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2.1 Motivation

The surrogates approach was suggested as a means to distinguish linear from
nonlinear stochastic or deterministic processes. The numerical implementa-
tion is straightforward, but the statistical interpretation depends strongly on
the stochastic process under consideration and the used test statistic. In the
first part, we present quantitative investigations of level accuracy under the
null hypothesis, power analysis for several violations, properties of phase ran-
domization, and examine the assumption of uniformly distributed phases. In
the second part we focus on level accuracy and power characteristics of Ampli-
tude Adjusted Fourier–Transformed (AAFT) and improved AAFT (IAAFT)
algorithms. In our study AAFT outperforms IAAFT. The latter method has
a similar performance in many setups but it is not stable in general. We will
see some examples where it breaks down.

2.2 Introduction

In a statistical test, for a given data set a hypothesis is formulated, whose
validity has to be examined. This null hypothesis cannot be verified or falsified
with 100% accuracy. Instead, only an upper bound for the probability is given,
that the null hypothesis is rejected although it holds true. For this a real valued
test statistic T is derived from the data, with known distributions under the
possible specifications of the null hypothesis. If the null hypothesis contains
only one specification (simple hypothesis) and the value of T is for example
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larger than the 1−α quantile of the null distribution, the null hypothesis will
be rejected and a false rejection will occur only with probability α. Often,
the null distribution of T is not simple and the distribution of the underlying
specification has to be estimated and/or approximated. One possibility is to
use surrogate methods. They have been suggested for the null hypothesis of
a linear Gaussian process transformed by an invertible nonlinear function,
see [20].

This chapter examines the different approaches to generate surrogate data
and their properties. The basic idea of all surrogate methods is to random-
ize the Fourier phases of the underlying process. In Sect. 2.3 we illustrate
how the nature of a process changes if the phases are randomized. For this
purpose we show plots where the amount of randomization is continuously
increased. Section 2.4 summarizes all suggested surrogate approaches and il-
lustrates their qualitative behavior. Section 2.5 presents a simulation study
where the level accuracy and power performance of surrogate data tests is
compared for different processes, test statistics and surrogate methods. Sec-
tion 2.6 takes a closer look on two methods for generating surrogate data. It
compares the AAFT and the IAAFT approach. The chapter ends with short
conclusions in Sect. 2.7.

2.3 Phase Randomization – Effects and Assumptions

The key procedure of all surrogate methods is to randomize the Fourier phases.
It is argued that linear Gaussian processes do not possess asymptotically any
information in the Fourier phases, since they are comprehensively determined
by their mean and autocovariance function, which corresponds one-to-one
via the Fourier transformation to the power spectrum. Hence, realizations
of a linear Gaussian process should differ essentially only in their Fourier
phases which is utilized by the surrogates approach: New realization of a
linear Gaussian process based on one realized time series can be obtained by
drawing new values for the Fourier phases. Since no information is expected
in the Fourier phases, the underlying distribution for the new phase values is
the uniform distribution on [0, 2π].

This section investigates the assumption of uniformly distributed Fourier
phases and takes a qualitative look on the effects of phase randomization on
linear and nonlinear time series.

2.3.1 Effects of Phase Randomization

Let x = (x1, ..., xN ) be a given time series of length N with mean 0. Its Fourier
transformation is

f(ω) =
1√

2πN

N∑

t=1

e−iωtxt, −π ≤ ω ≤ π . (2.1)
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If the transformation is calculated for discrete frequencies ωj = 2π/N,
j = 1, 2, ..., N , the original time series can be regained by the back trans-
formation:

xt =

√
2π

N

N∑

j=1

eiωjtf(ωj), t = 1, 2, ..., N . (2.2)

The FT-surrogates method constructs a new time series yt with the same
periodogram and otherwise statistically independent from xt [19]. The Fourier
amplitudes |f(ωj)| are fixed and the Fourier phases ϕ(ωj) = arg(f(ωj)) are
replaced by uniform distributed random numbers ϕrand(ωj) ∈ [0, 2π]. The
new realization is given by

yt =

√
2π

N

N∑

j=1

eiωjt |f(ωj)| eiϕrand(ωj) . (2.3)

To track the effect of phase randomization, we increase randomization
strength continuously from 0% to 100%. For this random numbers

ϕrand(ωj) = ϕ(ωj) + a u(ωj)

with u(ωj) ∈ U [−π, π] are drawn. Parameter a ∈ [0, 1] changes the phase ran-
domization strength. Figure 2.1(a) shows, that three test statistics of Sect. 2.5,
time invariance, prediction error and kurtosis do not change for the autoregres-
sive process with increasing phase randomization. For the nonlinear stochastic
Van-der-Pol oscillator already small changes of the Fourier phases lead to sig-
nificant different values of the test statistics (b). Figure 2.1(c–f) exemplifies
the influence of phase randomization on time series directly. The autoregres-
sive process as a linear process does not change visually with increasing phase
randomization (c). The nonlinear Lorenz system looses already for 20% phase
randomization its characteristical oscillations (d). With 100% phase random-
ization, even the ear switch is not visible any more. The time series equals
a realization of an autoregressive process with small coherence length. The
deterministic Rössler system is shown in total length (e). It possesses a sharp
harmonic component leading to higher harmonics in the power spectrum. If
the phase relation of these harmonics is lost due to phase randomization, a
beat occurs resulting in strong correlations of the time series up to the whole
time series length. This holds even stronger for the zig-zag curve (f). The time
series of a stationary, nonlinear, deterministic process becomes a time series
which is indistinguishable from a realization of an non stationary, cyclic, linear
process.

The correlation dimension in Fig. 2.2 differs for the nonlinear processes
logistic map, Lorenz system and stochastic Van-der-Pol oscillator. Whereas
for the logistic map already a 1% phase randomization leads to an unbounded
correlation dimension on small scales, this happens for the Lorenz systems
not until a randomization of 10%. The stochastic Van-der-Pol does not show
any changes with increasing phase randomization – as a stochastic process it
has an unbounded correlation dimension even for the original process.
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Fig. 2.1 Influence of increasing phase randomization

2.3.2 Distribution of Fourier Phases

Figure 2.3 shows the cumulative Fourier phase distribution for realizations
of an AR[2] process and the Lorenz system. For the AR[2], the cumulative
distribution is very close to the straight line corresponding to perfect uni-
form distribution. For the Lorenz system, most phases are larger than 2 –
the distribution is unbalanced. The deviation from a uniform distribution can
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Fig. 2.2 Influence on the correlation dimension for increasing phase randomization
.

be quantified by the Kolmogorov-Smirnov-statistic measuring here the largest
distance between the cumulative distribution and the straight line. The AR[2]
leads to a KS-value of 0.075, whereas the Lorenz system has a nearly ten times
larger value of 0.6. To examine whether this result is representative, a simula-
tion with 1000 AR[2] of length between 1024 and 16384 has been done and the
KS-value calculated. Figure 2.3 exhibits a nearly linear relationship between
the mean KS-value and the end-to-end-distance |xN − x1|. Since a similar
simulation for the nonlinear stochastic Van-der-Pol oscillator shows the same
effect, the phase distribution of linear and nonlinear systems depends strongly
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Fig. 2.3 Distribution of the Fourier phases. The Kolmogorov-Smirnov-statistic mea-
sures the deviation of the Fourier phase distribution from a uniform distribution.
Interestingly, a nearly linear dependency on the end-to-end-mismatch is observed

on the end-to-end-distance and deviations from a uniform distributions are
results of the finite size effect, not the nonlinearity. Only noise-free nonlinear
systems like the Lorenz one always show a strong deviation from the uniform
distribution.

2.4 Surrogates Methods

There exist two classes of surrogate data approaches. In surrogate data test-
ing one reproduces all the linear properties of the process by preserving the
second order properties of the observed data. This can be done by preserv-
ing the observed sample mean and sample auto-covariances (or by preserv-
ing the observed sample mean and periodogram values at Fourier frequencies
ωj = 2πj/n). The approach can be implemented by first Fourier transforming
the data set, then randomizing the phases and finally inverting the trans-
formed data. Then resamples will have the same linear properties as the data
set, see Sect. 2.3 II. The term “surrogate data” was first introduced by [19]
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and the method became popular after that. But the basic idea and related
approaches were discussed in a number of earlier publications, see [6, 8].

Several other ways exist to generate surrogate data with asymptotically
the same autocovariance function as a given time series. Essentially they differ
in conserving the original periodogram by construction or generating a new
one derived from the estimated power spectrum.

Fourier transformed surrogate data method generates resamples for the
null hypothesis that the process is a stationary Gaussian linear process. This
method is not suitable for the hypothesis that the data are not Gaussian. This
can be encountered in several applications. In practice, the null hypothesis of
linear Gaussian processes is rather restrictive as only very few data pass the
test that they are normally distributed. Fourier-transformed surrogates are, by
construction, asymptotically jointly normally distributed, thus surrogates will
have a different distribution than the observed data, when the data deviate
from normality. For such cases the more general null hypothesis has been
proposed that the process is a linear stationary process transformed by a static
(invertible) nonlinear function h(.). More explicitly, the observed process {xt}
is generated by a transformation:

xt = h(zt) ,

where zt is a Gaussian stationary process. For this extended null hypothesis
methods have been proposed that transform the original data to a Gaus-
sian amplitude distribution before the surrogate method is applied. A back
transformation to the original amplitudes realizes the nonlinear measurement
function.

Classical Monte-Carlo-simulation is the counterpart of the parameter-free
surrogate approach. Here, the problem arises to select the right model, e.g.,
the right order of an autoregressive process. If the right model is known, the
Monte-Carlo-approach should be the used.

The basic method to generate Fourier transformation surrogates (FT) has
been described in Sect. 2.3. For an overview on resampling methods that have
been used in the statistical literature on time series analysis see also [12].

2.4.1 Amplitude Adjusted FT-Surrogates (AAFT)

If the data derive under an extended null hypothesis from a linear, Gaussian
process measured via an invertible nonlinear function h, the Gaussian am-
plitude distribution is lost in general. Since only Gaussian distributed linear
processes are uniquely given by their autocovariance function and mean value,
the measurement function h has to be estimated in order to calculate surro-
gates for ĥ−1(x). The surrogate data will be measured with ĥ to be comparable
to the original data. In detail:

1. Ranking of the original data.
2. Generation of ranked, Gaussian distributed random numbers
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3. The k-th value of the sorted original series is replaced with the k-th
value of the sorted Gaussian data and the order of the original data is
re-established.

4. The data are now Gaussian distributed and FT-Surrogates can be calcu-
lated.

5. The k-th largest value of the FT-Surrogates is replaced with the k-th
largest value of the original time series. Note, that the original amplitude
distribution is exactly maintained.

Asymptotically for N → ∞ the first three steps of the transformation are
equivalent to the application of the true inverse function h−1 itself. The proce-
dure was suggested as Amplitude Adjusted Fourier Transform–Surrogates [19]
and its effect is illustrated in Fig. 2.4. Test statistics like the skewness or kur-
tosis based on the amplitude distribution have by construction exactly the
same value for the original and the surrogate time-series. A more detailed
description of the AAFT algorithm can be found in Sect. 2.5 where also the
convergence of the fitted transformations is discussed.

For finite data sets a flattened power spectrum is observed for AAFT-
Surrogates compared to original data – the spectrum “whitens”. The reason is,
that the estimator of the inverse function ĥ−1(·) does not match exactly h−1(·)
for finite N [17]. The differences δ(xt) = ĥ−1(xt) − h−1(xt) are essentially
independent of t and possess as an uncorrelated process a white spectrum.
Therefore, application of the estimated inverse function adds uncorrelated
random numbers to the original data,

ĥ−1(xt) = h−1(xt) + δ(xt) .
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Fig. 2.4 FT- and AAFT-Surrogates. The bimodal distribution of the stochastic
Van-der-Pol oscillator is not kept by the FT-Surrogates method, but by the AAFT-
method. Both methods yield time inverse invariant time series
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2.4.2 Iterated Amplitude Adjusted FT–Surrogates (IAAFT)

To reduce the whitening effect of AAFT–surrogates, an iterative approach
has been suggested, which asymptotically yields the same periodogram and
amplitude distribution as the original data [16]. First, AAFT-Surrogates are
generated. Then, in the Fourier domain, the periodogram values are replaced
by the periodogram of the original process, the phases are kept. In time do-
main, the amplitudes are adjusted to the original process. These two steps are
iterated until periodogram and amplitude distributions of original and gener-
ated time series are equal except for a given tolerance. A description of the
IAAFT algorithm can be found in Sect. 2.5 where this approach is compared
with the AAFT algorithm.

2.4.3 Digitally Filtered Shuffled Surrogates (DFS)

Some authors criticize that the FT-, AAFT- and IAAFT-surrogates methods
conserve not only mean and autocovariance function of the underlying process,
but also properties of the given realization itself, since only Fourier phases and
not the Fourier amplitudes are changed. In this way, the new data possess
less variability than new realizations of the original process [5]. Alternatively
Digitally Filtered Shuffled Surrogates have been suggested.

The DFS–Surrogates approach is based on the following steps [5]:

1. Estimation of the power spectrum by averaging periodograms of several
data segments.

2. Estimation of the autocovariance function by an inverse Fourier transfor-
mation of the estimated spectrum. This yields the “response”-function.

3. Convolution of a random permutation of the original time series with
the response-function. This corresponds to a multiplication in the Fourier
domain, where the transformed of the randomized original time series is
multiplied to the estimated spectrum.

4. Adapting the amplitude distribution to the original one.

Similar to the AAFT-Surrogates, the amplitude distribution is adjusted in the
last step leading to a whitened spectrum. Again, an iterative procedure, the
iDFS-method, can be applied to reduce this effect.

(Fourier based) surrogate data tests, AAFT, IAAFT, DFS and iDFS be-
long to the class of constrained realization approaches. In constrained real-
ization approaches one avoids fitting of model parameters and one does not
assume any model equation. Instead of fitting a model (e.g., a finite order
AR process), one generates resamples that have a certain set of properties in
common with the observed data set. An alternative is based on fitting the
model of the data and generating data from the fitted model.

2.4.4 New Periodogram from Estimated Spectrum (NPS)

We suggest a new method to generate surrogate data, which is based on the
statistical properties of the periodogram
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I(ω) ∼ 1

2
S(ω)χ2

2 ,

i.e., the periodogram is for given frequency ω distributed like a χ2-distribution
with two degrees of freedom around the power spectrum S(ω). New realiza-
tions of the process can be obtained by

1. estimation of the power spectrum, e.g., via a smoothed periodogram,
2. generation of a periodogram realization by multiplication of χ2

2–distributed
random numbers to the spectrum,

3. drawing new phases as uniform random numbers on [0, 2π] ,
4. calculation of an inverse Fourier transformation.

This approach differs slightly from frequency domain bootstrap that does
not apply Step 3, see [4]. Again, an iterative approach is imaginable for the
extended null hypothesis of a linear, Gaussian process with an invertible,
nonlinear measurement function.

2.4.5 Fixed Fourier Phases (FPH)

In a sense orthogonal to the FT-surrogates, one could keep the Fourier phases
and draw only a new periodograms, like for the NPS–surrogates. This is actu-
ally no surrogates approach, but it illustrates the influence of Fourier phases
and amplitudes.

2.4.6 Classical Monte-Carlo-Simulation

If the model of the underling stochastic process under the null hypothesis is
known, new realizations of the process can be generated after estimating all
parameters θ by means of the given data set. The estimation minimizes the
square error

N∑

i=1

(xi − yi(θ))
2

for the given realization x = (x1, ..., xN ) and a parameterized time series
y(θ) = (y1(θ), ..., yN (θ)). The difficulty is to select the right model. Linear
processes can be formulated as: A parameter θ = (p, q, a1, ..., ap, b1, ..., bq)
exist, for which

Xt =

p∑

i=1

aiXt−i +

q∑

i=0

biεt−i , εt ∼ N (0, 1) . (2.4)

The model order p, q has to be determined. Since finite, invertible ARMA[p, q]
processes can be written as infinite ARMA[∞, 0] or ARMA[0,∞] processes,
selection of the wrong model class can lead to infinite parameters which have
to be determined. If the right model class is known, calculation of the partial
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ACF or ACF for AR or MA processes respectively, can be used to determine
the process order.

In this study we fit an AR[80] process to the original time series and
generate AR-Fit–surrogates by

yt =

p∑

i=1

aiyt−i + εt (2.5)

with random start values and after the transient behavior is over.

2.5 Statistical Properties of the Surrogate Methods –

A Comparative Simulation Study

This section contains simulation results on surrogates based hypothesis tests.
The simulations have been carried out for a representative class of processes
under the null hypothesis and under the alternative and for a variety of test
statistics.

2.5.1 Processes Under the Null Hypothesis

Linear Gaussian processes can be written as [2, 14]

Xt =

p∑

i=1

aiXt−i +

q∑

i=0

biεt−i , εt ∼ N (0, 1) . (2.6)

These processes are linear, but not cyclic, a property which is implicitly as-
sumed by the Fourier transformation on a finite data set. We suggest a cyclic
process with the periodogram of an autoregressive process:

Xt = A +

√
2π

N

M∑

j=1

√
B2

j + C2
j cos(ωtj + θj) , t = 1, ..., N

with A ∼ N (0, 1), Bj , Cj ∼ N (0, σ2
j ), θj ∼ U [0, 2π] and σ2

j = IY (ωj).
IY is the periodogram of an AR[2] process. A, Bj , Cj and θj are indepen-
dent for j = 1, ...,M . Besides, ωt = 2πt/N , M = (N − 1)/2 for odd N and
M = (N − 2)/2 for even N. Note, that

B2
j + C2

j ∼ σ2
j χ2

2

with mean 2σ2
j . The periodogram of the process reads IX(ωk) = (B2

k + C2
k)/4

for k = 1, ...M . The same approach with an exponentially decreasing pe-
riodogram with σ2

j = exp(−j/M) leads to a cyclic Gaussian process (see
Fig. 2.5).

The extension of the null hypothesis with invertible, nonlinear measure-
ment function h is investigated in this study with h(x) = x3 and an AR[2].
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Fig. 2.5 Processes under the null hypothesis. Cyclic Gaussian process with ex-
ponentially decreasing spectrum, AR[2] process and AR[2] process measured via
h(x) = x3

2.5.2 Processes Under the Alternative:
Nonlinear Deterministic and Stochastic Systems

Deterministic systems can be written as differential systems oder difference
equations. All consequent time points derive exactly from the initial values.
If the distance between neighbored trajectories increases exponentially, the
system is chaotic. Here we use the logistic map as example for a chaotic
difference equation [7]

xi = rxi−1(1 − xi−1), 3.6... < r ≤ 4 .

For r = 4 chaotic behavior occurs and the spectrum is not distinguishable
from white noise. All information about the nonlinearities is saved in the
phases, making this toy system interesting for our study (see Fig. 2.6).

The most famous differential systems with chaotic behavior are the Lorenz
and Rössler systems [11, 15]:

ẋ = σ(y − x)
ẏ = −y + x(r − z)
ż = xy − bz

here with σ = 10, b = 8/3 and r = 40, and

ẋ = −y − z
ẏ = x + ay
ż = b + (x − c)z

here with a = 0.1, b = 0.1 and c = 18.



2 Surrogate Methods 53

0 50 100 150 200 250 300
−10

−5

0

5

10

Bilinear model BL(1,1,0,1)

0 50 100 150 200 250 300
−2

−1

0

1

2
Stochastic Van−der−Pol

Fig. 2.6 Bilinear model and stochastic Van-der-Pol oscillator

A stable limit cycle is given by the Van-der-Pol oscillator [22]

ẍ = µ(1 − x2)ẋ − x, µ > 0 .

Bilinear models are the extension of ARMA models. We use the bilinear model
BL(1,0,1,1) [18]

Xi = aXi−1 + bXi−1εi−1 + εi ,

with a = b = 0.4. The deterministic Lorenz, Rössler and Van-der-Pol systems
can be disturbed with additive noise leading, e.g., to

ẍ = µ(1 − x2)ẋ − x + ε, µ > 0 .

2.5.3 Test Statistics

This subsection presents published and new developed test statistics, which
are used to examine the qualitative and quantitative properties of the surro-
gates methods in the next main section. Since linear and nonlinear processes
have to be distinguished from each other, emphasis is laid on test statistics
which are sensitive for this difference.

Skewness and Kurtosis

Deviations from Gaussian amplitude distributions can be measured with the
centered third and fourth moment, skewness and kurtosis:
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Skewness =
1

N

N∑

i=1

[
xi − x̄

σ

]3

,

Kurtosis =

{
1

N

N∑

i=1

[
xi − x̄

σ

]4
}

− 3 .

Error of Nonlinear Prediction

More robust than the estimation of the correlation dimension is the the es-
timation of the nonlinear Prediction error. It does not need a certain scaling
behavior and is easier to interpret. After embedding the time series to

xi = (xi, xi−τ , xi−2τ , ..., xi−(m−1)τ )T (2.7)

the nonlinear prediction can be calculated as

Fε,τ (xi) =
1

Nε(xi)

∑

j

xj+τ ∀j 6= i with ||xi − xj || < ε .

For every xi, the point x̂i+s = Fε,s(xi) is predicted. Nε(xi) is the number
of all neighbors of xi with a distance less than ε. As test statistic the well
defined Prediction error is used:

γ(m, τ, ε) =

(
1

N

∑
||x(t + τ) − Fε,τ (x(t))||2

)1/2

.

Time Invariance

We suggest a very powerful test statistic to measure the time invariance:

max

{
#{|xi+1| > |xi|}
#{|xi+1| < |xi|}

,
#{|xi+1| < |xi|}
#{|xi+1| > |xi|}

}

after demeaning x. Application to the stochastic Van-der-Pol oscillator illus-
trates the power of this test statistic (Fig. 2.7). Even with µ = 0.01 time
invariance test statistic detects the nonlinearity whereas it is not visible for
µ = 0.1. Besides, this test statistic does not depend on the end-to-end-distance
|x1 − xN |.

Normalized End-to-End-Distance

The Fourier transform considers a finite time series as part of an infinite,
periodical time series. A jump between the first and last data point |xN −x1|
bigger than the mean point-to-point-distance leads to a sawtooth behavior of
the infinite long time series. This needs an exact adjustment of the Fourier
phases and also changes the Fourier amplitudes.

Normalized end-to-end-distance =
|x1 − xN |

1
N−1

∑N
i=2 |xi − xi−1|

.
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Fig. 2.7 Sensitivity of time invariance. Displayed are realizations of the stochas-
tic Van-der-Pol oscillator with different values for µ, corresponding to a different
strength of the nonlinearity. The test statistic time invariance is able to detect the
nonlinearity even for µ = 0.01

Biggest Jump

The maximum distance between two consecutive points is given by

max
j=2,...,N

|xj+1 − xj | .

Smoothness

The smoothness of a time series can be quantified by:

Smoothness =
1

N−1

∑N
i=2 |xi − xi−1|

1
N

∑N
i=1 |xi − x̄|

.

Normalized Distribution of Fourier Phases

The test statistic distribution of Fourier phases measured via the Kolmogorov-
Smirnov-statistic has already been introduced in Sect. 2.3. To reduce the linear
dependency on the end-to-end-distance, the KS-value is divided by the end-
to-end-distance for the normalized version.
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2.5.4 Qualitative Analysis Under the Null Hypothesis

The surrogates approach has been developed in order to estimate the distribu-
tion of a test statistic under the null hypothesis. In case of a false approxima-
tion the size and critical region of the corresponding test may change. Then
the behavior of the corresponding test is unknown and hence the test useless.
Furthermore, since a test is constructed for the detection of violations of the
null hypothesis, the power is of high practical interest.

This section investigates numerically, whether the surrogate methods gen-
erate the correct distribution of a test statistic under the null hypothesis. We
analyze qualitatively whether the surrogate methods are able to reproduce
the distribution of a test statistic under the null hypothesis. The following
hypotheses are investigated:

1. Linear cyclic Gaussian process with exponentially decreasing spectrum
2. Linear cyclic Gaussian process with spectrum of an AR[2] process
3. Linear Gaussian process, realized with an AR[2] process
4. Linear Gaussian process measured via a nonlinear invertible measurement

function, here realized with an AR[2] process and h(x) = x3.

For ten realizations of every process under null hypothesis 200 surrogate
time series are generated and several test statistics are calculated yielding
values t1, ..., tN . Their cumulative distribution

F (t) =
#{ti, i = 1, ..., N | ti ≤ t}

N
(2.8)

is qualitatively compared to the one of the test statistic based on 200 realiza-
tions of the underlying process itself. Figure 2.8 shows the result: For some
combinations of null hypothesis, surrogate method and test statistic, the orig-
inal distribution displayed in the bottom panel can be regained in the upper
ten panels. Here, this occurs for the combination linear Gaussian process with
FT-Surrogates and the test statistic time invariance. For the combination lin-
ear Gaussian process with AAFT-Surrogates and the test statistic prediction

error the original distribution is not maintained but, even worse, the distri-
bution depends on the value of the test statistic for the original time series
marked in each panel by the vertical line.

The qualitative characterization has been done for six surrogate methods,
eleven test statistic and four null hypothesis. The results are summarized
in Tables 2.1–2.4. The X symbols a correct reproduction of the test statics
distribution, a false reproduction is marked by ×, and ◦ has been used for
ambiguous cases.

The first null hypothesis leads to a correct distribution for most combi-
nations. Except for a few cases the phase fixing FPH-method does not yield
a correct distribution, as expected. The methods AAFT and DFS scale the
amplitude distributions to the distribution of the original time series result-
ing in always the same value for the test statistics skewness and kurtosis.



2 Surrogate Methods 57

Fig. 2.8 Cumulative distributions of test statistic values under the null hypothesis.
Surrogate methods should asymptotically be able to reproduce the complete cumu-
lative distribution of any test statistic under the null hypothesis. However it turns
out, that this depends strongly on the chosen null hypothesis, test statistic and sur-
rogate method. The new developed time invariance measure on the left is able to
reproduce the original cumulative distribution (panel 11 at the bottom) for each of
ten AR[2] realizations (panels 1–10). Using the prediction error as test statistic and
AAFT surrogates show a strong dependency of the test statistic value of the original
data realization, marked by vertical lines

Since a constant value does not reflect the statistic fluctuations, the original
distribution is not regained.

Similar results yield the simulations for the second null hypothesis, the
cyclic Gaussian process with periodogram of a linear Gaussian process.
Only the AR-Fit method has problems, which is based on the vanishing

Table 2.1 Qualitative analysis under the null hypothesis 1: Gaussian cyclic linear
process with exponentially decreasing spectrum

FT AAFT DFS NPS FPH AR-Fit

Skewness X × × X × X

Kurtosis X × × X × X

Prediction error X X X X X X

Time invariance X X X X X X

Mean distance × × × ◦ × ×

End-to-end-distance X X X X × X

Norm. end-to-end-distance X X X X × X

Biggest jump X X X X X X

Smoothness × × × ◦ × ×

Phase distribution X X X × × X

Norm. phase distribution X X ◦ ◦ × X
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Table 2.2 Qualitative analysis under the null hypothesis 2: Gaussian cyclic linear
process with spectrum of a linear Gaussian process

FT AAFT DFS NPS FPH AR-Fit

Skewness X × × X X X

Kurtosis X × × X X X

Prediction error × × × × × ×

Time invariance X X X X X X

Mean distance × × × × × ×

End-to-end-distance X X X X × ×

Norm. end-to-end-distance X X X X × ×

Biggest jump X X X X ◦ X

Smoothness × × × × × ×

Phase distribution X X X × × ×

Norm. phase distribution X ◦ X ◦ ◦ ×

end-to-end-distance for the cyclic process. This behavior is not reproduced
by the generated AR[80].

Very good results yield the AR-Fit method for the third null hypothesis,
the linear Gaussian process realized via an autoregressive process, since the
right model class was used for the Monte-Carlo-approach. The actual surro-
gates methods drop behind indicating their demand for cyclicity.

The fourth null hypothesis, the linear Gaussian process measured via an
invertible, nonlinear function is for most combinations already part of the “al-
ternative”, since a Gaussian distribution is assumed. Even the AAFT method,
which was constructed for this setting, does not succeed in combination with
most test statistics.

Table 2.3 Qualitative analysis under the null hypothesis 3: Linear Gaussian process

FT AAFT DFS NPS FPH AR-Fit

Skewness X × × X X X

Kurtosis X × × X × X

Prediction error × × × × × X

Time invariance X X X X X X

Mean distance ◦ × × × × ×

End-to-end-distance × × × × × X

Norm. end-to-end-distance × × X × × X

Biggest jump X X × X ◦ X

Smoothness × × × ◦ × ×

Phase distribution × × × × × X

Norm. phase distribution ◦ ◦ ◦ × ◦ X
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Table 2.4 Qualitative analysis under the null hypothesis 4: Linear Gaussian process
measured with nonlinear function

FT AAFT DFS NPS FPH AR-Fit

Skewness × × × × × ×

Kurtosis × × × × × ×

Prediction error × X × × × ×

Time invariance X X X X X X

Mean distance × ◦ × × × ×

End-to-end-distance × × × × × X

Norm. end-to-end-distance × ◦ × × × ◦

Biggest jump × × × × × ×

Smoothness × × × × × ×

Phase distribution × × × × × ◦

Norm. phase distribution ◦ ◦ ◦ × × ◦

The qualitative analysis can be summarized as follows: The accuracy of
the reproduction of the test statistics distribution under the null hypothesis
depends strongly on the chosen combination of null hypothesis, surrogates
method and test statistic. Only for one test statistic, the new developed time
invariance test statistic, all surrogate methods and null hypotheses lead to a
correct distribution. For the normalized end-to-end-distance no combination
was successful.

2.5.5 Quantitative Analysis of Asymptotic, Size and Power

This section investigates numerically, which power the surrogate methods have
for different alternatives. The power is analyzed depending on data length
and strength of violation, in order to examine the asymptotic behavior and to
establish a ranking of the different surrogate methods. A two-sided test with a
significance level of 6% is constructed for the following simulations. For every
original time series 99 surrogates are generated and the value of a given test
statistic calculated. Is the value for the original time series under the first
three or last three of the ranked 100 test statistic values, the null hypothesis
is rejected. This procedure is repeated for 300 original time series.

The quantitative analysis of the asymptotic determines the power depend-
ing on the length of the time series. For the time invariance test statistic and
time series of the logistic map, every surrogate method FT, AAFT, DFS,
NPS, IAAFT and iDFS show a similar behavior (Fig. 2.9). For 256 or more
data points, the null hypothesis is rejected in all cases and for all methods.
The same time series evaluated with the test statistic smoothness lead to a
ranking of the surrogate methods: The FT-surrogates reach maximum power
already for 256 data points, NPS-surrogates for 1024, AAFT-surrogates for
8192, DFS- and iDFS-surrogates need about 10000 data points to reject the
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Fig. 2.9 Quantitative analysis of asymptotic, size and power

false null hypothesis with a power of 100%. The IAAFT-surrogates have no
power at all. Unfortunately, this ranking is not reproduced in other, not shown
combinations of alternatives and test statistics, indicating the irregular behav-
ior of tests based on surrogate methods.

Necessary requirement for the usefulness of a test is on the one hand a
correct size and on the other hand a good power. This section investigates the
power of surrogates based tests for linearity with variable strength of the null
hypothesis violation. First, two stochastic processes X0 and XA are combined
to a new process

X = (1 − a)X0 + aXA, a ∈ [0; 1] . (2.9)

The process XA violates the null hypothesis, which is fulfilled by X0. A repre-
sentative selection of processes XA is chosen, in order to investigate violations
of all kind. The parameter a increases from 0 to 1 and consequently the in-
fluence of the nonlinear process increases from 0% to 100%.

Figure 2.9 shows two cases to discuss the behavior of surrogates based lin-
earity tests. For the test statistic time invariance all surrogate methods lead to
a similar behavior and reject the null hypothesis for 50%–60% of the nonlinear
process. The size is a bit too high. For the test statistic smoothness, the size
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is not correct for all surrogate methods except for the NPS method, which
has on the other hand no power for the violation with the stochastic Rössler
system. The worst case of nearly 100% rejection of the true null hypothesis
based on the DFS- and iDFS-surrogates indicates again the irregular behavior
of surrogates based tests.

2.5.6 Summary of the Simulation

The nonlinearity of the stochastic Van-der-Pol oscillator can be changed via
the parameter µ. The cases of Fig. 2.10 summarize the behavior of surrogates
based linearity tests:

• For some test statistics like time invariance, every method works similarly
and in a plausible way (a).

• Some test statistics have a different behavior which can be derived from the
surrogates construction like for the kurtosis in combination with amplitude
adjusting surrogates (b).

(a) (b)

(c) (d)

Fig. 2.10 Quantitative analysis of size and power
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• For some test statistic, like for the biggest jump, a performance order of the
methods can be established (c). Unfortunately, this order is not maintained
but reversed in other combinations.

• And finally, for some test statistics like the mean point to point distance, no
regular or reasonable behavior of the surrogates methods occurs (d). This
would lead in a statistical test to spurious results and wrong consequences.

2.6 The AAFT and the IAAFT Approach –

A Detailed Comparison

In this section, we study level accuracy and power properties of tests based on
Amplitude Adjusted Fourier-Transformed (AAFT) surrogates and on Iterated
AAFT (IAAFT) surrogates. We will see that both methods work rather
reliable as long as the process do not have long coherence times. IAAFT is
outperformed by AAFT: It has a similar performance in many setups but it
is not stable in general. We will see some examples where it breaks down.

The AAFT method and the IAAFT approach are designed for the general
null hypothesis of a linear Gaussian process that is transformed by a nonlinear
invertible function. More explicitly, we will assume that the observed process
{xt} is generated by a transformation:

xt = h(zt) ,

where zt is a Gaussian stationary process (e.g., zt is an autoregressive moving
average (ARMA) process of order (p, q): zt =

∑p
j=1 aizt−i +

∑q
j=0 biεt−i,

where {εt} is a sequence of uncorrelated Gaussian random variables and
b0 = 1). It has been argued that this process is linear as non-linearity is
contained only in the invertible transformation function h(.). In this section
we will discuss AAFT and IAAFT that both have been proposed for this
model. We will give a more detailed description of both procedures below.
The AAFT method was first discussed by [19]. Its basic idea is to apply the
Fourier based surrogate data method after the data have been transformed to
Gaussianity. An alternative procedure is the IAAFT approach of [16]. In this
approach an iterative algorithm is used for the generation of the surrogate
data. The iteration procedure uses alternatively two steps. In one step the
surrogate data are transformed such that their marginal empirical distribu-
tion coincides with the marginal empirical distribution of the observed time
series. In the second step phases are randomized similarly as in the generation
of surrogate data. For a detailed description see again the next section.

Up to now there is no theory available for the performance of AAFT and
IAAFT. In this section we present a detailed discussion of level accuracy of
statistical tests based on AAFT and IAAFT. For a large class of hypothesis
models and for a set of test statistics level accuracy will be checked. We will
see that the methods can not guarantee a test that is valid for the large null
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hypothesis of transformed Gaussian stationary processes. The methods do not
perform well for time series with long coherence times. But we will also present
examples of well behaved standard Gaussian linear models where IAAFT turn
out as very unstable. We now give a detailed description of the AAFT and
IAAFT algorithms.

2.6.1 The AAFT and the IAAFT Approach – Definition

The method of Amplitude Adjusted Fourier-Transformed (AAFT) proceeds
as follows:

1. Let r = (r1, r2, . . . , rn) be the rank vector of an observational data vector
(x1, . . . , xn) and (x(1), . . . , x(n)) be its ordered sample.

2. Generate a sample w1, ..., wn of i.i.d. standard normal random vari-
ables and denote its ordered sample by (w(1), ..., w(n)). Put ẑt = w(rt),
t = 1, . . . , n. Then ẑt has the same rank in ẑ1, ..., ẑn as xt in x1, ..., xn.

3. Obtain phase-randomized surrogates of ẑt, say z∗t , t = 1, . . . , n.
4. The surrogate data sample x∗

t of xt is defined by x∗

t = x(r∗t ). Here r∗t is
the rank of z∗t in the series z∗1 , . . . , z∗n.

In Steps 1 and 2, the observed data are transformed to normal variables.
This is done by using the random transformation ẑt = ĝ(xt) = Φ̂−1F̂ (xt).

Here Φ̂ is the empirical distribution function of the normal random variables
w1, ..., wn and F̂ is the empirical distribution function of x1, ..., xn. In Step 3,
the transformed data are phase randomized: Fourier-transformed surrogates
are generated. In the final step, the surrogate data are transformed back to
the original values. This is done by sorting the observed data according to
the ranks of the Fourier transformed surrogates: The phase randomized data
z∗1 , ..., z∗n are transformed by using the random transformation x∗

t = ĝ−(z∗t ) =

F̂−1Ĝ(z∗t ), where now Ĝ is the empirical distribution function of z∗1 , ..., z∗n.
The resulting data x∗

1, ..., x
∗

n are called AAFT surrogates. Note that in this
procedure the transformation ĝ− in Step 4 is typically not the inverse of the
transformation ĝ used in Step 2. They differ because F̂ differs from Ĝ. In
particular, the transformation ĝ does not depend on the surrogate sample
whereas ĝ− does.

The basic model assumptions imply that the transformed data ẑt and the
FT-based surrogates z∗t follow approximately a linear Gaussian process. Thus,
it may be reasonable directly to base the statistical inference on these time
series and to check if ẑt follows a linear Gaussian process. This would suggest
to calculate a test statistic for the transformed series ẑt and to calculate critical
levels for this test by using the surrogates z∗t . We will consider both type of
tests, tests based on the original time series xt and their AAFT surrogates x∗

t

and tests based on ẑt and z∗t .
Iterative AAFT (IAAFT) is an iterative algorithm based on AAFT. It was

proposed by [16] as an improved algorithm of AAFT. This algorithm is used to
generate resamples for the same hypothesis as AAFT, i.e., the hypothesis of a
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transformed linear Gaussian process. IAAFT is a method to produce surrogate
data which have the same power spectrum and the same empirical distribution
as the observed data. Note that this aim is not achieved by AAFT. The
IAAFT algorithm proceeds iteratively. It iteratively corrects deviations in the
spectrum and deviations in the empirical distribution (between the surrogates
and the original time series). The algorithm proceeds in the following steps:

1. Generate an ordered list of the sample (x(1) ≤ . . . ≤ x(n)) and calculate

the periodogram I2
k = |∑n−1

t=0 xte
itωk |2, ωk = 2πk/n, k = 1, . . . , n.

2. Initialization step: generate a random permutation (sample without re-

placement) {xa,(0)
t } of the data {xt}.

3. Iteration steps:

(i) At the j-th iteration, take the Fourier transform of {xa,(j)
t }, replace

the squared amplitudes by I2
k (without changing the phases) and transform

back by application of the inverse Fourier transform:

x
b,(j)
t = 1/

√
n

n−1∑

s=0

x̂
a,(j)
s

|x̂a,(j)
s |

|Is| exp (−itωs) ,

where x̂
a,(j)
t = 1/

√
n

∑n−1
s=0 x

a,(j)
s exp (−itωs) is the discrete Fourier trans-

form of {xa,(j)
s }.

(ii) The resulting series in (i) is rescaled back to the original data:

x
a,(j+1)
t = x(rj

t ),

where rj
t is the rank of x

b,(j)
t in x

b,(j)
1 , ..., x

b,(j)
n .

4. Repeat (i) and (ii) in Step 3 until the relative difference in the power

spectrum is sufficiently small. The limiting values x∗

t of x
b,(j)
t (or x

a,(j)
t )

are called IAAFT surrogates.

2.6.2 Comparison of AAFT and IAAFT – Numerical Experiments

In this section, results based on numerical experiments are presented. We have
conducted simulations for the following models.

M1 : xt is an i.i.d. sequence with distribution χ2
1.

M2 : xt is an i.i.d. sequence with distribution U [0, 1].

M3 : xt = z3
t , zt is a circular process with σ2

j = exp(−j/m).

M4 : xt = zt, zt is a circular process with σ2
j = exp(−j/8).

M5 : xt = z3
t , zt is a circular process with σ2

j = exp(−j/8).

M6 : xt = z3
t , zt = 1.4zt−1 − 0.48zt−2 + εt.

M7 : xt = z3
t , zt = 1.8zt−1 − 0.81zt−2 + εt.
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In all models the residuals εt are i.i.d. and have a standard normal distribution.
The circular processes in M4, M5 and M6 are generated as follows:

zt = A + c

m∑

j=1

√
B2

j + C2
j cos(ωjt + θj), t = 1, . . . , n .

Here A ∼ N (0, σ2), Bj , Cj ∼ N (0, σ2
j ), θj ∼ U [0, 2π] and A, Bj , Cj , and θj

are independent. Furthermore, we used the notation ωj = 2πj/n, c =
√

2π/n,
m = (n − 2)/2. Note that after application of a transformation the circular
Gaussian processes are still circular but in general not Gaussian distributed.

All models are transformed stationary Gaussian processes. Models M1 and
M2 are i.i.d. processes. Trivially, both can be written as xt = h(zt) with zt i.i.d.
standard gaussian. M3 is a transformed Gaussian circular process. For this cir-
cular process σ2

j = exp(−j/m),m = n − 1/2 and it exhibits a performance
near to an i.i.d. sequence. Models M4 and M5 are circular processes with
σ2

j = exp(−j/8). Model M4 is a Gaussian circular process and M5 is a nonlin-

ear transformation of M4. The fast decay of σ2
j leads to long coherence times.

Model M6 is a transformed AR(2) process transformed by h(x) = x3. The
underlying AR(2) process has all roots inside the unit circle (0.6 and 0.8). M7

represents a transformed Gaussian AR process of order two. The underlying
AR(2) process has roots 0.9 close to unity.

In the implementation of the AAFT algorithm the transformation function
h(.) and its inverse h−1(.) are estimated. One may expect that AAFT works
as well as a classical surrogate data test if these estimates are accurate. For
this reason, we checked the accuracy of these estimates for models M1 – M7.
We consider a single realization (x1, . . . , xn) of each model with n = 256.
In Figs. 2.11–2.14 the series are plotted against (ẑ1, . . . , ẑn) (horizontal axis)
as solid lines. In the same plots, the true function h(.) as a function of zt

is plotted as dotted line. For models M3, M5–M7, h(x) = x3 and for M4,
h(x) = x. M1 and M2 are i.i.d. processes. So for these i.i.d. processes, the
true transformation function is given as h(x) = F−1Φ(x), where Φ(.) denote
the distribution function of the standard normal distribution and F denotes
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Fig. 2.11 The estimated (solid line) and true (dotted line) transformation functions
for models M1 and M2
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Fig. 2.12 The estimated (solid line) and true (dotted line) transformation functions
for models M3 and M4

the distribution function of χ2
1 or U [0, 1], respectively. We observe that for

the two i.i.d. processes M1 and M2, the transformation function is estimated
very accurately. Approximately, this also holds for M3 and M6 (note that the
z-axes differ and always they include extreme points of a standard normal
law). For the other models the estimate behaves poorly, in particular in the
tails.

We have performed numerical experiments for the following test statistics:

T1 =
1

n

n−1∑

t=1

(XtX
2
t+1 − X2

t Xt+1),

S1 =
#{Xt > Xt+1}

n
, S2 = n − 1 − S1,

T2 = S1,

T3 =
|S2 − S1|
S1 + S2

,

T4 = max
τ

Q(τ), Q(τ) =

∑n
t=τ+1(Xt−τ − Xt)

3

[
∑n

t=τ+1(Xt−τ − Xt)2]3/2
,

T5 =
1

n

n−2∑

t=1

2∏

k=0

(Xt+k − X̄),

T6 =
1

n

n−4∑

t=1

4∏

k=0

(Xt+k − X̄),

T7 = max

{
#{|Xt+1 − X̄| > |Xt − X̄|}
#{|Xt+1 − X̄| < |Xt − X̄|} ,

#{|Xt+1 − X̄| < |Xt − X̄|}
#{|Xt+1 − X̄| > |Xt − X̄|}

}

T8 = Cn(r), Cn(r) =

∑n
i=2

∑i
j=1 I(||Xν

i − Xν
j || < r)

n(n − 1)/2
.

Here, I is the indicator function and ||X|| = maxk |Xk|. The vector
Xν

i = (Xi−(ν−1)d, Xi−(ν−2)d, . . . , Xi)
T is an element of the phase space with

embedding dimension ν and delay time d. We have used delay time d = 2.
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Fig. 2.13 The estimated (solid line) and true (dotted line) transformation functions
for models M5 and M6.

The results are reported for embedding dimension ν = 4. We have used dif-
ferent values of r for different models. The test statistics T1, ..., T4 and T7

are statistics for checking time asymmetry. The tests T5 and T6 are based
on joint higher order central moments and they test the nonlinearity of the
dynamics. T8 is the correlation sum. It is the sample analog of the correlation
integral. Other physically meaningful measures (for example, the correlation
dimension, the maximum Lyapunov exponent, etc.) have been proposed to
check the nonlinear chaotic behavior of a data generating process. But there
is no automatic implementation of these test statistics. Thus, it is difficult
to incorporate these statistics in a simulation study. This is the reason why
we have considered correlation sums which can be computed by an automatic
scheme for different values of the threshold parameter r.

In the simulations we generated data xn = (x1 . . . , xn) from Models
M1–M7 and we calculated the test statistics Tj(xn) for j = 1, . . . , 6. We
used sample size n = 512. For each simulated xn, 1000 surrogate resamples
x∗

n
were generated. For each of these resamples, we calculated test statistics

Tj(x
∗

n
), j = 1, . . . , 6. The surrogate data test rejects the hypothesis of a linear

stationary Gaussian process, if Tj(xn) > k∗

jα, where k∗

jα denotes the (1−α)-th
quantile of Tj(x

∗

n
). The first aim of our simulations is to check the level ac-

curacy of this test, i.e., to check if the rejection probability on the hypothesis
is approximately equal to the nominal level αnom: P [Tj(xn) > kjα] ≈ αnom.
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Fig. 2.14 The estimated (solid line) and true (dotted line) transformation function
for M7.
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For this check, the whole procedure was repeated 1000 times. The empirical
fraction α̂ of Tj(xn) > kjα is a Monte-Carlo-approximation of the level of
the test. The simulation results are given in Tables 2.5–2.7. We have used the
nominal value αnom = .05. The tables report how much α̂ differs from αnom.

We used different categories in Tables 2.5–2.9 for the level accuracy of
the tests, see the caption of Table 2.5. In category “– – –” the test always
rejects, in category “++++” the test always accepts. Both cases indicate a
total break down of the test. In particular, the latter case indicates a totally
erroneous performance of the test. Category “−” indicates that the test is too
conservative. In particular, the test will have poor power for neighbored al-
ternatives. We call level accuracies “−”, “ok” and “+” reasonable. Categories
“++” and “+++” again indicate a break down of the test. The test behaves
like a blind test: it has a performance comparable to a random number that
is produced without looking at the data.

Tables 2.5 and 2.6 summarize the results for the AAFT surrogate data
tests. Table 2.5 gives the results when the test statistics have been applied to
the untransformed data xt (AAFT I) and Table 2.6 shows the performance
when the test statistics have been calculated for the transformed data ẑt

(AAFT II). Both tests work quite well for Models M1–M6. There is no big
difference in the level accuracy of AAFT I and AAFT II. In Models M1–M6,
AAFT I is too liberal (“++”, “+++”) in two cases and too conservative in
one case (“−”). AAFT II has a slightly poorer performance: it is too liberal
in one case and too conservative in six cases. Both procedures outperform
IAAFT, see Table 2.7. In Models M1–M6, IAAFT is in five cases too liberal
and in 9 cases too conservative. Furthermore, in 8 of these cases it totally
breaks down: it always rejects or it always accepts. On the other hand, the
AAFT I procedure never totally breaks down and the AAFT II procedure
only in one case. This suggests that IAAFT is not stable. This may be caused
by the iterative nature of the algorithm. The algorithm sometimes runs into

Table 2.5 Level accuracy for AAFT surrogate data tests based on (xt, x
∗

t ). The level

accuracy is marked by “−” if the Monte-Carlo estimate α̂ of the level is 0.0, “−” if

0 < α̂ ≤ .015, “−” if .015 < α̂ ≤ .03, “ok” if .03 < α̂ ≤ .075, “+” if .075 < α̂ ≤ .125,
“++” if .125 < α̂ ≤ .250, “+++” if .250 < α̂ < 1, and “++++” if α̂ = 1. The

nominal level is .05

Model T1 T2 T3 T4 T5 T6 T7 T8 r

M1 ok ok ok ok ok ok ok ok .1
M2 ok ok ok ok ok ok ok ok .2
M3 ok ok ok ok ok ok ok ok .2
M4 − ok ok + + + ok +++ .1
M5 − ok ok ok + ok ok + .1
M6 − ok ok + ok ok ok ++ 2.
M7 ok ++ ++ + ++ ++ ++ ok .5
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Table 2.6 Level accuracy for AAFT surrogate data tests based on (ẑt, z
∗

t ) with
nominal level 0.05. The level accuracy is marked as in Table 2.5

Model T1 T2 T3 T4 T5 T6 T7 T8 r

M1 ok ok ok ok ok ok ok ok .1
M2 ok ok ok ok ok ok ok ok .2
M3 ok ok ok ok ok ok ok ok .2
M4 ok ok ok ok − − ok + .1
M5 ok ok ok ok − − ok + .2
M6 ++ ok ok ok − − ok + .5
M7 +++ ++ ++ + − − ++ +++ .2

a totally misleading generation of surrogate data. Even for i.i.d. data (Models
M1 and M2) IAAFT breaks totally down, here in five out of 16 cases. This
means that here IAAFT does not capture the transformation of the data:
in case of large deviations from normality the basic idea of IAAFT to have
the same power spectrum as the observed data forces the method to biased
estimates of the transformation.

Both, AAFT I and AAFT II, work perfectly well for i.i.d. data and for
Model M3. This performance can be easily theoretically verified. If the under-
lying process x1, ..., xn is an i.i.d. sequence then their ranks (r1, ..., rn) have a
uniform distribution on the set of all permutations of (1, ..., n). Thus ẑ1, ..., ẑn

is a random permutation of an i.i.d. sample of standard normal variables.
Thus it is also an i.i.d. sample of standard normal variables, and in particular
it is a circular stationary linear Gaussian process. It has been shown in [3]
that the method of phase randomized surrogates has exact finite sample level
for circular stationary processes, see also [13]. This immediately implies that
AAFT I has exact finite sample level if the underlying process is i.i.d.. Fur-
thermore, it also implies that AAFT II has exact finite sample level. This can
be seen as follows. Consider first a deterministic sequence u1, ..., un and a test

Table 2.7 Level accuracy for IAAFT surrogate data tests with nominal level 0.05.
The level accuracy is marked as in Table 2.5

Model T1 T2 T3 T4 T5 T6 T7 T8

M1 + ok ok ok ok ok − −

M2 − − − − ok ok +++ −

M3 + ok ok ok ok ok − ok
M4 ok ok ok ok ok ok ++++ ok
M5 ok ok ok − ok ok ++++ +++
M6 ok ok ok ok − − − ++
M7 + ++ ++ ok − − − −
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statistic T . Order u1, ..., un in the same order as ẑ1, ..., ẑn and as its surro-
gates z∗1 , ..., z∗n. This gives two samples. Calculate now T for the two samples.
This can interpreted as AAFT I applied to a modified test statistic. Thus it
achieves exact finite sample level. The procedure would be exactly equal to
AAFT II if u1, ..., un would be chosen as x1, ..., xn. This choice is nonrandom
but the argument carries over because the order statistic x(1) ≤ ... ≤ x(n) is
independent of ẑ1, ..., ẑn.

Model M3 is a circular stationary model with short coherence time. Both
AAFT procedures work well for this model. This does not extend to circular
stationary model with long coherence times. This can be seen in the results
for Models M4 and M5. In some cases, the AAFT procedures have very poor
level accuracies for these models. In particular this shows that in this respect
AAFT behaves differently as (phase randomized) surrogate data testing that
has exact level for all circular stationary (Gaussian) processes. The additional
estimation of the transformation h that is incorporated in AAFT can lead to
level inaccuracies in case of long coherence times. The poor performance of
this estimation was illustrated in the plots for Models M4 and M5 in Figs. 2.12
and 2.13.

All procedures, AAFT and IAAFT performed poorly in Model M7. AAFT
I and IAAFT achieved reasonable results in 3 out of 8 cases, AAFT II only
in one case. M7 is a near to unit root process. Reference [13] used sim-
ulations for the same process without transformation to illustrate a poor
performance of phase randomized surrogate data tests for near to unit
root processes. They considered two modifications of surrogate data test-
ing. One was based on taking subsamples of the series with small gap
between the first and last observation. The end to end mismatch correc-
tion leads to drastic improvements. Motivated by this result, we tried the
same modification for both AAFT procedures for Model M7. The results
are reported in Tables 2.8 and 2.9. In Table 2.8 the mismatch correction
procedure is applied to the observed series xt, whereas in Table 2.9 it is
applied to the transformed series ẑt. For these experiments, we used the
sample size N = 512 and K1 = K2 = 40. (The starting point of the
subseries is chosen among the first K1 observations, the last point among
the last K2 observations, for details see [13]). There was no big difference
if the method was applied two xt or to ẑt. There was also a gain after

Table 2.8 Level accuracy for AAFT surrogate data tests with end to end correction.
The end to end correction was applied to the untransformed data xt. The nominal
level is 0.05. The level accuracy is marked as in Table 2.5

T1 T2 T3 T4 T5 T6 T7 T8 r

(xt, x
∗) −− + + ok ++ ++ + ok .5

(ẑt, z
∗) + + + + −−− −−− ok +++ .2
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Table 2.9 Level accuracy for AAFT surrogate data tests with end to end correction.
The end to end correction was applied to the transformed data ẑt. The nominal level
is 0.05. The level accuracy is marked as in Table 2.5

T1 T2 T3 T4 T5 T6 T7 T8 r

(xt, x
∗) −− ok + ok ++ ++ + ok .5

(ẑt, z
∗) + ok + + −−− −− + +++ .2

application of the end to end correction, but not quite so impressive as
for surrogate data tests. Now both AAFT methods worked for 5 out of 8
cases.

We also checked the performance of AAFT for the test statistics T1,...,T8

on the following alternatives:

• A1: Logistic map: xt+1 = 4xt(1 − xt), x0 ∈ (0, 1).

• A2: Reversal logistic map: xt = 0.5[1 + εt(1 − xt−1)
1

2 ] where
εt is equal to 1 or −1 with probability 1

2 and x0 ∼ Beta(.5, .5).

• A3: Tent map: xt+1 =

{
2xt if 0 ≤ xt ≤ .5

2(1 − xt) if .5 ≤ xt ≤ 1
.

• A4: Reversal tent map: xt = .5(1 − εt + εtxt−1) where
εt is equal to 1 or −1 with probability 1

2 and x0 ∼ U [0, 1].

Here we have considered two pairs of models (A1, A2) and (A3, A4). A1 and
A3 are two purely deterministic models and A2 and A4 are their stochastic
counterparts. After time reversion the stochastic models A2 and A4 are iden-
tical to A1 or A3, respectively. For a discussion of stochastic processes with
time reversal deterministic processes see [1, 9, 10, 21].

We performed similar simulations for Ai, i = 1, ..., 4 as for Models
M1,...,M8. The results of the simulations are summarized in Tables 2.10
and 2.11. We see that both AAFT tests, the test based on (xt, x

∗

t ) and the
test based on (ẑt, z

∗

t ) have a quite similar performance. For the test statistics
T1−T4, T7 and T8 they have nearly the same power. As above, they show a
different performance for T5 and T6. The tests show quite different behavior.
Three tests (T3, T7 and T8) always have a power near to one. The tests based

Table 2.10 Estimated power of AAFT tests based on (xt, x
∗

t ) with nominal level
0.05

Model T1 T2 T3 T4 T5 T6 T7 T8 r

A1 1.00 .000 1.00 .999 .093 .043 .983 1.00 .1
A2 .000 1.00 1.00 .059 .082 .027 .998 1.00 .1
A3 1.00 .000 1.00 1.00 .235 .073 1.00 1.00 .1
A4 .000 1.00 1.00 .067 .145 .175 1.00 1.00 .1
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Table 2.11 Estimated power of AAFT tests based on (ẑt, z
∗

t ) with nominal level
0.05

Model T1 T2 T3 T4 T5 T6 T7 T8 r

A1 .994 .000 1.00 .999 .321 .693 .980 1.00 .1
A2 .000 1.00 1.00 .054 .333 .718 1.00 1.00 .1
A3 1.00 .000 1.00 1.00 .479 .664 1.00 1.00 .1
A4 .000 1.00 1.00 .068 .368 .739 1.00 1.00 .1

on T1 and T4 have power near to one for the deterministic models A1 and A3

and have rejection probability less than the nominal level for the stochastic
models A2 and A4. The test statistic T2 behaves the other way around. It
rejects always for A2 and A4 and it never rejects for A1 and A3. The test
statistics T5 and T6 are not stable in their performances.

2.6.3 Comparison of AAFT and IAAFT – A Summary

In the previous subsection we investigated level accuracy and power charac-
teristics of Amplitude Adjusted Fourier–Transformed (AAFT) and improved
AAFT (IAAFT) algorithms. Both approaches are methods to get a statistical
test for the hypothesis of a transformed stationary linear Gaussian processes.
In both methods surrogate data are generated and tests are based on the
comparison of test statistics evaluated with original observations and with
surrogate data. In our study AAFT outperforms IAAFT in keeping the level
on the hypothesis. AAFT works quite well as long as the coherence time is
not too long. IAAFT is not stable in general. In many cases it totally breaks
down: it always rejects or it always accepts on the hypothesis. In case of long
coherence times the performance of AAFT can be improved by using end
to end corrections. But the improvements are not so impressive as for phase
randomized surrogate data.

2.7 Conclusions

This chapter contains a detailed description of the performance for a range
of surrogate methods in a variety of settings. In a simulation study with a
more general focus we showed that the performance strongly depends on the
chosen combination of test statistic, resampling method and null hypothesis.
For one test statistic, the new introduced time invariance test statistic, all
surrogate methods lead to accurate levels. In a more detailed comparison of
AAFT and IAAFT, both methods perform well as long as the coherence time
of the process is not too large. In this case, AAFT has a more reliable and
more accurate level.
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