nkhyd : The Indian Journal of Statistice
‘l,;”. %dolumf- 44, Seriee A, Pr. 3. pp. 310-340.

A SOLUTION OF THE MARTINGALE CENTRAL
LIMIT PROBLEM, PART Il

By P. JEGANATHAN
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SUMMARY. Consider avequonce of triungular urrays ((Xns, a1 €5 & ka) whore
for eech row, the o-flolds 4 C _#ms € .. & A " and Xpsia qa.smeasurable, 1 < j < k.
"y

dofined o some complote probability space, such that k, { © and At € _Anay for oll § < kn.
In Part I of this papor, necessary and sufficiont conditions for tho atable convergonco in dis.

k,
tribution of the sequenco Sy = i X n > L, to & mixturo of infinitely divisible distributions
v

wero i under the that tho second moments of Xu('s oxist. In Part II,
tho existenco of tho fimt or socond momonts is not assumed and wo obtain reaults analogous
to the caso of independent summands with not nocessarily finito first or second moments. As
particulsr cases, 8 to mi: of normal, d and Poisson distributions are
discussed. 1t may bo notod that, though the titlo of the paper refera only to martingales, the
presont sot-up goes boyond that of martingales since aven the oxistenco of the €rst moments
is not assumed.

Furthormore, it ia shown that the class of all limit distributions of {Sa) coincides. in some
wanso, to the class of all of infinitely divisiblo distributions.

| INTEODUCTION \XD THE RESULTs

Consider a sequence of triangular arrays (X5, A, ). 1 < j < k,) where,
for each row, the o-fields A, C ... C A, and X,yis Ap y-mble, 1 < j < k,,
n

defined on some complete probability space (&, A, P), such that

(A.N k, T co and ./fu}C-/fn-l.l for all J< k.
In Part I of this paper, necessary and sufficient conditions for the stable

kn
convergenee in distribution of the sequence S, = X X4, » 3 1, to & mixture
1

of infinitely divisible distributions were investigated under the assumptions
that the second moments of Xn./s exist and that, for each row, X,,'s are
wartingale differences. The results obtained there were analogous to the
caso of independent summands with finite variances. In Part II, the existence
of the first or second moments is not assumed and we try to obtain results
analogous to the case independent summands with not necessarily finite firat
or sacond momenta.
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One reason for having treated the case of bounded variances separatel
aa Part I of this paper is that it was found simple and convenient to introduc
the basic ideas of the proofs. The teohnical essence of this part remair
the same as that of the first part, though some of the computations an
argumenta are more delicate. For this reason some of the arguments of tt
proofs will be either referred to Part T or only briefly indicated. Anoth
reason for having a separate treatment of the general case is that the resul
presented here are far more complote and that even the sufficiency part «
the particular normal convergence criterion sgems to clarify the exiatir
results to a great oxtent. Morcover. Poisson and degenerate convergenc
are also discussed

A subsequent part will be devoted to u study of limit theorems f
camulative or normed sums, and Part 111 is devoted to a study of invarian
principles with Lévy processes limits.

For the references to earlier results, see Part 1. Regarding the nam
agsociated with the formulation and solution of the problom in the case
independent summands, we quote the following sentencos from Lodve (19¢
p. 200) : “The solution of the problem is due to the introduction, by de Finet
of the ‘infinitely decomposable’ family of laws and to the discovery of the
explicit rep ion by Kolmogorov in the case of finite second momer
and by P. Lévy in the general case. It has been obtained, with the help
preceding family of laws, by the efforts of Kolmogorov, P. Lévy, Feller, Baw!
Khintchine, Marcinkiewicz, Gnedenko, and Doblin (1931-1938). The fir

form is tially due to Gnedenko”. To these names, Hsu also should
added (see Chung (1979)).

As in Part I. we assume in the rest of the paper that
A=0o(J A, )
n n

£ o' denotes convergence in probability .

Before going into the details of the conditions and the reaults, we introdu
some notations.

Let F .z, w) be a regular conditional distribution of X, given An,
Set, for some fixed 7 > 0,

apy = , \] . *F,(dz, w).

uwnd detine

Fuslz, w) = Fofz+ang, ).



MARTINGALE OENTRAL LIMIT PROBLEM 381
Wo set:
Yot w) = itf,+ [ $it. 2)G (dx. w)
whore
.

B, = %” an+ | = ?',,;(dx, w) ],

12
Iu oy 1-! -
Gy ) =% | g Futde w),

and the function ¢(i, z) is defined by

¢(l,z)=(e“'—l . lfx’) l';f ifz#0

—182 if 2=0.
Note that the function ¢(¢, z) is jointly continuous in ¢ and z. We further
sob T, = G (00, w).

In order to simplify some of the statemonta we now introduce

Definition 1 : A sequence {W,} of random vectors defined on (&, A, P)
is 8aid to be relatively compact in probabilily if for every subsequenco thers
oxists 8 further subsequence {m} such that the sub
i probability.

e (W) converges

We now introduce the conditions.

(A.2) For every ¢ >0

»
max  P(| Xy} > €| ¥ny) o0
<56k,

(A.3) The sequence {7',} is relatively compact in probability.

(A.4) There exists a countable dense subset D of R such that for all ¢ ¢ D,
the soquence {,(¢)) is relatively compact in probability. Furthermore, for
every subsequonce therc exist a further subsequence [m}C {n} such that,
for averv ¢ > 0,

lim lim sup PGm{|z| > @) > ¢ = 0. ")
e moe

Note that (*) is equivalent to the more meaningful condition : for every
£>0,

‘M
lim limsup P | E (| Xmy—ang] > &)y} > ¢ | =0,

ao m—
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In order to avoid confusion, relative compactness under weak convergence
of distribution functions will be referred as relative compactness in distri-
bution.

Remark ): As is well known, when the ds are independent
and when it is given that tho scquence {S,} is relatively compact in distribu.
tion, the conditions (A.3) and (A.4) are automatically satisfied under the

condition (A.2).

Following Loéve (1963, p. 381), the condition (A.2) will be called Condi-
tional Uniform Asymptotic Negligibility (CUAN) condition.

In what follows by couple (£, G) we mean that #is an _¥-mble r v and @
is a0 _4-mble kernel as defined in Part I (Definition 2).

Definition 2: The sequence {S,} is said to convergo stably in distribu-
tion to the distribution of a mixture of infinitely divisible distrit with
the couple (8, @) if, for every _#-mble function g,

fugHits
4

E( ) =3 Eervorvm)

for all roal » and ¢, where
Vi) = i+ [ $lt, w) G (dx, w).

Hencetorth “mixture of infinitely divisible distributions with couple
(8. G)" will be abbrevited as “MIDD with (8, G)".

We next state the results. It is assumed, without further mentioning,
that (A.1) is satisfied in the statements of all tho results stated below.

Theorem 1 : (i) Suppose that the condilions (A.3) and (A.4) are salisfied.
Then for every subsequence there exisls a further subsequence {m} C {n}, a P-null
set N and a couple (f, G) such thal, for eachw e 2L—N, fin— B and Gr converges
weakly to G, i.e.,

| et1@y(dx) - [ £'G(dz)
for all real t and 1w e L—N.

(i) Suppose thal the CUAN condition (A.2) 18 salisfied. Lel the subse-
quence {m} and the couple (f, G) be as in the above statement (i). Then the
sequence {Sn} converges slably in distribution lo the 3[1DD with (3, G).

Theorem 2 : (i) The condition,

(A.B) : there exisls a couple (8, G) such that

Y
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and, for all real 1,
§ eG (dz) 5 | ettsGida),

is equivalent lo the conditions (A.3) and

(A.8): For all real 1, the seq {¥.0) ges in probabilily.  Further-
more, for every subsequence there exists a further subsequence {m) C {n} such that
the condition (°) of (A.4) holds.

(ii) Suppose that the conditions (A.2) and (A.5) are salisfied. Then the
sequence {S,} converges slably distribution to the MIDD with (B, G).

Theorem 3 :  Under the conditions (A.2)~(A.4), the class of all distribulions
which are the limits, in the sense of slable convergence in distribution. of the
sequence {S,} coincides with the class of all M1DD with some couple (8, G).

Theorem 4 :  Suppose thal the conditions (A.2)~(A.4) are satisfied. Further
suppose thal the sequence {S.,) converges stably in disiribution. Then the condi-
tion (A.5) holds.

Remark 2: It may happen that the sequence {i,(l)} is not relatively
compact in probability, yet the sequence

Yl = B~y )+ [ L, 2)G, (d)

is relatively compnct in probability for suitably choson sequence of rv's y,.
In such a case necessary and sufficient conditions for tho stablo convergence
in distribution of the sequence S,—y,. n > 1. can bo formulated. Since
the details of the statoments will bo clear from tho proofs of the rosults
(Section 3) and from the known results for the case of independent summands
{cf. Lodve (1963. pp. 310 and 314), they are omitted.

Analogous to the case of independent summands, we next state the
central convergenco criterion which is very useful in applying the results to
particular casea.

In the atatements of this criterion, when we say that a kernel & has a
fixed point 7> 0 of continuity we mean that there is a P-null set N such
that 47 are continuity pointa of G(., w) for all wes L—N.

Remark 3: It may be noted that a kernel ¢ has always a fixed point of
continuity, To see this first note that there is no loss of generality in assuming
(o, w) < 1as. Then

K(z) = E(G(z, w))

A4
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is a non-decrensing, right i function of bounded variation. Henco
there always exists a point 7 such that +7 is a continuity point of K(z). Now
note that, sinco G(z, w) € 1 a.s.

K(r—)—K(r) = ElG(r—)—0(r)}.
Hence, since 7 is a continuity point of K,
E[G(r—)—G(7)] = O.
This implies, since G(7)—G(r—) > 0,
G(r1—) = GQ(7) as.
Similarly, it follows that, sinco —7 is also a continuity point of K,
G(r'—) = G('r) ns.

where 77 = —7.

Central convergence crilerion. Suppose that the CUAN-condition (A.2)
holds.  Then the condition (A.3) and (A.4) holds and that the sequenco {S.}
converges stably in distribution to MIDD with (4, G) if, and only if, for every
subsequence thero exists a further subsequence {m} C {#} and a P-null set N
such that

i) whenever we &—N and x(w) is a continuity point of G(., w
)

' z 2
>:£ Fojlx(w)) = _‘}“ 1 ;;-’l_ Gldy, w) for 2(w) > 0,

L - 2
Z [1~Fryaw)] > | H;y dy, w) for x(w) < 0
1 000 Y

(i1) whonever we - N

lim lim sup Wpn(e, w) = lim  lim inf Wo(e, w)
(=20 m— e (=0 mIHe

= G(+0, w)—6(—0, w)
whero

W (e, w) =

- M

g ‘r‘Il’,,((h:,w)—[mf<'21",,(dx, |’}

fzl <
(iii) For a fixed 7 > 0 of fixed point of continuity of &, with the excep-
tional set N,

b Fmylde -
: mI<1 ZFm4 W)—>ﬁ+mf<' 6 (dx, w) . ; 21 @ (dz, w)

whenever we L—NUN’,
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As corollaries to this oriterion we obtain the following particular cases.
In what follows we set

)= | oFan—| | 2R
Izl <a 17l <a

and

agla)= [ 2Fyfdz).
Izl <a

Normal convergence crilerion. The conditions (A.2)—(A.4) hold and
that tho sequence (S,} converges stably in distribution to the distribution
whose characteristic function is given by Efoxp(ilfi—r2T}2)] if, and only if,
for evory € > 0 and for somo & > 0

kp
@) P Xof] > €] An j2) 50
ky ky
(i) L o%a) 3 T and T apfa) D B
1 3

Remark 4 : The sufficiency part of this result with tho usual weak con-
vorgence, for the particular caso 7 = 1 and f = 0, already occurs in Helland
(1981).

An important thing that romaina is to verify that the above conditions
are implied by the variety of sufficient conditions introduced by several authors,
This has been done to some extent by Helland (1981) for the nbove mentioned
particnlar case, and it is clear that his argument can be applied to the general
caso also.

Remark 6: Ono might be intercsted to know whether the usual invari-
anco principles with Browninn motion limit hold under the above conditions.
Helland (1981) has shown that this is truo for the above mentioned particular
caso, and it ia casy to seo that this is true for the goneral case also. But the
more intoresting problem scems to be the following. In his important work,
Skorokhod (1057) has considered the invariance principlos with limits Infinitely
Divisible Processes algo, of which Brownian motion limit is only a particular
case. One might bo interested in knowing whethor his results extond to the

goneral case troated in the present paper. A detailed invostigation of this
case ia prosontrd as Part 111,



326 P. JEGANATHAN
Convergence in probability crilerion, The conditions (A.2)~(A.4) hold

and that tho sequence {S,} converges in probability to an rv £ if, and only if,
for every € > 0 and for some a > 0,

b ,

(i) ?P(lxnl|>il./1,.-:_.)—v0,
ty ko

(ii) £ o4(a) 30 and £ anle) > B
1 1

Poisson convergence criterion. Suppose that CUAN-condition (A.2) holds.
Then the conditions (A.3) and (A.4* holds and that the sequence {S,} converges
stably in distribution to the mixtures of Poisson distributions with ch.f.
Efexp(Aeit—1))] if, and only if, for overy €¢(0, 1) and for somo a (0, 1)

kll
0] §P(lxn;|>e,|xn,—1|>em,.;_,)io
and
l"
I P(|X=1) <&l Ap ) DA

tn tn .
(ii) L o3(a) > 0 and T a,a) > 0.
1 i)

Remark 6: As o final remark we note that the following fact will be
implicitely used in sevoral places of the paper :  For some kernel G

Jet=Qa(dzy 5 [ eltxG(dx)
for all real ¢ if, and only if,

[f2)Gnldz) B [f(z) O (dz)
for all feC(R).

This can be easily seen to be truo using standvrd arguments, see e.g.,
Billingsley (1068, pp. 46 and 47).
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2, SOME PRELEMMAS AND REDUCTION ARGUMENTS
Lemma 1 : Suppose that (B, G,) and (B,. Gy) be two couples such that
¥lt) = yll) a.e.
Jfor all renl t, where
vilt) = B+ § ¢, 2)0ddz), i=, 2.
Then there exisls @ P-null sel N such that
V() = ¥al))
and
| e (dz) = [ erGydx)
for all real 1 and we X~N. and f = i, as.
Proof : Using a simplo continuity argument it is easy to see, under the
givon supposition, that there exists a P-null set N such that
i) = ¥

for all real ¢ and we @—N. Hence the rosult follows since for each fixed
we O, there is a one-to-ono correspoudence between ¥ {f) and the couple
(8, Gr), i = 1,2, (cf. Lodve (1963, p. 300)).

Lemma 2: Stalement (i) of Theorem 1.

Proof : Using the diagonal argument. one can find for every sub-

q a further subscq {m)} and a P-null set N such that T > T

for all we 22— N and {rm(t)} converges for all £ ¢ D and we L— N, where the

countablo dense subset D is the one occurring in tho condition (A.4). Also

suppose without loss of gonerality, that this subsequence {m} is such that,
for every € > 0,

lim limsup P(Gn(lz] > a)> ] = 0. )]

a—p o> m -
We now show that, setting By = {¢: [{] € M}, M >0,
lim Limsup P[ sup |¥mls)—¢ul)| > €t 3eByl=0 ... (2
90 mo e I—al < 3

for every ¢ > 0 and M > 0. First observe that

1] 1Bm| < 1¥m()] +K(OTm
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for some constant K(¢) > 0, and hence {5} is bounded in probability. Hence
it ia enough to show that, setting

Yalt) = [ $(t, 2) Gm (d2),

Yim limsup P[

sup  [Yal)—¥a(e)| > € LaeByl=0
0 moe 1—8 < 8

for every ¢ > 0. Now note that

sup sup |P{, z) < ©
<M =

and 8o, in view of (1),

lim limsup P[ sup |¢(t, 2) | Om (dz) > €] =0

av e moe <Mzl >a
for overy € > 0 and M > 0. Hence it is onough to show that
ali_l:.u‘I limsup P[ sup [ 1$lh 2)—9ls, 2) | Gmidz) > € :t, 86 By] =0

no e It—sl < 8 MtI<a

for every € > 0, 2> 0 and M > 0. This is true since, for every we 2~ N,

sup sup @, x)—¢@(s,2)| 50
-2l <& |zl <«
l.a€ By

a8 8- 0 since on the compact interval {1, 2): 1| K M, |z| € a} §(t, 2) is
uniformly continuous, and T — 7T for all we L—N. Thus (2) holds.

Note that since the set D is dense in R and since {¥m(t)} converges in

probability for overy /e D, (2) entails that {{/a(l)} converges in probability
for every real {.  We now show that

} Wlt+ B+ Yimlt—h)) dh

converges in probability for every real ¢. Fix ¢ and sot
Vah) = Ymlt+-h)+ym(t—h).
Let hy=10, hy = Ik, by =2/k, ..., he = 1. Tt is easy to seo from (2), that

& |
im_limsup P{| § yohdh— E by, —hgsh) > ¢ ] =0
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for every ¢ > 0. Henoe, using the fact that {yn(t)} mutually converges in
probability for every real ¢, it follows easily that tho soquence

1

[ k) db

o
mutually converges in probability and hence converges in probability for
every real £

Thus
1
gm(t) = ¥nlt)—} J [¥rmt+h)+ym(t—h)] dh

converges in probability for overy real . Now observe that, (cf. Lobve, 1063,

p. 300)
gmit) = | e!2Gp (dz)

whero
Gn (o = [1-202) 2 g gy
with
o<c’<[1—“"%”] H: <o <w )

where ¢’ and ¢” are independent of 2. Also observe that (1) entails, in view
of (3), that

lim limsup P[Ge(lz]| >a)> €] =0 o (4)
ar m—e
for every € > 0.

Using (4) and the fact that {gm(t)} converges in probability it can be easily
shown, vin Weierstrass approximation theorem, (see e.g. Billingsley (1968,
P- 46))), that

| flz) G, (dz).
Convorges in probability for every fe Cy(R), where C,, denotes the class
of all conti functi ishing outside pacts. We have thus shown

that the sequence { f f(z) @ (dx)} is relatively compaot in probability for all
feCy. Hence, using the diagonal argument again one cen find (see the
Proof of Lemma 1 of Part I) for every subseq a further sub
{m} C (4}, & P-null set N and a kernel G such that

I J() G, (d2) - [ flz)@* (d=)

q
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for s wed—N and feCy Assume further, without loss of generality,
that (4) holds. Then it is easy to show that
G(00) 2 G*(c0).
Now let {r} C {m} be a further subsequence such that, for some P-null set N',
G1(o0) = G*(e0)
for all we L—N', we thus have
[ D)@, (dz) > § J(z) G°(dz)
for all we L—N and fe Cy, and
@3(00) = G*(00)
for all we &L~ N'. Honce wo have
J f)G; () - | [(2)6*(d=)
for all f¢ C(R) and we L—NUN’, where C(R) denotes the class of all bounded
continuous functions. In view of (3), we then have
I [@)Gy (d2) > [ f(x) G ()
for all fe C(R), and we L—NUN’, where
Gdz) = Gy (1-10%) 12

z E

Now assume without loss of generality, that {¥,(¥)} converges almost suroly
for somo ¢ 3 0. Sinco ¢!, z) € C(R) for all 1, wo then have {#} converges
almost surely.

This completes the proof of the lemma.
Lemma 3 : Statement (1) of Theorem 2.

Proof : In view of Lommas 1 and 2, the proof is quite analogous to that
of Lemma 3 of Part I, and 8o it is omitted.

Asin Part I, we denote the next few steps to reduce the problems to simpler
cases in order to overcome certain technical difficulties.

Consider the CUAN-condition (A.2), i.e.. for every ¢ > 0

b, =
"= B, PUXul > el Ay 0. ]
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Set X;) = min(] Xpng{, 1). Then (5) in particular entails that
b,=E max E(X;} . 0
: [1<J<k. At 1)]_’
and

b =E[ mex BWX3|A, )]0
I1igka

Also, following tho arguments used for the cnso of independent summands,
it follows from (5) that

d,= wmax |ey| Lo
<5< ka

and

2 - »
ERS 15 S Fpy(d 0.
€, l<j:k.. f = ni(dz) =

Wo now choose an increasing sequence 0 < «, 1 0, @, <k, such that
b, =0, ab, >0, ad, 50 and ae, 50. o (8)
One implication of these conditions is the following lemma,
Lemma 4 : Supprse thal (8) holds. Then
) :i'x..,i»o,

2 -

W) g F Pt S,

and
ey »
(i) Z a@n> 0.
1
Proof :  The proof of (i) ean be found in Part I. The proofs of (i) and
(iii) are immediate.

Now suppose that {m} C {n} be a subsequence such that Tm 5> 7. In
view of Lemma 4 of Part I thers is a non-negative soquence {T.} adapted to
{4, . }such that 7,5 T. In particular 7,57. In the rest of this seotion

‘on

we supposoe that this subsequence {m} &G {n} is fixed.
A3-5
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We define, for a constant & > 1, (8 is fixed throughout),

Upj = (T +8)7? 2- I57 l+zz Fy (d2),

and
Bml (Uml <4 Ia‘mjl < 7/2}

where the positive constant 7 is the one occuring in the definition of aay’s.
Note that both the rv U,y and the set By are Ay, g_y-mble forj = an+1, ...,
km. Now defino

Emg = Tu 1B Xms—tms).
j=amt+1, ..., km, whore

= [T, + (T, +8)

To simplify the writing we make the convention, valid for the rest of this
Part, that the summations £ are over j = am+1, ..., kin only, unless otherwise
’
slaled explicitely.

The reason for defining the £,4's in this rather complicated way is just
to obtain the following erucial inequalitics.

Lemma 5: For j=aw+1, ..., km and §> 1,

|E(e"'m1_l | Ams ) € WUy € CUXT, +8)! | = Foj(da) as.

1422
(7
where C\1) is a positive conslunl depending only on | and. 7, and
2 —_
*7‘1(1/,,., ST S :_l_z Fonsldz) < & a.s. . (®
Jor all m.
Proof :  According o the Contral Tnequalitics given in Loéve (1963, p. 304)
| I(cllz—l)F,,,,(d'lH O - I f‘ 2 F,,,, (dz)
where

€)= [+trt gy | TH LD 10,
Now note that

B ™ 1) s 1) = [ — 1) F g () 0.8,
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whore tmg = {T0I(Bug). Observe that '), /(Bms) is A, 5_y-mble for j = ay,+1,
..., km and therefore in the above integral it can be treated as a constant for
these values of j. Since one of the factors in lpyis I([ems| < 7/2), we then
have

2
Ctm) < Uy < 80K, [ Kalti ot L 73]

where K, and K, are positive constants dopending only on 7. Note that,
since 5> 1,

To = [TuH(Tod-002172 < (Tr4-6)!
and
T2 = [ToH(To 402 < (Tr+8).

This proves (7) and (8) can be casily verified using the definition of Upy's.
The proof is complete.

In view of the abovo relations (7) and (8) the proof of the following lemma
is ossentially idontical to the proof of Lemma 6 of Part I and so it is omitted.

Lemma 6: Suppose thal the CUAN-condition (A.2) is salisfied. Lel
the subsequence {m} C {n} be as above. Then for every A-mble k-veclor g, the
difference

E(wp[iu’g+ilb';,,+ZE(l—cw'"‘ | Ams j-1))}— Elexpliv'y))
b

converges lo zero for ecvery we R¥ and Le R, where S, = Z £py.
1

Lemma 7: Supposec that the CU:AN condition (A.2) is satisfied. Lel
(m} be a subsequence such that, for some couple (B, G),

() nDp
and for all real ¢

(i) ] e G (de) D | = € (da).

km
Then the seq (S} is relatively compac! in distribution, where Sp = X Xy,
1

Proof :  First note that tho given conditions entails that the scquences
{(¥m(t)) anad {T'm} are convergent in probability. Further note that

*m *m -
¥mlt) = “21'- @yt I [ (5 —1)Fmy (dz).
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Hence it follows, from the condition max |aas| 2 0 and the Central
1<j < ka

Inequality mentioned in the proof of Lemma 5, that the sequence ki amy,
m » 1, is relatively compact, and 8o it is enough to show that the so(;uance
kZ- (Xmj—amy), m > 1, is relatively compaot.

' Using Lemma 4 it follows then that it is enough to show that the
sequenoe"[. (Xms—@mj), m > 1, is relatively compaot. To proceed further,
observe that

Ui, DTIT+8 1. T

Now let {P;} bo o sequence of measures such that

aPy = (T+8) aP.
Note that
§ dP;, & 8! for all m.

One can further easily check that the relative compactness under P is equi-
valent to the relative compactness under the sequence {P3}.

Define, for M > 0,
Xo = Xmg—eaM(| Xms—ams| < M),
j=am+1,.., kn. Then
Po(Und, < 8, Xy # (Xmg—0ns) for some j = ap+t1, ..., k)

< );-‘P;.(Uul < 0, 1 Xmy—ams| > M) (Since Upmy Upi,)

=E [(T,_.;.a)—xzzz(v.., <8 I Fuy(an)]

< 1 B, 401G o)~ G M)+ G~ 3))

. y 2
Galy) = ?I(Uml < 5)_I‘ Tgan Fmi(d2).

8ince on the set (U_._ € 8}, Om(z) and G, (z) coincides, it is easy to see, using

(8) and Lemma 4, that the condition (ii) holds if and only if for all real ¢

[ =@, (dz) L5 [ e2@ (d2).
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Also note that (', +8)'G,(c0) < & for all m, by (8). Hence it follows easily
that the quantity
E{(Tr48)7(0(00) — (M) + G~ M)]}
Convoros to zero by first letting m — co and then M — co. Thus it follows
from the above inequalities that it is enough to show that the soquence T X,
m 3> 1, which depends on M, is relatively compact undor (P;) for each fixed
M. Equivalently, we shall show that the sequence ¥ J(Ups € 8)X,;,m 3 1,
J

is rolatively compact. Now consider

I‘ 1] whuslde) = xII‘ ’ 'CF"”(JI)‘{-: < 'l; & ::I'_',,., (de),

:
and so
A L

&y

Y aFufdzy € X Fogldz) + X [ aFuyda) .
o 3 FEEEIY |
One can casily check that, (cf. Lotve, 1963, p. 314),
_ — P
z :Fony(dz) < 372 P, < 37 Yy .
: xf‘ . 2Fopyldz) < 37 } Z-I>r 'mild2) < 37 (l+7)>l-f 1 G Py fdz).
Also

7 1+ . 2 =
v oy Fndd) <! 172) g Fldz)

~

From thess inequalities it follows that
Ty 2F, mg{d)
j &M
is rolatively compuct, and henco
2IUms<8) [ aFmyldz)
] reg M

is relatively compnct. Hence it follows that, denoting the oxpectation with
respact to Py, by Ey, and sotting

Xog = IUnmy < )Xo,

713 B X | An,s1)

s relatively compact.
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Honce, to complete the proof it is enough to show thay
S [Xoy—En(Xol Ango)), m > 1, is rolativoly compact. Tho expectation
]

(with respect to Pj,) of the square of this sum is loss than or equal to

EEUX) = BUTwk 0 S AUy < 8) | f | & Fomfd)]

< (1+MYE(T,,+8)7'G(00)) < (14+M%)8 (by (8)).
Hence the proof is complote.

3. THE PROOFS OF THE RESULTS

Proof of Theorem 1: In viow of Lomma 2, it romains only to prove the
statement (ii). Let {m} be a subsequence such that, for some couple (4, G),

b DB

and for all real ¢

| €tz G(dz) D | eitz @ (da).
It is easy to show that this entails T - T and
Ynlt) = itfm+f P, 2) G (dz)
5 B[ g, %) 6 de) = ).

Now let, with B = {Um; < 6, |a,5] < 7/2}, (recall the convention that the
sum I is over j = an+1, ..., ky),
3

o =us 1(B,,.,)a,,.,+z; J ("= _\yF s (d)

= 4 I(Bnsom; + = [Bpi) | (42— 1)Fony (d2).
(Since (.) takes the value either 0 or 1).

Note that, on the set {U,,, < 8, . <sl§12 . lams| < 7[2), Yalt) coincides
i< kn

with the sum

# % ans+ (et 1)Fpns (d2).



MARTINGALE OENTRAL LIMIT PROBLEM 337
Hence, using Lemma 4, the relation (9) (of Sec. 2) and the fact
P
sup |amg| -0,
}
it follows that, for every M > 0,
P

sup | Yrm(ti—¥n(t)| > 0.

reM
Hence it follows casily that the differenco

Yunllm)~ 5 (tm) 5 0
whore & = T, since

Ty BT = (DT P,

(T2 is as defined in See. 2).  Also, it is not difficult to check that, (cf. Statement
{iii) of Lomma 5 of Part 1),

Ymlim) 5 PT
and hence
Yraltm) 5 L),
Now observe that, (S;, = X £my),
i

WS4 S B0 —“™ | A 1y) = 285 — b
]
where we set
Sy =Ty Z IB)Xm;
H

Therefore, in view of Lommas 5, 6 and 7, it follows by following the arguments
of the proof of Theorem 1 of Part I that

Efexpling+itS,)] - Eloxpliug+¥()T*)]
for all real % and ¢ and for every A-mblo g.

Now note that the difference
Sp—T"-18% 5 0.

Henco, in view of tho last part of the proof of Theorem 1 of Part I, the
proof follows,
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This completes the proof of the Theorem.

Proof of Theorem 2: The proof follows by repeating the arguments of
the proof of Theorem 1 for the sequence {n}.

Proof of Theorem 4 : In view of Lerama 1, the proof ia essentially identi-
cal to the proof of Theorem 3 of Part 1.

Proofs of the convergence criterions : Tt follows from the statement (i)
of Theorem 1 and Lemma 1 that there exists a couple (8, @) such that the
condition (A.5) is satisfied if, and only if, for every subscquonce there exista

a further subsaquence {m} C {»} and a P-null set N such that f,, - g for
all we 22— N and

[ elt2@ , (dx) — [ e"**G(dx)

for all we L — N and for all real £.  Hence the proof of the Contral Convergence
Criterion follows from thelknown results for the case of independent summands
(cf. Lodve, 1963, p. 311).

Using the arguments used for the case of indepondent summands (cf.
Lotve, 1983, pp. 315-317), the proofs of the normal, Poisson and ‘degencrate’
convergence criterions follows easily from the Central Convergence Criterion,

Proof of Theorem 3 : First note that it follows from Theorem 1 that the
limit distribution must bo a MIDD with some couple (4, G), whencver the
conditions (A.1}{A.4) hold. We now show that for any givon couple (8, G)
on some probability space (&), A,, P}, one can construct a sequence of tri-
angular arrays ((Lupy A gh 1<5< 0} AW Q.. CApn=12 ...
such that the conditions (A.1}~(A.4) are sntisfied and that the sequenco {8,}
converges stably to MIDD with (8, G).

To this end, let
Yy = itp+ | ¢t =6 (dm).

Note that exp (w;l(i‘) is o ch.f. for each fixed we &, and is an A4, -mble

function for each fixed real ¢&. Thereforo, for cach 2 > 1, ono can construot
a stochastio kernel P (w, -) such that

{ evep g, do) = oxp (V)

n
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for all we ). Let, then, P*(w, -) be the stochastio kernel on (4, A,) where
P, )= X X Pysw.)
wel  fei
with Pagl, ") = P(w,") for all 1 < j < n < 0,

&= ;‘1 ,.X.B" with Ryy=R, 1<j<n< o,
X

A= X X 8oy with By=8 1<j<n<
el S=l

(8 is the o-field of Borel subsets of the real line R). Let P* be the probability
moasure on (X, X Ly, A X A,) defined by

P* = | P'(w, d2)l(dz).
Now define the rv's Xus's on () X oy A, X Ay, I*°) as follows
Xugw, 2) = 20y
for all w 6 +0, and x ¢ &, where z,4 is the nj-th co-ordinate of z. Then define
Sng =012, Xmyj=12..m m=12.,n—1X,,..X,
whore Z i the identity map :
Z (DX Ly S X A (D, A

Obviously, the o-flelds _¥,/'s satisfy the oondition (A.l) with k, =,
AnC... C A, for each n > 1, and X,;is Aaj-mble for 1 <j < n < co.
Note that for any integrable function f

E(f(X ng) | Ang—y) = E(f(Xqg) |0(2)) a6. (10

where the expectation is with respect to P°, as is easily seen from the construc-
tion. In what follows fix we 4, and let E,, denotes the expectation with
respact to P*(w, ). From the construction it follows that

Eult"s'

- YTy 11 R40) =

)= 1 Bue ™y = M oxp (£2) = expiyio). o
This is true for all » > 1. Also note that, for every ¢ > 0,

mex EfI(|Xa| > 1)) > 0. o (12)
1€J€n

A3-8
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Henoce from the known necessary conditions for the case of independent sum-
mands it follows that

Balw) —> B(0) e (1Y
and
( eM1G (dz, w) - [ e1G(dz, 7) o (14)
for all real ¢, where
- (X pj—ang)
B.w0) = E ans)+ B | [y 200
with
angw) = B, [Xpsl(| Xngl< 1)), 7>0,
and

(Xng—ans)*_

F(Xng—an)? (X nj—any < z) |

Gz w) = B ll

Now obgerve that, in view of (10), a regular conditional distribution (with the
underlying prob. measure P°) of X,; given ¥, j_, can be taken as

Fouylz, w) = BEfI(Xny € 7))
Hence, in view of (12){14 and Theorem 2, the desired conclusion follows.
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