4, is to be replaced
by )uz.

The far-field forms of (;’)IAIZ, in the lower layer, can be written as

. ei[i2x+/lzy _‘_Rizefi/f]xﬁ»),]y 4 r)vze—i/fz.ﬂ»/lzy as x — —oo0,
iy ~ (3.28)

Ty,eftiy 4y, eifoxtior as x — oc.
Using the far-field forms of the multipoles given by (3.10) and (3.11) in ¢;, we find that the expressions for

reflection coefficients R;, and r,, are similar to (3.24) and (3.25) with appropriate changes, and the transmis-
sion coefficients are given by

o0

T;,, =nC" Z(—l)m{ibm coshmyy — a,, sinh my, }, (3.29)
m=0
t, =1+4+nC" Z(—l)m{ibm coshmy, — a,, sinh my, }. (3.30)
m=0

3.3. Normally incident wave train

Now for the case of normal incidence, o = 0, the modified Helmholtz equation reduces to the Laplace’s
equation and solutions of Laplace’s equation singular at y =f<0 are r "cosnf and r "sinnf, n > 1, and
these have the integral representations

cosnf _ (=1) / kK" 'e =1 cos kx dk,
P (n—1)"J,
. _1 n+1 00 .
sinn _ (1) / Ko 0= sin kx dk.
7 (n — 1)' 0

It is straightforward to add suitable solutions of Laplace’s equation to the symmetric and antisymmetric mul-
tipoles so that the boundary conditions are satisfied. We obtain
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o = U T e + Bk coske
0

(n—1)!
—_1)\" o
gne —cosnt | (Z1) 7£ K1 C (k) cos kx dk,
P (m=1'J o
la (71)}1‘“ o n—1 ky —kyY o
o= 1) kK" (A(k)e” + B(k)e™) sin kx dk,
1)
' : —1 n+1 00 )
P = SH;nnH + E” )1)'% K1 C(k)e" sin kx dk,
-0 ),

where now
A(k) = K{k(Dk* + 1 — eK) + K}V /H k),
B(k) = K{k(Dk* + 1 — K) — K}e!V"™ /H (k),
C(k) = [Kp{k(Dk* + 1 — €K) cosh kh — K sinh kh}
—{(1 = p)k + K}{k(Dk* + 1 — €K) sinh kh — K cosh kh})e" /H (k)

(3.31)

(3.32)
(3.33)

(3.34)

(3.37)

and the path of integration is indented to pass beneath the poles of the above four integrands at k = A, and

k = J,. Here we have used the same notation without any confusion.
The multipoles (3.32) and (3.34) can be expanded about r = 0. Thus we obtain

cosnl &
¢£IS - 7};1 + ZAnmr’” cos mb),

m=0

sinn & )

qulIa =——+ E Ayt sSinmb,

rn
m=0

where

(_1)”+m o n+m—1 ky
Anm = k C(k)e} dk.
(n—1m!J o

Note that 4,,, is the same for qﬁffs and gbffa.
The far-field form of the multipoles, in the lower layer, is given by

S5 ~ ((—1)1)' mi(21 |l 4 el Ch gty
n— !
, —1)" L o
le,lqld ~F (fl - )1)‘ n(/lrllflcme:tulwrmy + ;Lgflc),ze:tmzﬂmzy)’

as x — =oo. Here C* C* are the residues of C(k) at k =/, and k = A,, given by
C" = [Kp{2;(D/} + 1 — eK) cosh 2;h — K sinh 7;h}

—{(1 = p)4; + K}{4,(DZ + 1 — €K) sinh 2;h — K cosh ;h})e™ [H'(3;), j=1,2.

3.4. Normally incident wave train of wavenumber A;

The incident wave potential
I Jidix+Ay
qsinc =¢ ’

when expanded about r = 0, has the form

o0 _1 m o
ol = Z (=1) A" (cos mO — isin m0)e" .

inc |
—0 m:

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)
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To solve this scattering problem we write
¢y = bine + Za (and’ + budh}), (3.46)

where a, and b,, are unknown constants to be determined.
To solve for a, and b, the polar expansions of the multipoles (3.32) (3.34) and the incident wave (3.45) are

oglt
substituted into (3.46) and applying the body boundary condition - = 0 on r = a and using the orthogonal
properties of the trigonometric functions, we obtain two infinite systems of linear equations for unknowns a,,
and b, which are

=Y d T a, = i W;“) M om=1,2,..., (3.47)
n=1 '
bm - Z an+mAnmbn = %em‘f, m = 1, 2, e (348)

n=1

Since left-hand sides of the systems of equations are of the same nature and the right-hand sides of the systems
differ by a factor —i, we find that

a, = —ib,. (3.49)

Thus qﬁ? is obtained as
ll’lC + Z nb ) (3'50)

It follows immediately from (3.41) and (3.42) that as x — —oc0
q’) qﬁmc (3.51)

The far-field form for d)fll in the lower fluid can be written as

eil])ﬁ’ﬂ]y +R e*iil.\dr).ly + 7 e*i/lz)H»/lzy as x —00,
O ~ o TEAE - (3.52)
T;Lle‘“x“‘y + l;u] el/_2x+/qy as x — 0o0.
Using (3.50) we can obtain the reflection and transmission coefficients:
R, =r; =0, (3.53)
T, =1+ 2mz TR 'CHb,, (3.54)
n=1
( 1 -1~
= 2mz C*b,. (3.55)

3.5. Normally incident wave train of wavenumber 1,

For an incident wave of wave number /, the mathematical analysis is the same except that /; is to be
replaced by 4, in the above equations. Also the far-field forms of q’)f«llz, in the lower layer, can be written as

- eiﬂsz,H»Azy + Rbefi}qxﬁ»)u]y + rize—i/lszr/lzy as x — —o0,
O ~ 2 (3.56)

T)_ZGMIXJFM}) + t}vzel/.g)H»/uzy as x — oo.

Here also we find that the reflection coefficients R, and r,, are identically zero. For the transmission coeffi-
cients we obtain
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T, =2my Oi%l)l)'aw;—lchbm (3.57)
n=1 )
t —1+2'wﬂ”;bn—l Z 8
1 = Yy a4 Ch (3.58)
n=1 (i’l— )

3.6. Numerical results

In Figs. 3-6 the reflection and transmission coefficients are shown for the case of a wave train of wave num-
ber A; obliquely incident on the cylinder submerged in the lower fluid. In all the plots immersion depth —f/a is
2, the depth of the upper fluid layer //a is 2 and p (density ratio) is 0.5, e/a = 0.01 and D/a* = 1.5. The dif-
ferent curves correspond to different incident wave angle o, which are 15°, 75°, 80°, 85°, 89°. From Figs. 3
and 5 it is observed that as the angle of incidence increases, |R;, | increases while |7, | decreases. Also |R;, |

05— —
0.4 .
031§ S o-80°
I

02 b’

0.1 ‘H‘;"/ ~_ \\‘\\

0.2 0.4 0.6 0.8 1
Ka

Fig. 3. Reflection coefficient due to a wave of wavenumber 4, incident on a cylinder in the lower layer (Dla*=1.5,e= .01, hla=2, p=.5,

fla=-2).
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Fig. 4. Reflection coefficient due to a wave of wavenumber /., incident on a cylinder in the lower layer (D/a* = 1.5, ¢/a=0.01, p = .5,
hla =2, fla= -2).
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Fig. 5. Transmission coefficient due to a wave of wavenumber /1, incident on a cylinder in the lower layer (D/a4 =1.5,¢/a=0.01, hfa =2,
p=.5,fla=-2).
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Fig. 6. Transmission coefficient due to a wave of wavenumber /, incident on a cylinder in the lower layer (D/a* = 1.5, ¢/a = 0.01, p = .5,
hla=2, fla= -2).

is somewhat smaller in comparison to that of Linton and Cadby [6] and |T,, | is somewhat larger in comparison
to that of Linton and Cadby [6]. This is due to the presence of the ice-cover. For o = 15°, the reflection coef-
ficient |R;, | is seen to be quite small. In fact for small o, |R;, | becomes negligible.

The reflection coefficient |r;,| and transmission coeflicient |z;,| of waves of wave number 7, for an incident
wave of wave number 1;, shown in Figs. 4 and 6, respectively, are smaller in comparison to those for wave of
wave number /4, but their non-zero values show that there is some conversion of energy from one wave num-
ber to the other.

The case of an incident wave of wave number 4, is more interesting due to the presence of cut-off frequen-
cies. For this case, Figs. 7-10 show the reflection coefficients |R,,|, |r;,| and transmission coefficients |T,,|, |¢,,|
against Ka for hfa=2, p=0.5, f/2 = =2, e/a = 0.01, D/a* = 1.5. The different curves correspond to different
values of the incident angle o, viz. 14.9°, 16.6°, 17.76°, 19.20°. When o = 19.20° which is greater than the crit-
ical angle o, = 18.95° for the given values of the different parameters, there is no wave of wave number 1,
propagating in the fluid. From Fig. 1 we have the following cut-off frequencies: K.a = (0.09,0.86);
(0.13,0.665); (0.17,0.54) corresponding to the incident angles 14.9°, 16.6°, 17.76°, respectively. For these
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Fig. 7. Reflection coefficient due to a wave of wavenumber 4, incident on a cylinder in the lower layer (D/a* = 1.5, ¢/a =0.01, hja =2,
p=0.5, fla=-2).
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Fig. 8. Reflection coefficient due to a wave of wavenumber 4, incident on a cylinder in the lower layer (D/a* = 1.5, ¢/a = 0.01, hja =2,
p=0.5, fla=-2).

angles and for frequencies lying between two appropriate cut-off frequencies will there be conversion of energy
from one mode to the other. |r;,|, |#,,| for the incident wave number 7, are shown in Figs. 8 and 10. From these
two figures we observe that for a particular frequency just less than the cut-off frequency there is maximum
reflection and minimum transmission of the incident wave of wave number A,. For o = 14.9°, 16.6°, 17.76°
there are two spikes in the curves because of two cut-off frequencies. When o = 19.20° which is greater than
the critical angle, there is no spike on the curve. All the numerical values of the reflection and transmission
coefficients have been checked for their correctness from the energy identities.

For the case of normal incidence, Figs. 11 and 12 show the transmission coefficients for the case of an inci-
dent wave of wave number 2, incident on a circular cylinder in the lower fluid for e/a = 0.01, h/a=2, p = 0.5,
fla = —2. The different curves correspond to different values of D/a*, D/a* =0.1,0.5,1, 1.5,2. Fig. 11 shows
that |7, | first decreases as Ka increases for low to moderate values of Ka but it increases as Ka further
increases for any D/a*. Fig. 12 describes the behavior of |t;,| which is complimentary to the behavior of
|T,|. Also Figs. 13 and 14 show the transmission coefficients due to a wave of wave number /, incident on
a cylinder in the lower layer. Fig. 13 (Fig. 14) describes the behavior of |7,,| which is similar to the behavior
of |t/12|(|T/12|)'
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Fig. 9. Transmission coefficient due to a wave of wavenumber /, incident on a cylinder in the lower layer (D/a4 =1.5,¢/a=0.01, p=0.5,
hla=2, fla= -2).
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Fig. 10. Transmission coefficient due to a wave of wavenumber 4, incident on a cylinder in the lower layer (D/a* = 1.5, &/a = 0.01, hfa =2,
p=0.5, fla=-2).

4. Cylinder in the upper layer

A horizontal circular cylinder of radius « has its axis at y = f{>0) and its generator runs parallel to the z-axis
(f/la > 1). Polar co-ordinates are again defined via (3.1) and suitable multipoles have the forms

oo
quf = K,(yr)cosnb + 7£ cosh nk cos(yx sinh k) (A,(f)) (k)e” + B,SO) (k)e™) dk, (4.1)
0
o0
P = 7£ cosh nk cos(yx sinh k)C\”) (k)e® dk, (4.2)
0
o
O = K, (yr) sinnd + 7[ sinh nk sin(yx sinh &) (4 (k)e® + B (k)e™™) dk, (4.3)
0

n

oo
P = 7[ sinh nk sin(yx sinh k) C(Y (k)e™ dk, (4.4)
0
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Fig. 11. Transmission coefficient due to a wave of wavenumber 2, incident on a cylinder in the lower layer (¢/a = 0.01, h/a= -2, p =0.5,
fla==2).
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Fig. 12. Transmission coefficient due to a wave of wavenumber 1, incident on a cylinder in the lower layer (¢/a = 0.01, h/a =2, p = 0.5,

fla= -2).

where

AV (k) = % {u(Dv* + 1 — eK) + Kye " {(=1)"7' (1 = p)o — (1 + p)K)e/

— (1= )0 = K)e Y/ H (), 3)
BY(K) = 5 [(~1)" D0 + 1~ eK) + K} (1 = p) (o~ K)erU
— (1 =p)(v—K){o(Dv* + 1 — eK) — K}e V] /H(v), (4.6)
CY (k) = —pK[(—1)"7 " {u(Dv* + 1 — eK) + K}e'V™ — {v(Dv* + 1 — eK) — K}e V™) /H(v),
Jj=0,1 (4.7)

where the contour is indented below the poles k£ = u; and k& = p», in the complex k-plane.
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Fig. 13. Transmission coefficient due to a wave of wavenumber /, incident on a cylinder in the lower layer (¢/a = 0.01, h/a =2, p =0.5,

fla= -2).
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Fig. 14. Transmission coefficient due to a wave of wavenumber /, incident on a cylinder in the lower layer (¢/a = 0.01, h/a=2, p =0.5,

fla=-2).

The far-field form of these multipoles, in the lower fluid layer, is given by

¢L‘s ~ ni(Cflo)’“ cosh np ehretiy 4 Cflo)“z cosh np,ef 2, (4.8)
¢:lla ~ :l:TC(CS,l)#] sinh n'uleiiﬁ]x+/1]y 4 Cil)”z sinh nﬂzeiiﬂ2x+22}>), (49)

as x — +oo, where CV#1 and CY2(j = 0,1) are the residues of CY (k) at k = y; and k = i, given by

COM = —pK[(—1)""" (D2} +1 — eK) + K}e"U™ — {J.(Di} +1 — eK) — K}Ye ™ “U"P1/B.H'(),),
i=12 j=01 (4.10)
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The polar expansions of the multipoles, similar to the case when cylinder is in the lower fluid, are

¢ = K, (yr) cosnl + Z BY1,.(yr) cos mo), (4.11)
m=0
P = K, (yr) sinnf + ZB(“ (yr) sinm0, (4.12)
m=1
where
BY = 6'"7[ cosh mk cosh nk{(—1)"4 (k)e" + B (k)e "} dk, (4.13)
0
[e @]
B — 27[ sinh mk sinh nk{(—1)""'4" (k)e” + BV (k)e '} dk. (4.14)
0

4.1. Obliquely incident wave train of wavenumber 1,

For this problem ¢!
expansion of ¢!

.o 1s given, in the upper fluid, by e”1*g, (y), where g(y) is defined in (2.12). The polar

e 1S given by

m=0
F1Y el () [(=1)" Mye ) 4 Mot "] sin my sin mo, (4.15)
where
A 1
coshy =21 = -
y  sino
and

{(1 = p)As — K}{ (DX} +1 —eK) £ K}
M, = - : . (4.16)
© Kp{4(Di]+1—eK)coshiih — K sinh A}

The velocity potential c],’)i1 is expanded similar as (3.20), where ¢, and ¢’ are the symmetric and antisymmetric

ol
multipoles developed for the upper fluid, respectively. After applying the body boundary condition, :rl =0on
r = a and also using the orthogonal properties of trigonometric functions, we obtain the two infinite system of
linear equations

z "y ZB(“ a, = 2i[(=1)"M e ") — Mo "D sinhmy, m=1,2,..., (4.17)
2—’" + 3 BOb, = e,[(—1)" M 1) — Myt "D coshmy, m=0,1,.... (4.18)
m n=0

These equations were solved by truncations to 5 x 5 systems to produce the numerical results. The reflection
and transmission coefficients can be extracted from the far-field form of the potential qSlil, using (3.20), (4.8)
and (4.9) with (3.23), and are given by
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R;, = nzoo:{ibnlC,g(’)”‘ coshmy, — amCE,”’" sinh mu, }, (4.19)
m=0

=" zoo:{imeflo)“z cosh myt, — a,,C\"*2 sinh my, }, (4.20)
m=0

T, =1+ ni{imeff’)“l coshmu, + a,,,CEll)"1 sinh myy, }, (4.21)

m=0

t, =" Et)o:{ib,,,c,(lo)“2 cosh myt, + a,,C\"* sinh my, }. (4.22)

m=0

4.2. Obliquely incident wave train of wavenumber A,

For this problem ¢!

e 1s given, in the upper fluid, by e’>*g,(y), where ga(y) is defined in (2.12). The polar
expansion of qSiInc is same as (4.15), except that 4, is replaced by 4,. The velocity potential ¢£2 for this scattering
problem can again be expanded in multipoles similar to (3.20) and the equations for g, and b,, are similar to
(4.17) and (4.18) with 4; replaced by /.

The reflection and transmission coefficients can be extracted from the far-field form of the potential qblb
using (3.20), (4.8) and (4.9) with (3.28). The expressions for R;, and r;, are similar to (4.19) and (4.20) with

appropriate changes, and the transmission coefficients are given by

T,=m Z{ibmcff)’” coshmy, + @, C\"" sinhmy, }, (4.23)
m=0
th,=1+m Z{imeff))"z cosh mu, + a,, C\V"2 sinh mpy, }. (4.24)
m=0

4.3. Normally incident wave train

Now for the case of normal incidence, o = 0, the modified Helmholtz equation reduces to the Laplace’s
equation and solutions of Laplace’s equation singular at y =f >0 are r "cosnfl and r "sinnf, n > 1, and
these have the integral representations

cosnff_ w1 ! i /oc k"' ek=h cos kx dk,
r n— 1) Jy
sinnf _ = ! N / ™ 1640 sin e dik.
" n—1)Jo
Here the appropriate multipoles have the forms
0 1 ©
P = Corsn” + (’11),7[ K149 (k)b + BO (k)e ) cos kx dk, (4.25)
-0
IIs __ 1 o n—1 ~(0) ky
¢, = CEEI] k" CV (k)e" cos kx dk, (4.26)
n— ! 0
in n6 1 o .
= 1—>'7L K (AP (R)eb + B (k)e ™) sin ko dk, (427)
DT
Ma _ 1 o n—1 ~(1) ky o
¢, = CE] k' C Y (k)e® sinkx dk, (4.28)
n — ! 0
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where

AP (k) = % [{k(DK* + 1 = eK) + K}e " {(=1)"7" (1 = p)k = (1 + p)K)e — (1 = p)(k — K)e ' }] /H (k),

(4.29)
BY) (k) = % [(—1)" 7 k(DK* +1 — eK) + K }(1 — p)(k — K)etU' =)
— (1= p)(k — K){k(Dk* + 1 — eK) — K}e V"1 /H k), (4.30)
CY(k) = —pK[(=1)"7 " {k(Dk* + 1 — eK) + K} U™ — {k(Dk* + 1 — eK) — K }e *V""/H (k),
J=01, (4.31)
the contour being indented below the poles k = /; and k = 4, in the complex k-plane.
The polar expansions of these multipoles, in the upper layer, valid for r <f, are
s 00snl N L
o) = - + ;Enmr cosm0, (4.32)
SN0 SN )
= E@ym 4.
oy ="t ,,; (@ sinmo, (4.33)
where
[ 7iook'"“*l{(-1)"’A<0> (k)e" + B (k)e ™™} dk (4.34)
"o (n=1Im! ] o " " ’ :
E@ = ;7[001«'"*’“‘{(—1)’”“A<”(k)e’<f + B (k)e ™} dk (4.35)
nm (}’l _ 1)|m' 0 n n : :

We note that unlike the case of multipoles singular in the lower layer, the coefficients in the polar expansions
of ¢" and ¢ are not the same.
The far-field behavior of these multipoles, in the lower layer fluid, is given by

i
(n—1)!

d):lla N j:( T m (irl,flcil)xleii;,]xwl]y + ;Lg—lcil)zzeiuzwazy)’ (4.37)
n—1)!
as x — Fo0, where C”% and C{"*1 are the residues of C\* (k) and CV(k) at k = A, and k = /,, respectively,
and are given by

d)ils N ( /1;,71 CEIO)Aleiu]xH]y i ;L;flCEIO)/lz eiizzxw.zy)’ (4.36)

CV% = —pK[(—=1)" " W(DI +1 — eK) + K} V™M — {J(D2} + 1 — eK) — K}e "V "D /H' (1),
i=1,2,j=0,1. (4.38)

4.4. Normally incident wave train of wavenumber 7,

For this case qﬁilnc is given, in the upper fluid, by e“*g, (y)(x = 0), where g|(y) is defined in (2.12). The polar

expansion of qbi'nc is given by
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% ()r)" . . B . o
Dhoe = ( 1r') {(=1)"M e "= 4 Myeh =D} coshmO + 1{(—1)""" M e 44 1 Moeh ")} sin mo),
m!

m=0

(4.39)

where

_ {1 —p)ia — KHA (DA +1 - K) £ K} (4.40)
Y Kp{a (D + 1 — eK) cosh h — K sinh Ak} '
To solve this scattering problem, the velocity potential qﬁil is expanded as in (3.20), where ¢, and ¢’ are sym-
metric zlmd antisymmetric multipoles obtained for the upper fluid. After applying the body boundary condi-

o9l
tion, g;‘ =0 on r =a, and using the orthogonal properties of trigonometric functions, we obtain the two
infinite system of linear equations for unknown «, and b, given by

1 ——
./-/ 7’ N
/ K J \\1‘\\
0.8 + / i
. / / e
. . J » | O
‘RM‘ / ! ’,'/ » =35
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Fig. 15. Reflection coefficient due to a wave of wavenumber 4, incident on a cylinder in the upper layer (D/a* = 1.5, ¢/a = 0.01, hfa = 2.5,
p=0.5, fla=1.25).
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Fig. 16. Reflection coefficient due to a wave of wavenumber 4, incident on a cylinder in the upper layer (D/a* = 1.5, ¢/a = 0.01, hfa = 2.5,
p=0.5, fla=1.25).
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S A : o
Z an+mEnma” ( la) [(_1)m+1Mlei)'1(h7f) + MZeM(hif)]v m = 1, 27 ey (441)
n=1 '
ntm (’Ila)m m 1 (h—f) I (h—f)
Za Enm - ] [(_1) Mle +M23 ], m=1,2,.... (442)

These equations were solved by truncating to 4 x 4 system to produce the result presented below.
The reflection and transmission coefficients can be obtained from the far-field form of the potential d);l,
using (3.20), (4.36) and (4.37) with (3.52), and are given by

nz /1” [~a,CVM 4 ib,C 0], (4.43)
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Fig. 17. Transmission coefficient due to a wave of wavenumber /, incident on a cylinder in the upper layer (D/a* = 1.5, ¢/a = 0.01,
hla=2.5, p=0.5, fla=1.25).
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Fig. 18. Transmission coefficient due to a wave of wavenumber 4; incident on a cylinder in the upper layer (D/a* = 1.5, ¢/a =0.01,
hla=2.5, p=0.5, fla=1.25).
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TCZ o e b, (4.44)
n=1
Ty=1+n) ﬁ)n Ha,CV 4 ib,COM], (4.45)
n=1
- a’ n—1 )22 0)22
nz ; [a,CV%2 +ib,C %), (4.46)
n=1
008F
SO\
i ‘\
0.06 F |l % >0-17.99
S > 016,84
L \ o 0
P, AR >o-1507
0.04 F i ! \y,
=y \\\
0.02 \
] \ o
b 4 N
O ! L L L L
02 04 06 08
Ka

Fig. 19. Reflection coefficient due to a wave of wavenumber /, incident on a cylinder in the upper layer (Dla*=1.5,¢/la=0.01, hja=2.5,
p=0.5, fla=1.25).
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Fig. 20. Reflection coefficient due to a wave of wavenumber 4, incident on a cylinder in the upper layer (D/a* = 1.5, ¢/a = 0.01, hfa = 2.5,
p=0.5, fla=1.25).
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4.5. Normally incident wave train of wavenumber /.,

In this case ¢ _ is given by e”*g,(y) (2 = 0), where g»() is defined in (2.12). Here we find that the expres-
sions for reflection coefficients R;, and r;, are similar to (4.43) and (4.44) with appropriate changes, and the
transmission coefficients 7,, and ¢,, are given by

— a" n— - y)
> T - 7 [a,C b, GO, (4.47)

n=1

=l4ny — n—l "a, V%= 4 ip,CV%], (4.48)

n=

0.1

0.08 0
»o=17.93
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Fig. 21. Transmission coefficient due to a wave of wavenumber 4, incident on a cylinder in the upper layer (D/a* = 1.5, ¢/a = 0.01,
hla=2.5, p=0.5, fla=1.25).
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Fig. 22. Transmission coefficient due to a wave of wavenumber /, incident on a cylinder in the upper layer (D/a* = 1.5, ¢/a=0.01,
hla=2.5, p=0.5, fla=1.25).
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4.6. Numerical results

Figs. 15-18 show the reflection and transmission coefficients for an incident wave of wave number 4, on a
cylinder submerged in the upper fluid layer for D/a* = 1.5, ¢/a = 0.01, h/a = 2.5, p = 0.5, fla = 1.25. The dif-
ferent curves correspond to oo = 75°, 80°, 85°, 89°. The curve are somewhat similar to those for scattering of an
incident wave of wave number A; by a circular cylinder in the lower fluid layer and display the same
characteristics.

The case of an incident wave of wave number /1, is more interesting due to the presence of cut-off frequen-
cies. Figs. 19-22 show reflection coefficients |R,,|, |r;,| and transmission coefficients |T,,], |¢,,| against Ka. The
different parameters are taken to be the same as in the previous set of figures and the different curves corre-
spond to different values of «, viz. « = 15.07°, 16.84°, 17.93°, 19.5°. When o = 19.5°, which is greater than the
critical angle o, = 19.13°, for the given value of different parameters, there are no waves of wave number 4,

Normally incident wave train
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0.1 r A
‘.‘ Dia*=1
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A LN =
0 ‘ V) 5

Ka

Fig. 23. Reflection coefficient due to a wave of wavenumber 2, incident on a cylinder in the upper layer (¢/a = 0.01, h/a=2.5, p =0.5,
fla=125).
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Fig. 24. Reflection coefficient due to a wave of wavenumber A, incident on a cylinder in the upper layer (¢/a = 0.01, h/a=2.5, p =0.5,
fla=125).
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propagating in the fluid. Here we have the following cut-off frequencies: K.a = (0.1,0.88); (0.15,0.7); (0.2,0.57)
corresponding to the incident angles 15.07°, 16.84°, 17.93°, respectively. For these angles and for frequencies
lying between two appropriate cut-off frequencies will there be conversion of energy from one mode to the
other. These figures are shown in Figs. 19 and 21. The reflection coeflicient |r;,| and transmission coefficient
|t,,] for the wave of wave number A, are shown in Figs. 20 and 22.

We observe from the curves of reflection and transmission coefficients for wave of wave number A, that two
spikes in each curve occur at the cut-off frequencies (cf. Figs. 20 and 22). For « = 19.5° which is greater than
the critical angle o, = 19.13°, there is no spike in the curves of reflection and transmission coefficients in Figs.
20 and 22.

For the normally incident wave train, we choose e¢/a =0.01, i/a=2.5, p =0.5, f/la = 1.25 for which the
reflection and transmission coefficients due to an incident wave of wave number 4, are depicted in Figs.
23-26. The different curves correspond to D/a*=0.1,0.5,1,2. Figs. 23, 24 and 26 show that the reflection

Normally incident wave train
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Fig. 25. Transmission coefficient due to a wave of wavenumber 4, incident on a cylinder in the upper layer (¢/a = 0.01, h/a=2.5, p = 0.5,
fla=1.25).
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Fig. 26. Transmission coefficient due to a wave of wavenumber 4, incident on a cylinder in the upper layer (¢/a = 0.01, h/a = 2.5, p = 0.5,
fla=1.25).
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coefficients |R;, |, |r;,| and the transmission coefficient |z, | first increase as Ka increases, each attains a max-
imum value and then decrease as Ka further increases. Fig. 25 shows that transmission coefficients |7, | first
decreases as Ka increases, attains a minimum value and then increase as Ka further increases.

The reflection and transmission coefficients due to an incident wave of wave number 4, are shown in Figs.
27-30. The different curves correspond to D/a*=0.1,0.5,1,2. |R,,|,|r;,| are shown in Figs. 27 and 28 and
|T3,],1t,| are shown in Figs. 29 and 30.

Due to the presence of ice-cover, the figures for normally incident wave train are somewhat different from
the figures given in the case of upper fluid with a free surface in two-layer fluid by Linton and Mclver [3].
Reflection and transmission coefficients due to an incident wave of wave number /; and A, are oscillatory
in nature and reflection coefficients for both the incident wave numbers, transmission coefficients |¢;,| and
|T;,| tend ultimately to zero for large Ka and also |7, | and |z,,| tend to unity for large Ka. This may be attrib-
uted due to interactions of the incident wave trains between the boundary of the circular cylinder, ice-cover

Normally incident wave train

IRa, |

Fig. 27. Reflection coefficient due to a wave of wavenumber A, incident on a cylinder in the upper layer (¢/a = 0.01, h/a=2.5, p =0.5,
fla=1.25).

05 Normally incident wave train

Ira, |

0.5

Fig. 28. Reflection coefficient due to a wave of wavenumber A, incident on a cylinder in the upper layer (¢/a = 0.01, hla=2.5, p =0.5,
fla=125).
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0.0 Normally incident wave train
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T 0.1

0.06

0.6

Fig. 29. Transmission coefficient due to a wave of wavenumber A, incident on a cylinder in the upper layer (¢/a = 0.01, hi/a=2.5, p =0.5,
fla=1.25).
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Fig. 30. Transmission coefficient due to a wave of wavenumber A, incident on a cylinder in the upper layer (¢/a = 0.01, h/a=2.5, p = 0.5,
fla=1.25).

surface and interface between two-layer. Also we observe that the peak values of the curves decrease as D/a*
decreases in Figs. 23, 24, 26-28 and 29. But in Figs. 25 and 30 the peak value of the curves increase with
decreasing D/a*.

5. Conclusion

In this paper, we have studied the problem of water wave scattering by a horizontal circular cylinder sub-
merged in either layer of a two-layer fluid. The upper layer is of finite depth and is bounded above by an ice-
cover modelled as a thin elastic plate and the lower layer extends infinitely downwards. In such a situation
propagating waves can exist at two different wave numbers for any frequency, one of which propagates on
the ice-cover and the other on the interface. For obliquely incident wave train, and for some values of inci-
dent angle two cut-off frequencies are obtained here in contrast to only one cut-off frequency obtained for
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a two-layer fluid with free surface. The scattering problem is analyzed for both obliquely and normally inci-
dent waves of both the wave numbers using multipole expansions. When the cylinder is positioned in the lower
layer and waves are normally incident upon it, it was shown that zero reflections occur for any radius of the
cross-section of the cylinder and wave number. When the cylinder is in the upper layer, zero reflection is not
observed for normally incident wave train. However, for oblique incidence of the wave train, reflections by the
submerged cylinder indeed occur when the cylinder is positioned in either the lower or upper layer fluid. We
have found that for oblique waves incident along the interface when a cylinder is in either layer there are iso-
lated frequencies at which almost all the incident energy is reflected. The transmission and reflection coeffi-
cients for both obliquely and normally incident wave trains are depicted graphically against the wave
number in a number of figures. Energy identities are used as partial numerical checks for all the data points.
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Appendix A. Derivation of energy identities

Let the boundaries of a finite number of bodies lying in the upper layer be denoted by By and those in the
lower layer by Byy. Let ¢ be the solution of a scattering problem with ¢,, = 0 on the boundaries By, By;. The far-
field form of ¢ is then given by

qs'\“{R/".lvr?.m170§T117t21a0a0} (Al)
for the incident wave of wave number 4, and R,, r,, are the reflection coefficients of the waves of wave num-

bers /; and /,, respectively, due to an incident wave of wave number 4, and similarly 7, ¢; for the trans-
mission coefficients. Let iy = ¢, the complex conjugate of ¢, then

l// ~ {170317/'“1’721;0’()’Tl]7%.]}' (A2)
To obtain the energy identity, we use the modified form of Green’s integral theorem, as given by
[ @t —vtd) =0 (A3)
s

where S denotes the boundary of the fluid region and the differential operator L, is of the form

L D o 1 K 0
" T ond +(-e )an’
% being the derivative normal to S.
First we choose S in (A.3) to be the boundary of the region in the upper fluid bounded internally by
x=X,0<y<y=nh|x| < X;y=0,|x| < Xand externally by the body boundary By, and ultimately make
X — oo, and next to be the boundary of the region in the lower fluid bounded internally by
x=2X,-Y<y<0;y=-Y, x| < X;y=0, |x| < X and externally by the body boundary By, and ultimately
make both X, Y — oc.
For the upper layer, (A.3) produces

</ +/ +/ +/ +/ ) (‘f)ILanI - lPan(l’)l) ds = 0. (A.S)
y=h,|x|<X x=—X 0<y<h y=0,}x|<X X 0<y<h 5,

The first integral in (A.5) is

-/ i(dfwl L = [ j{

(A.4)

2

2 2
(bI{D(%—yz) +1- ek}lp; — ¢1{0<%—y2>

2

+1— ek}qb; (x,h) dx.

Use of the ice-cover condition (2.5) on y = & makes this integral identically equal to zero for any X.
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The second integral in (A.5S) is
"o Iy 1

Making use of the far-field behavior of ¢',y' for large X, this produces

A {{Dﬂf + (1= KB} (Ra [ = 1) / (1)) dy+{DB3 + (1 — K)o} x I, [ / (&27))° dy]
Hi{D(B) = B5) + (1 — eK)(By — o)} (—rye MY 47 elPreia)X)

h
+{D(B) + B5) + (1 = eK)(By + Bo)} Ry, 7 e PP 4y Ry e ’W)]/0 £1(»)g:(v) dy. (A.6)
Similarly the fourth integral in (A.5) produces
h
2 t0pi+ 1= T [ @0 v 0B+ (- )l [ (a0 o]

h
+Hi{D(B] + B3) + (1 = eK) (B + o) HT 1y P g, T, )] /0 21(»)g: () dy. (A7)

The third integral in (A.5) is

X
| @ty o) d (A3)
Finally, the last integral in (A.5) becomes
[ @' = ') s
By

Let the cross-section By of the submerged cylinder be described parametrically by x = X(0), y = Y(0),
0 < 0 < 2r where 8 =0 is chosen to be coincident with the line x = 0. Defining (n,s) as rectangular co-ordi-
nates along the normal and tangent to B; at any point of Bj, then the functions ¢',y' satisfy
(V2 —92)" = 0,(V2 — )" =0 where V? = & + &, 1+ k(s)2, k(s) being the curvature as a function of the
arc length 5. We now find that the last 1ntegral in (A.5) is

@lﬁ

I o'

/B[qs(zw +1—eK) 2o

after using the conditions 64’ O,aa—‘/;l = 0 on By, the differential operator .Z in (A.9) having the form
62 2 ’ 2 62 2 1" 62 2 3 0
= (35 =7) = 0 (= 7) + () + 200 (55 -7) - () ) 2013

’ 2 1 2
0(s) = W being a function of s.

For the lower layer, (A.3) produces

( / + / + / + / + / )(qsIIL,,w“l//“Lm“) ds = 0. (A.10)
y=0,|x|<X x=—X,-Y<y<0 y==Y |x|<X x=X,—-Y<y<0 By

The first integral in (A.10) is

[ @M 40", 0) (A1D)
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The second integral in (A.10) reduces to, after using the far-field behavior of ¢,y for large X,

{5 087+ (1= RO = 1)+ (0B + (1= OB ]
DT — 1)+ (1 = eK)(By = B} rie B 7, 08

0
+{D(B} + B3) + (1 — eK) (B + Bo) MRy 7o e PP 4y, Ry )] / et dy. (A.12)

-0

Similarly, the fourth integral in (A.10) reduces to

1 1
i Z{Dﬁf + (1= K)B T +72{Dﬁ? + (1 = eK)By Hy, ﬂ
0
+i{D(B} + B5) + (1 — eK) (B, + Bo) H{T s, Ty e "I X 1, T, elli=F2Xy / el1t2l dy. (A.13)

—00

Again, the third integral in (A.10) tends to 0 as ¥ — —oo, after using the conditions at infinite depth.
Finally, the last integral in (A.10) becomes,

alpll

11
/ " (DM 1 — eK)—— — Y (DMl + 1 — €K) L 0, (A.14)
By on on

after using %ﬂ =0 and % =0 on By.
Substituting all these results in (A.5), (A.10), and multiplying (A.5) by p and adding with (A.10) and using
the result

al//I a¢1 alpH a¢[1
I 1 11 11
) A.15
e R (A15)
at the interface, we obtain after some algebra which includes the result
h 0
p [ abimmdy [ ay—o (A.16)
and after making X — oo,
T (R P+ 1T = 1) + g, (] + 18, [) = 0, (A.17)
where
. 1 h .
Jp, = z(Dﬂ_? + (1 - eK)ﬁ/){I+2p/0 (gj(y))2 dy}7 j=12. (A.18)
J
Thus we obtain the identity
R, 1* + T3P+ T (s, [+ 18, 17) = 1, (A.19)
where
Jﬁz
=2, A2
! Jﬁl ( 0)

Similarly for the scattering of an incident wave of wave number /1,, we obtain the identity
IRy |* + 1 T3 + I (1, + |83, ) = . (A.21)

The relations (A.19) and (A.21) are the energy identities.
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