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Abstract

Stochastic partial differential equations (SPDE) are used for stochastic modelling, for in-

stance, in the study of neuronal behaviour in neurophysiology and in building stochastic models

for turbulence. Huebner, Khasminskii and Rozovskii (1993) started the investigation of the

maximum likelihood estimation of the parameters involved in two types of SPDE’s and ex-

tended their results for a class of parabolic SPDE’s in Huebner and Rozovskii (1995). Prakasa

Rao (1998,2000) obtained Bernstein - von Mises type theorems for a class of parabolic SPDE’s

and investigated the properties of Bayes estimators of parameters involved in such SPDE’s. In

all the papers cited earlier, it was assumed that a continuous observation of a random field

uε(x, t) satisfying the SPDE over the region [0, 1] × [0, T ] is available. It is obvious that this

assumption is not tenable in practice and the problem of interest is to develop methods of

estimation of parameters from the random field uε(x, t) observed at discrete times t and at

discrete positions x or from the Fourier coefficients uiε(t) observed at discrete time instants.

We construct consistent and asymptotically normal estimators of the parameter based on the

Fourier coefficients uiε(t) observed at discrete times tj = j∆, 0 ≤ j ≤ n where ∆ > 0 and n

tends to infinity.

Key words: Stochastic partial differential equations ; Discrete data: Consistency: Asymptotic

normality.
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1 Introduction

In their recent monograph, Kallianpur and Xiong (1995) discussed the properties of solutions

of stochastic partial differential equations (SPDE’s). They indicate that SPDE’s are used for

stochastic modelling for instance in the study of neuronal behaviour in neurophysiology and

in building stochastic models of turbulence. The probabilistic theory for SPDE’s is discussed

in Ito (1984) and more recently in Rozovskii (1990) and Da Prato and Zabczyk (1992) among

others. Huebner et al. (1993) started the investigation of the maximum likelihood estimation of

parameters for two types of SPDE’s and extended their results to a class of parabolic SPDE’s in

Huebner and Rozovskii (1995). Prakasa Rao (1998,2000) obtained Bernstein - von Mises type
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theorems for a class of parabolic SPDE’s and investigated the properties of Bayes estimators of

the parameters involved in such SPDE’s. Similar results for a class of diffusion processes have

been obtained in Prakasa Rao (1981) and for diffusion fields in Prakasa Rao (1984). In all the

papers cited earlier, it was assumed that a continuous observation of a random field uε(x, t)

satisfying a SPDE over the region [0, 1]× [0, T ] is available. It is obvious that this assumption

is not tenable in practice and the problem of interest is to develop methods of estimation of the

parameters from a random field uε(x, t) observed at discrete times t and at discrete positions

x or from the Fourier coefficients uiε(t) observed at discrete time instants. We will discuss the

latter problem in this paper for two types of SPDE’s when the parameter involved occurs in

the ”trend” part as well as in the ”forcing” part of the SPDE. In an earlier paper (Prakasa Rao

(2000)), we have investigated the problem of estimation when the parameter occurs only in

the ”trend” part of the SPDE. Prakasa Rao (1988) discusses statistical inference from sampled

data for stochastic processes in general and the methods of statistical inference for the special

class of diffusion type processes is investigated extensively in Prakasa Rao (1999). Piterbarg

and Rozovskii(1997) studied the properties of maximum likelihood estimators based on discrete

time sampling for parameters invoved in parabolic stochastic partial differential equations when

the ” trend” part of the SPDE involves the parameter but not the ” forcing part of the SPDE.

2 Estimation from discrete observations

2.1 Example I

Let (Ω,F , P ) be a probability space and consider the process uε(t, x), 0 ≤ x ≤ 1, 0 ≤ t ≤ T

governed by the stochastic partial differential equation

duε(t, x) = (4uε(t, x) + b(θ)uε(t, x))dt+ εσ(θ)dWQ(t, x)(2. 1)

where 4 = ∂2

∂x2 . Suppose that θ ∈ Θ ⊂ R. Assume that the function b(θ) < 0 for all θ ∈ Θ.

Further suppose that the functional form of the function b(θ) is known and it is differentiable

with respect to θ with non zero derivative. In addition assume that the function σ(θ) > 0 is

known but the parameter θ ∈ Θ is unknown. Suppose the initial and the boundary conditions

are given by
{

uε(0, x) = f(x), f ∈ L2[0, 1]

uε(t, 0) = uε(t, 1) = 0, 0 ≤ t ≤ T
(2. 2)

and Q is the nuclear covariance operator for the Wiener process WQ(t, x) taking values in

L2[0, 1] so that

WQ(t, x) = Q1/2W (t, x)

and W (t, x) is a cylindrical Brownian motion in L2[0, 1]. Then, it is known that (cf. Rozovskii

(1990))

WQ(t, x) =
∞
∑

i=1

q
1/2
i ei(x)Wi(t) a.s.(2. 3)
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where {Wi(t), 0 ≤ t ≤ T}, i ≥ 1 are independent one - dimensional standard Wiener processes

and {ei} is a complete orthonormal system in L2[0, 1] consisting of the eigen vectors of Q

and {qi} the eigen values of Q. Let us consider a special covariance operator Q with ek =

sin kπx, k ≥ 1 and λk = (πk)2, k ≥ 1. Then {ek} is a complete orthonormal system with the

eigen values qi = (1 + λi)
−1, i ≥ 1 for the operator Q and Q = (I −4)−1. Further more

dWQ = Q1/2dW.

We define a solution uε(t, x) of (2.1) as a formal sum

uε(t, x) =
∞
∑

i=1

uiε(t)ei(x)(2. 4)

(cf. Rozovskii (1990)). It can be checked that the Fourier coefficient uiε(t) satisfies the stochas-

tic differential equation

duiε(t) = (b(θ) − λi)uiε(t)dt+
ε√

λi + 1
σ(θ)dWi(t), 0 ≤ t ≤ T(2. 5)

with the initial condition

uiε(0) = vi, vi =

∫ 1

0
f(x)ei(x)dx.(2. 6)

Suppose the collection of observations consists of {uiε(j∆), 0 ≤ j ≤ n, 1 ≤ i ≤ N} where

∆ > 0. We now approach the problem following the techniques in Bibby and Sorensen (1995)

using the method of estimating functions.

Note that the process {uiε(t), 0 ≤ t ≤ T} is the Ornstein-Uhlenbeck process and it is well

known that the conditional distribution of uiε(∆) given uiε(0) is normal with mean vie
(b(θ)−λi)∆

and variance ε2σ2(θ)(e2(b(θ)−λi)∆−1)
2(b(θ)−λi)(λi+1) . It can be shown that

Gn(θ) =
λi + 1

σ2(θ)ε2

n
∑

j=1

b′(θ)uiε((j − 1)∆)(uiε(j∆) − uiε((j − 1)∆)e(b(θ)−λi)∆)(2. 7)

is proportional to the optimal estimating function for the estimation of the parameter θ (cf.

Bibby and Sorensen (1995)) and an estimator for b(θ) is of the form

b̂iε = λi + ∆−1 log

∑n
j=1 uiε(j∆)uiε((j − 1)∆)

∑n
j=1 u

2
iε((j − 1)∆)

.(2. 8)

Since b(θ) < 0, it is well known that the solution of (2.5) is ergodic with the stationary

measure with the density µθ given by the normal distribution with mean zero and variance

β2
i (θ) = ε2σ2(θ){2(λi−b(θ))(λi+1)}−1. Further more we have already noted that the transition

probability density πθ
∆ of uiε(∆) given that uiε(0) = x is the normal probability density with

mean xe(b(θ)−λi)∆ and variance ε2σ2(θ)(e2(b(θ)−λi)∆−1)
2(b(θ)−λi)(λi+1) . Let X be a random variable with the

stationary measure µθ and Y be a random variable such that the conditional density of Y

given X = x is given by πθ
∆. Note that
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E[XY ] = E[XE(Y |X)] = E[XXe(b(θ)−λi)∆](2. 9)

= β2
i (θ)e(b(θ)−λi)∆

and

E[X2] = β2
i (θ).(2. 10)

It is easy to check that the Condition 3.1 in Bibby and Sorensen (1995) holds in this case

and applying the Lemma 3.1 in Bibby and Sorensen(1995) (cf. Florens-Zmirou (1989)), we

obtain that

1

n

n
∑

j=1

uiε(j∆)uiε((j − 1)∆) → E[XY ] in probability as n→ ∞

and

1

n

n
∑

j=1

u2
iε((j − 1)∆) → E[X2] in probability as n→ ∞.

The above relations imply that

∑n
j=1 uiε(j∆)uiε((j − 1)∆)

∑n
j=1 u

2
iε((j − 1)∆)

→ E[XY ]

E[X2]
in probability as n→ ∞.

The following result follows as a consequence of the above observation and the relations

(2.9) and (2.10).

Theorem 2.1: The estimator b̂iε converges in probability to b(θ) as n→ ∞.

Since the function b(θ) has a continuous inverse function, the following result is a conse-

quence of Theorem 2.1.

Theorem 2.2: The estimator θ̂iε = b−1(b̂iε) converges in probability to θ as n→ ∞.

Let ψi(θ) = e∆(b(θ)−λi). Note that

ψi(θ̂iε) =

∑n
j=1 uiε(j∆)uiε((j − 1)∆)

∑n
j=1 u

2
iε((j − 1)∆)

.

Hence

√
n{ψi(θ̂iε) − ψi(θ)} =

n−1/2 ∑n
j=1[uiε(j∆)uiε((j − 1)∆) − ψi(θ)u

2
iε((j − 1)∆)]

n−1
∑n

j=1 u
2
iε((j − 1)∆)

.

Since

E[uiε(j∆)uiε((j − 1)∆)|uiε((j − 1)∆)] = ψi(θ)u
2
iε((j − 1)∆)
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it follows by Lemma 3.1 of Bibby and Sorensen (1995) that

n−1/2
n

∑

j=1

[uiε(j∆)uiε((j − 1)∆) − ψi(θ)u
2
iε((j − 1)∆)]

converges in distribution to the normal distribution with mean zero and variance equal to

γi(θ) = E[XY − E(XY |X)]2 where the random variables X and Y are as defined above. It

can be checked that

γi(θ) =
ε2σ2(θ)(e2(b(θ)−λi)∆ − 1)

2(b(θ) − λi)(λi + 1)
β2

i (θ)

= (1 − e2(b(θ)−λi)∆)β4
i (θ).

Applying the δ - method , we obtain that

n1/2∆(b(θ̂iε) − b(θ))

converges in distribution to the normal distribution with mean zero and variance

e−2∆(b(θ)−λi)γi(θ)β
−4
i (θ) and we have the following theorem.

Theorem 2.3: Under the conditions stated above

n1/2∆(b(θ̂iε) − b(θ))
L→ N(0, e−2∆(b(θ)−λi) − 1) as n→ ∞.

Applying the δ-method once again, we obtain that

n1/2∆(θ̂iε − θ)

converges in distribution to the normal distribution with mean zero and variance

b′(θ)−2e−2∆(b(θ)−λi)γi(θ)β
−4
i (θ) and we have the following theorem.

Theorem 2.4: Under the conditions stated above

n1/2∆(θ̂iε − θ)
L→ N(0, (b′(θ))−2(e−2∆(b(θ)−λi) − 1)) as n→ ∞.

Remarks: Note that the estimators {θ̂iε, 1 ≤ i ≤ N} are independent, consistent and asymp-

totically normal for the parameter θ in the stochastic partial differential equation (2.1). We

will now discuss a method for combining these estimators to get an improved estimator.

Let θ̃ε =
∑N

i=1 αiθ̂iε where αi, 1 ≤ i ≤ N is a nonrandom sequence of coefficients to be

chosen. Note that

θ̃ε
p→ [

N
∑

i=1

αi]θ as n→ ∞

by the Theorem 2.2 and hence θ̃ε is consistent for θ provided
∑N

i=1 αi = 1. Further more

√
n∆(θ̃ε − θ)

L→ N(0, (b′(θ))−2
N

∑

i=1

α2
i (e

−2∆(b(θ)−λi) − 1)) as n→ ∞.
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This follows from the Theorem 2.4 and the independence of the estimators {θ̂iε, 1 ≤ i ≤ N}.
We now obtain the optimum combination of the coefficients {αi, 1 ≤ i ≤ N} by minimising the

asymptotic variance
N

∑

i=1

α2
i (e

−2∆(b(θ)−λi) − 1)

subject to the condition
∑N

i=1 αi = 1. It is easy to show that αi is proportional to (e2∆(λi−b(θ))−
1)−1 and the optimum choice of αi, 1 ≤ i ≤ N leads to the ”Estimator”

θ∗ε =

∑N
i=1(e

2∆(λi−b(θ)) − 1)−1θ̂iε
∑N

i=1(e
2∆(λi−b(θ)) − 1)−1

.(2. 11)

It is easy to see that

θ∗ε
p→ θ as n→ ∞

and
√
n∆(θ∗ε − θ)

L→ N(0, (b′(θ))−2(
N

∑

i=1

(e−2∆(b(θ)−λi) − 1)−1)−1) as n→ ∞

again due to the independence of the estimators {θ̂iε, 1 ≤ i ≤ N}. However the random variable

θ∗ε cannot be considered as an estimator of θ in the true sense since it depends on the unknown

parameter θ. In order to avoid this problem, we can consider a modified estimator

θ̂ε =

∑N
i=1(e

2∆(λi−b̂iε) − 1)−1θ̂iε
∑N

i=1(e
2∆(λi−b̂iε) − 1)−1

(2. 12)

which is obtained from θ∗ε by substituting the estimator θ̂iε for the unknown parameter θ in the

i-th term in the numerator and denominator in (2.11). In view of the independence, consistency

and asymptotic normality of the estimators θ̂iε, 1 ≤ i ≤ N , it follows that the estimator θ̂ε is

consistent and asymptotically normal for the parameter θ and we have the following result.

Theorem 2.5: Under the conditions stated above,

θ̂ε
p→ θ as n→ ∞

and

n1/2∆(θ̂ε − θ))
L→ N(0, (b′(θ))−2(

N
∑

i=1

(e−2∆(b(θ)−λi) − 1)−1)−1) as n→ ∞

for any fixed N ≥ 1.

2.2 Example II

Let (Ω,F , P ) be a probability space and consider the process uε(t, x), 0 ≤ x ≤ 1, 0 ≤ t ≤ T

governed by the stochastic partial differential equation

duε(t, x) = b(θ) 4uε(t, x)dt+ εσ(θ)(I −4)−1/2dW (t, x)(2. 13)
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Suppose that θ ∈ Θ ⊂ R. Assume that the function b(θ) > 0 for all θ ∈ Θ. Further suppose that

the functional form of the function b(θ) is known and it is differentiable with respect to θ with

non zero derivative. In addition assume that the function σ(θ) > 0 is known but the parameter

θ ∈ Θ is unknown. Suppose further the following the initial and the boundary conditions

uε(0, x) = f(x), 0 < x < 1, f ∈ L2[0, 1],(2. 14)

uε(t, 0) = uε(t, 1) = 0, 0 ≤ t ≤ T.

hold. Here I is the identity operator, 4 = ∂2

∂x2 and the process W (t, x) is the cylindrical

Brownian motion in L2[0, 1].. The Fourier coefficients uiε(t) satisfy the stochastic differential

equations

duiε(t) = −b(θ)λiuiε(t)dt+ σ(θ)
ε√

λi + 1
dWi(t), 0 ≤ t ≤ T,(2. 15)

with

uiε(0) = vi, vi =

∫ 1

0
f(x)ei(x)dx.(2. 16)

Suppose the collection of observations consists of {uiε(j∆), 0 ≤ j ≤ n, 1 ≤ i ≤ N} where

∆ > 0.

Note that the process {uiε(t), 0 ≤ t ≤ T} is the Ornstein-Uhlenbeck process and it is well

known that the conditional distribution of uiε(∆) given uiε(0) is normal with mean vie
−b(θ)λi∆

and variance σ2(θ) ε2(e−2b(θ)λi∆−1)
(−2b(θ)λi)(λi+1) . It can be shown that

Hn(θ) = − λi + 1

ε2σ2(θ)

n
∑

j=1

b′(θ)λiuiε((j − 1)∆)(uiε(j∆) − uiε((j − 1)∆)e−b(θ)λi∆)(2. 17)

is proportional to the optimal estimating function for the estimation of the parameter θ (cf.

Bibby and Sorensen (1995)) and an estimator for b(θ) is of the form

b̂iε = −λ−1
i ∆−1 log

∑n
j=1 uiε(j∆)uiε((j − 1)∆)

∑n
j=1 u

2
iε((j − 1)∆)

.(2. 18)

Since b(θ) > 0, it is well known that the solution of (2.15) is ergodic with the station-

ary measure with density νθ given by the normal distribution with mean zero and variance

ζ2
i (θ) = ε2σ2(θ){2λib(θ)(λi + 1)}−1. Further more we have already noted that the transition

probability density πθ
∆ of uiε(∆) given that uiε(0) = x is the normal probability density with

mean xe−b(θ)λi∆ and variance σ2(θ) ε2(e2(−b(θ)λi)∆−1)
2(−b(θ)λi)(λi+1) . Let X be a random variable with station-

ary measure νθ and Y be a random variable such that the conditional density of Y given X = x

is given by πθ
∆. Note that

E[XY ] = E[XE(Y |X)] = E[XXe−b(θ)λi∆](2. 19)

= ζ2
i (θ)e−b(θ)λi∆

and

E[X2] = ζ2
i (θ).(2. 20)
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It is easy to check that the Condition 3.1 in Bibby and Sorensen (1995) holds in this case

and applying the Lemma 3.1 in Bibby and Sorensen(1995) (cf. Florens-Zmirou (1989)), we

obtain that

1

n

n
∑

j=1

uiε(j∆)uiε((j − 1)∆) → E[XY ] in probability as n→ ∞

and

1

n

n
∑

j=1

u2
iε((j − 1)∆) → E[X2] in probability as n→ ∞.

The above relations imply that

∑n
j=1 uiε(j∆)uiε((j − 1)∆)

∑n
j=1 u

2
iε((j − 1)∆)

→ E[XY ]

E[X2]
in probability as n→ ∞.

The following result follows as a consequence of the above observation and the relations

(2.19) and (2.20).

Theorem 2.6: The estimator b̂iε converges in probability to b(θ) as n→ ∞.

Since the function b(θ) has a continuous inverse function, the following result is a conse-

quence of Theorem 2.6.

Theorem 2.7: The estimator θ̂iε = b−1(b̂iε) converges in probability to θ as n→ ∞.

Let ψi(θ) = e−b(θ)λi∆. Note that

ψi(θ̂iε) =

∑n
j=1 uiε(j∆)uiε((j − 1)∆)

∑n
j=1 u

2
iε((j − 1)∆)

.

Hence

√
n{ψi(θ̂iε) − ψi(θ)} =

n−1/2 ∑n
j=1[uiε(j∆)uiε((j − 1)∆) − ψi(θ)u

2
iε((j − 1)∆)]

n−1
∑n

j=1 u
2
iε((j − 1)∆)

.

Since

E[uiε(j∆)uiε((j − 1)∆)|uiε((j − 1)∆)] = ψi(θ)u
2
iε((j − 1)∆),

it follows by the Lemma 3.1 of Bibby and Sorensen (1995) that

n−1/2
n

∑

j=1

[uiε(j∆)uiε((j − 1)∆) − ψi(θ)u
2
iε((j − 1)∆)]

converges in distribution to the normal distribution with mean zero and variance equal to

τi(θ) = E[XY −E(XY |X)]2 where the random variables X and Y are as defined above. It can

be checked that

τi(θ) = σ2(θ)
ε2(e−2b(θ)λi∆ − 1)

2(−b(θ)λi)(λi + 1)
ζ2
i (θ)

= (1 − e−2b(θ)λi∆)ζ4
i (θ).
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Applying the δ - method , we obtain that

n1/2∆(b(θ̂iε) − b(θ))

converges in distribution to the normal distribution with mean zero and variance

λ−2
i e2∆b(θ)λiτi(θ)ζ

−4
i (θ) and we have the following theorem.

Theorem 2.8: Under the conditions stated above

n1/2∆(b(θ̂iε) − b(θ))
L→ N(0, λ−2

i (e2∆b(θ)λi − 1)) as n→ ∞.

Applying the δ-method once again, we obtain that

n1/2∆(θ̂iε − θ)

converges in distribution to the normal distribution with mean zero and variance

(b′(θ))−2λ−2
i (e2∆b(θ)λi)τi(θ)β

−4
i (θ) and we have the following theorem.

Theorem 2.9: Under the conditions stated above

n1/2∆(θ̂iε − θ)
L→ N(0, (b′(θ))−2λ−2

i (e2∆b(θ)λi − 1)) as n→ ∞.

Remarks: Note that the estimators {θ̂iε, 1 ≤ i ≤ N} are independent, consistent and asymp-

totically normal for the parameter θ in the stochastic partial differential equation (2.13). We

will now discuss a method for combining these estimators to get an improved estimator.

Let θ̃ε =
∑N

i=1 αiθ̂iε where αi, 1 ≤ i ≤ N is a nonrandom sequence of coefficients to be

chosen. Note that

θ̃ε
p→ [

N
∑

i=1

αi]θ as n→ ∞

by the Theorem 2.7 and hence θ̃ε is consistent for θ provided
∑N

i=1 αi = 1. Further more

√
n∆(θ̃ε − θ)

L→ N(0,
N

∑

i=1

α2
i (b

′(θ))−2λ−2
i (e2∆b(θ)λi − 1)) as n→ ∞.

This follows from the Theorem 2.9 and the independence of the estimators {θ̂iε, 1 ≤ i ≤ N}.
We now obtain the optimum combination of the coefficients {αi, 1 ≤ i ≤ N} by minimising the

asymptotic variance
N

∑

i=1

α2
i (b

′(θ))−2λ−2
i (e2∆b(θ)λi − 1)

subject to the condition
∑N

i=1 αi = 1. It is easy to show that αi is proportional to λ2
i (e

2∆λib(θ)−
1)−1 and the optimum choice of αi, 1 ≤ i ≤ N leads to the ”Estimator”

θ∗ε =

∑N
i=1 λ

2
i (e

2∆λib(θ) − 1)−1θ̂iε
∑N

i=1 λ
2
i (e

2∆λib(θ) − 1)−1
.(2. 21)
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It is easy to see that

θ∗ε
p→ θ as n→ ∞

and
√
n∆(θ∗ε − θ)

L→ N(0, ((b′(θ))−2
N

∑

i=1

λ2
i (e

2∆b(θ)λi − 1)−1)−1) as n→ ∞

again due to the independence of the estimators {θ̂iε, 1 ≤ i ≤ N}. However the random variable

θ∗ε cannot be considered as an estimator of θ since it depends on the unknown parameter θ. In

order to avoid this problem, we can consider a modified estimator

θ̂ε =

∑N
i=1 λ

2
i (e

2∆λib̂iε − 1)−1θ̂iε
∑N

i=1 λ
2
i (e

2∆λib̂iε − 1)−1
(2. 22)

which is obtained from θ∗ε by substituting the estimator θ̂iε for the unknown parameter θ in the

i-th term in the numerator and denominator in (2.21). In view of the independence, consistency

and asymptotic normality of the estimators θ̂iε, 1 ≤ i ≤ N , it follows that the estimator θ̂ε is

consistent and asymptotically normal for the parameter θ and we have the following result.

Theorem 2.10: Under the conditions stated above,

θ̂ε
p→ θ as n→ ∞

and

n1/2∆(θ̂ε − θ))
L→ N(0, ((b′(θ))−2

N
∑

i=1

λ2
i (e

2∆b(θ)λi − 1)−1)−1) as n→ ∞

for any fixed N ≥ 1.

3 Remarks

In the two examples discussed in the earlier sections, we have assumed that the drift coefficient

and the diffusion coefficient are known except for the parameter θ which is to be estimated

from the data. Since the estimating functions considered above are linear martingale estimating

functions , the function b(θ) in the diffusion coefficient is only involved and not the function

σ(θ) which makes the procedure inefficient. However we get explicit solution for the estimator if

we make use of the linear martingale estimatting function. If one uses the quadratic martingale

estimating functions as described by Sorensen(1997) (cf . Prakasa Rao(1999)), the estimating

function involves both the functions b(θ) and σ(θ) but the resulting equations are too complex

to solve for a user. Since the discretely observed Ornstein -Uhlenbeck processes encountered in

both the examples are autoregressive processes, the likelihood function can be computed and the

maximum likelihood estimator can be obtained which is asymptotically efficient. The estimators

b̂iε described in the equations (2.8) and (2.18) are the the maximum likelihood estimators in

the natural parametrization where the the reparametrization by means of the functions b(θ)
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and σ(θ) is done away with and the scalar parameter θ in the drift and the scalar parameter

σ in the diffusion term are allowed to vary independently keeping the σ fixed eventually as the

interest centers around the parameter θ. In such a case, the combined estimator θ̂ε, described

in (2.12) and (2.22), of the parameter θ in the drift term would be asymptotically efficient.
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