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The problem of identifying motifs comprising nucleotides at a set of polymorphic DNA sites, not necessarily
contiguous, arises in many human genetic problems. However, when the sites are not contiguous, no efficient
algorithm exists for polymorphic motif identification. A search based on complete enumeration is computationally
inefficient. We have developed probabilistic search algorithms to discover motifs of known or unknown lengths. We
have developed statistical tests of significance for assessing a motif discovery, and a statistical criterion for
simultaneously estimating motif length and discovering it. We have tested these algorithms on various synthetic data
sets and have shown that they are very efficient, in the sense that the “true” motifs can be detected in the vast
majority of replications and in a small number of iterations. Additionally, we have applied them to some real data
sets and have shown that they are able to identify known motifs. In certain applications, it is pertinent to find motifs
that contain contrasting nucleotides at the sites included in the motif (e.g., motifs identified in case-control
association studies). For this, we have suggested appropriate modifications. Using simulations, we have discovered
that the success rate of identification of the correct motif is high in case-control studies except when relative risks are
small. Our analyses of evolutionary data sets resulted in the identification of some motifs that appear to have
important implications on human evolutionary inference. These algorithms can easily be implemented to discover
motifs from multilocus genotype data by simple numerical recoding of genotypes.

[Supplemental material is available online at www.genome.org. The following individuals kindly provided reagents,

samples, or unpublished Iinformation as indicated in the paper: A. Chowdhury.]

Single nucleotide polymorphisms (SNP’s) are abundant in the hu-
man genome and occur at roughly 1 per 2 kb spacing on the
average (Balasubramanian et al. 2002). Alleles at SNP loci are
often nonrandomly associated. Various evolutionary mecha-
nisms, including drift and natural selection, maintain the asso-
ciation of specific nucleotides at two or more sites, which may
not be contiguous. The search for nucleotides that exhibit asso-
ciation at a set of polymorphic sites is of interest in studies of
common diseases (Sabeti et al. 2002) and in evolutionary genet-
ics (Tateno et al. 1997; Daly et al. 2001). We define a set of
nucleotides that occurs with a high frequency at multiple poly-
morphic DNA sites, not necessarily contiguous, in a group of
individuals as a “polymorphic motif.” We note that our defini-
tion of a motif differs from the conventional definition, for ex-
ample, that is used for finding regulatory sequences in promoter
regions of genes (Keiler and Shapiro 2001), in two ways; (1) the
sites included in our definition are polymorphic, and (2) the sites
need not be contiguous. In conventional motif-identification
problems, search is made for evolutionarily conserved nucleotide
sequences at a contiguous set of nucleotide positions (Gupta‘and
Liu 2003). In case-contro] studies of common diseases, it is of
interest to find polymorphic motifs and to test whether there are
differences in motif frequencies between cases arfd ?ontrols
(Khani-Hanjani et al. 2002). Motifs that are found i’n sugmfic-antly
higher frequencies among cases are associated with .the dlseafe
under study. If variants in multiple genes are indeed 1nvo‘lved in
the disease, the sites in such a motif may not be contiguous.
Similarly, the discovery of polymorphic motifs is important in
evolutionary genetics. Indeed, such motifs have been used to

define subhaplogroups of specific clades (haplogroups) of the hu-
man mitochondrial (mt) DNA (Bamshad et al. 2001).

In the context of evolutionary or human genetic studies,
there are two related issues. First, to identify motifs or haplotypes
that occur at high frequencies in subsets of a large data set, such
as those sampled from specific geographical regions or groups, or
from individuals afflicted with a specific disease. Having identi-
fied such motifs, the second problem is to decipher the biological
or population genetic processes (e.g., Jinkage, drift, selection,
epistasis) that have resulted in the existence of these high-
frequency motifs. In this study, we shall only address the first
issue, viz., how to identify high-frequency motifs. To address the
second issue, collection of further data (e.g., family data), statis-
tical modeling, investigations of metabolic pathways, wet-
laboratory experimentation, etc., may be required.

It is theoretically possible to discover polymorphic motifs in
a set of N-aligned DNA sequences, each of length L nucleotides,
by examining frequencies in all possible k X k tables,
k=223,....L. However, this is computationally infeasible. The
purpose of this study is to propose a set of computationally fast
probabilistic search algorithms that may be used for motif find-
ing, and to evaluate their efficiencies using both synthetic and
real data sets. Keeping SNP loci in mind, which are usually bial-
lelic, we formulate, describe, and assess these algorithms using
sequences of binary characters. However, there is no inherent
restriction in these algorithms that the search has to be confined
to binary sequences. These algorithms can also be used on mul-
tilocus genotype data of diploid individuals. When genotype
data are used, the distinct genotypes only need to be numerically
recoded, as discussed later. Thus, the proposed algorithms are
fairly general in nature, and can be put to diverse uses.

We first propose an algorithm for identifying a motif of a
given length. We then extend this algorithm when the length is
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unknown. Finally, we propose a modification for identifying
“variant” motifs. The problem of identifying a variant motif
arises when, given a collection of DNA sequences derived from a
set of individuals, it is of interest to identify whether an appro-
priately defined subset of individuals in this collection possesses
a motif that is different from that possessed by the remaining
subset of individuals. For example, in a case-control study, it is
pertinent to identify whether the cases possess 2 motif at a cer-
tain number of sites that comprise nucleotides, each of which is
different from the nucleotide possessed by the controls at the
corresponding sites. Identification of such a variant motif can
help in identifying SNPs associated with the disease in question.
The problem of identifying variant motifs in subsets of a collec-
tion of sequences at the hypervariable segment-1 (HVS1) of hu-
man mtDNA has received a lot of attention (Quintana-Murci et
al. 1999). In particular, efforts have been made to to identify
contrasting motifs in HVS1 in subsets of individuals belonging to
different haplogroups (HGs) that are defined by the presence of
specific nucleotides at sites outside of the HVSI1.

In each of these problems, a variant motif is defined in re-
lation to another. For example, for case-control data, the variant
motif among cases is defined in contrast to the one found among
the controls. In the evolutionary analysis of mtDNA HVS1 se-
quences, search for a motif is made in contrast to the Cambridge
Reference Sequence (CRS) (Anderson et al. 1981). In such cases,
for motif searching, not only do we have to find a high-frequency
motif, but this motif should contain nucleotides that are com-
pletely ot largely different from those present in the reference
sequence at the corresponding nucleotide positions.

Methods

Consider a data matrix ({(2,))yx., Where a; denotes a nucleotide
(A, T,G, or C) at the j polymorphic site (j = 1,2,...,L) for the i*”
individual (i =1,2,..., N). The data matrix is generated from
aligned DNA sequences of a specific genomic segment of N indi-
viduals, from which all monomorphic sites have been removed.
We note that if these N individuals belong to a case-control
study, then the data matrix needs to be initially created by pool-
ing all cases and controls, and subsequently separated into two
matrices, one for cases and another for controls. A similar strat-
egy is also required in evolutionary studies, while simultaneously
dealing with two populations. We also note that if disjoint seg-
ments of DNA are to be simultaneously examined for motif find-
ing, then appropriate segments may be separately aligned, and
the aligned segments concatenated in the data matrix.

Let V={1,2,...,L} denote the set of all L polymorphic sites in
the data. Let I1, denote the set of all possible combinations of p
sites in V. To fix ideas, consider the data matrix given in Table 1.
In this matrix, N=4, and L=7. Thus, V={1,2,...,7}. For p=2,
nz _ {[lrzl: '113I1"'r l1r7]! l213}r |2:4}r”u l6r7’ } - [vgh

Table 1. An example of a data matrix

Variant site no.

Sequence/ e i *

Individual no. 1 2 3 4 5 5 7
1 A A T T G C C
2 A G T C G C T
3 A G T T A C T
4 G G C C A T T

. T

k=1,2,...3). In general, I, ={V;}, k= 1,2,...(;) and Vk= {x%,
x5,...,.x5 1 x§ € V). For a fixed k, we define the modal sequence on
as that particular combination of nucleotides at the sites
(x%, x,...,x) included in V¥, k = 1,2,...(5) which has the highest
frequency. In the data matrix of T able 1, the modal sequence, for
example, on V} = {1,2} is AG with frequency 2, on V2 =1{1,3}is AT
with frequency 3, etc. We define a motif of length p as the maxi.
mally frequent modal sequence on [1;; that is, the sequence that
occurs with the highest frequifincy (globally modal) among

modal sequences on V3, VZ,..., V:‘:"]- In our example, the motif of
length 2 is AT on V3 = {1,3} with frequency 3.

In general, the problem of finding a motif of length p from
an N XL data matrix reduces to identifying the set V%, k = 1,2,...,
(ﬁ), from [II, such that the modal sequence on V£ is globally
modal. With an NXL data-matrix, the search space I, has (})
elements. Obviously, each element of I1, is a string, S, comprising
the identities of those specific p sites chosen out of L. There are (;)
such strings in I1,. An exhaustive search of this space II, is com-
putationally very expensive, and perhaps infeasible. We propose
a stochastic search method, similar in spirit to the Metropolis-
Hastings version (Metropolis et al. 1953) of simulated annealing,
which is computationally fast and efficient. In this method, we
maximize an objective function, G(S), that is naturally defined as
the “frequency of the modal sequence on the string S € [1,.” By
our definition, maximizing the frequency of the modal sequence
on I1, leads to identification of the motif of length p. Thus, the
search comprises choosing both sites and characters at these
sites, so that the chosen set of characters at the chosen set of sites
has the maximum frequency in the data set.

Algorithm for finding a motif of a given length and assessing
its statistical significance

Although in real problems, the motif length is usually unknown,
for ease of exposition, we first describe an algorithm for a known
motif length p, and then generalize it to the case of an unknown
motif length. Instead of maximizing G(S), we shall consider the
equivalent problem of minimizing a monotonically decreasing
function, H(S), of G(S). The algorithm is iterative. We start with
an arbitrary string S of length p; that is, a set of p distinct nucleo-
tide sites drawn randomly from the L polymorphic sites. In each
iterative step, an element (a specific site) of the string S is up-
dated. The updating procedure requires the computation of G(3),
which is done from the frequency distribution of all unique se-
quences at the sites included in the string S. For this purpose,
given a specific string of sites, S, of length p, we enumerate from
data the frequencies (f;) of all unique nucleotide sequences &,
(/=1,2,...), at the sites included in S. At each iterative step, we
update a single site, and after p such iterative steps, we get a
completely updated string. The procedure of updating a string
completely is cailled a sweep. Thus, a sweep comprises p iterative
steps. Let §, denote the updated string after £ sweeps.
We shall use the following notations:

1. Let S, = (x{V, x{2,..., x{7), where x{? denotes the i” element (a
site) of the string at the (¢ + 1) sweep.

2. Let S denote a string in the (t+ 1) sweep, whose first
(0 =i=p-1)eclements have already been modified.

3. Let $(y) denote a string in the (¢t + 1)™ sweep, whose first i
(0 =i < p - 1) elements have already been modified and the
(i + 1) element is replaced by element y.

4. Let H{” denote the minimum value of H(S) after completion of
the i"” iterative step in the (¢ + 1) sweep step.



Motif identification algm_'irhms

5. Let M{" denote the string of elements (array of sites) corre-
sponding to H{ .

We initially set H3” = 0, and M{ as a “null” string, that is, a
1Xp vector whose elements are all set to zero. The updating
procedure for the i element in the (¢ + 1) sweep uses the idea

underlying the Metropolis-Hastings algorithm (Metropolis et al.
1953), which can be described as follows:

We first calculate B, = c.in(t + 1); where ¢ is a constant and
¢ > 0. One element (x) is selected at random from the set V\S¢—";
that is, from the set V=1{1,2,..., L], from which the elements
included in the set S{ ~ > have been removed. We then probabi-
listically update x}" to x{’, | according the following rule:

i {x ~ with probability min(A, 1)
#1 = |x{" with probability 1 — min(A, 1)

where, A =e~ BAHGSH ™ Vixyy— HESH Mxhy)

Obviously, the transition probability from one string to an-
other depends only on the outcome of the current string (Markov
property). As is easily understood from the above updating rule,
at any step of the iteration, a new string that yields a smaller
value of H(S) is always accepted, but to avoid being trapped at
a local minimum, the new string with higher value of H(S)
may also be retained with a small probability (that crucially de-
pends on the preassigned control parameter ¢ and the corre-
sponding sweep step f). It may be noted, however, that as the
number of sweeps, ¢, increases, the process stabilizes. In other
words, the probability of accepting a worse string decreases as
t increases. The algorithm converges to the global minimum if
B, increases to infinity logarithmically (Winkler and Lutz
2003), and the speed of convergence is determined by the local
oscillations of the function H at various coordinates of its ar-
gument. (Detailed results on convergence of nonstationary
Markov chains can be found in Winkler and Lutz [2003]). It is
clear that our choice of B, satisfies this general property. In prac-
tice, it is important to start with a small value of ¢ (say, five), but
also to try with larger values of ¢ to examine convergence to the
sarmne optimal value of the function and the rate of convergence.
Large values of ¢ can substantially speed up convergence, but can
also result in the algorithm being trapped in a local minimum,
and a large number of sweeps may be required to get out of the
trap.

After each iteration, we compare H(SY ~ "(x)) with A~V If,
H(SY = V(x)) < HY- D, then H(SY ™ V(x)) is the new value for HY ~
and M is the updated string S{'~ V(x). Otherwise, we do not
change HY " and M{”. In each iteration, therefore, we compare
the value of the objective function with the smallest value it has
attained thus far. (If that smallest value remains the same over a
large number of consecutive sweeps, then the entire procedure
may have to be restarted with a new randomly chosen string.
This is standard in most numerical optimization procedures.)
This introduces the concept of elitism in our algorithm, which is
popular in evolutionary computation (Goldberg 1989), and is
done to retain the best value that was achieved during the entire
run. Using available convergence results (Liu 2001; Winkler and
Lutz 2003), it can be shown that as the number of sweeps goes to
infinity, the value of the objective function converges to the
global minimum. In practice, however, the procedure needs to be
terminated after a finite number of sweeps. We have terminated
when an upper bound (usually taken to be a large number; we
have used the value of 5000 in our analyses) on the total number

of sweeps was reached.

We note that, as with all numerical optimization proce-
dures, it is desirable to repeat the procedure a certain number of
times from different starting strings, and examine whether con-
vergence to the same optimal value is obtained. The number of
repetitions of the procedure that is practically feasible obviously
depends on the availability of computing resources.

Having discovered a motif of a given length p in a data set,
it is important to assess the statistical significance of the discov-
ery. For this, we need to estimate the probability of existence of
a motif of length p in a “random” data set of “similar” structure
as the real data set in terms of nucleotide composition (as ex-
plained in detail in the Results section), that has a frequency
higher than the motif discovered in the real data set. If this prob-
ability is smaller than a preassigned value (say, 0.05), then the
motif that has been discovered can be declared to be statistically
significant. To estimate this probability, we created a large num-
ber of random data sets, by randomly permuting the elements of
each column of the real data set. For each random data set thus
created, we used our algorithm to discover the motif of length p
with the highest frequency, that is, the “best” motif. The propor-
tion of random data sets in which the best motif had a frequency
higher than that of the motif discovered in the real data set
provided an empirical estimate of statistical significance. We
note that for this purpose, ideally, the best motif in each random
data set should be identified by a complete enumeration search,
and not by using the algorithm proposed by us. However, this is
infeasible unless the real data set is small. (We have actually
carried out the complete enumeration search in many srnall data
sets; the results are presented later.)

Extension of the algorithm when the motif length is unknown
and assessment of statistical significance

In practical applications, the motif length (p) will usually be un-
known. When p is unknown, one can start with a small value of
p and increase this value sequentially, examining for each value
of p the extent of decrease in the value of G(S). One can stop with
that value of p when an increase to (p + 1) results in a “substan-
tial” drop in the value of G($). In practice, two values, p,,,,, and
Pmax May be specified, and search for p may be made in the
interval [P Paxl- We now need a measure to evaluate whether
the drop in the value of G(S) for two consecutive values of p is
substantial to stop the iterative algorithm.

For any given value of the motif length p € [p,.in Pmaz)s WE
can use the algorithm described for identifying a motif of a given
motif length, and obtain the {(maximum) value of G(S) given p,
which we shall denote as G(S|p). We, therefore, calculate
G(SIPmin)s GS|Pmin + 1)1, G(S|Pinax)- Let d(p;) denote the value of
G(S|p) — G(S|p; + 1), where p; € [Poiie Powax — 11-

To assess the statistical significance of a decrease in G(S|p) as
the motif length (p ) is increased, we propose the following cri-
terion. Let

s T pi-1 d(P)
d(p;) = L. i Lo :
. Pf‘%intpi - Pmr'n)

and

Pi~1 2
)= D o

pre D1 = men) - [m]z; Pmin < Pi < Pmax-

If (d(p;) — d(p)) > 2.6%(p;), then we declare the decrease from
G(S|p;) to G(Sp; + 1) as significant, and stop with the motif length



Basu er al.

p. The idea underlying this criterion is that we declare a drop in
the value of the objective function to be statistically significant
if this drop differs from the mean of all previous drops by
more than two times the variance of all previous drops. In the
rare event that ¢?( p;) = 0, we use the stopping criterion
G(S|p; — 1) > 2.G(S|p), and declare the length of the motif as p;.

Although the above method of assessment of statistical sig-
nificance is intuitively appealing, the choice of the value of the
constant (=2) in the stopping criterion is somewhat arbitrary.
Further, in the above search procedure, it is possible that the sets
of sites included in motifs of length p and (p + 1) are disjoint. [n
many practical applications, this may not be desirable. Therefore,
after the initial stage, new sites should be added to the set of sites
included in the motif discovered thus far. Such an addition is
made by searching for a site from among those sites not included
in the identified motif. This strategy is not only more meaningful
in many practical applications, but is also computationally less
expensive. However, there is a trade-off. After convergence of this
procedure, it is possible that the identified motif of length g (say)
is suboptimal among all motifs of length g. When this procedure
is adopted, we suggest the use of the criterion described below to
assess statistical significance of increase of motif length from p to
(p + 1). Let w, and 7, denote the probabilities of occurrence of
the motifs of lengths p and (p + 1), respectively. Let 6,,, denote
the probability of the nucleotide at the new site included in the
motif as its length is increased from p to p + 1. We now wish to
test the null hypothesis H, : w,,, = 7, X 8,,,, versus the alterna-
tive hypothesis H, : w,,; > w, X 8,,,. In other words, we wish to
test whether the additional site and the nucleotide at this site
that were included to expand the motif of length pto p+ 1 is
associated, to a greater degree, with those sites and nucleotides
already included in the motif (of length p) than is expected by
chance. The level of significance of the test is given by: =N )
(7, X §F+,_)‘(l - (m, X 8,,, )" ', where ‘hats’ denote the relative
frequency estimates of the parameters and n=N X 7,

Starting with a small motif length, one can continue to in-
crease its length until the level of significance falls below a pre-
assigned value (say, 0.03).

If the structure of a data set is such that sequential addition
of sites leads to the same matif at every stage, compared with the
direct procedure of identifying a motif of a certain length, then,
as we shall show later, the use of these two procedures of testing
statistical significance yield concordant inferences.

{dentification and statistica! significance of variant motifs

In a standard case-control study, a set of N individuals (cases)
possessing a characteristic (e.g., a specific disease) and another set
of N individuals (controls), usually matched for age and gender
with the cases, not possessing that characteristic, are chosen.
DNA sequence data are generated on these 2N individuals, and
polymorphic sites identified. [f the data are diploid, appropriate
analyses are carried out (Stephens et al. 2001) to estimate the
frequencies of distinct haploid sequences (haplotypes). The ob-
jective is to identify a haplotype—polymorphic motif—that oc-
curs at a high frequency among cases, but in low frequency
among controls, resulting in a high degree of association of the
haplotype with disease. If, indeed, the association is due to cau-
sality, then it is expected that there will simultaneously exist a
haplotype at a high frequency among controls that comprises
alternative nucleotides at the same sites as those found in the
high-frequency haplotype among cases. In other words, there

will exist a variant motif occurring at a high-frequency among
controls compared with that among cases. To 1dentify such mo-
tifs among cases and controls, we need to maximize an objective
function with respect to three parameters, which may be written
in a general form as: G(S,,) = g{f1,f2,m), where f, and f, are, respec-
tively, the frequencies of sequences of nucleotides at the sites in
§, among cases and controls, and m is the number of mismatches
between the nucleotide sequences considered for cases and con-
trols. The abjective function is so chosen that it is monotonically
increasing in £y, f> and m and is to be maximized with respect to
these three parameters. The idea is that, since we are searching
for a variant motif among controls, we need to find a high.
frequency motif among them that simultaneously exhibits a
large number of mismatches with a high-frequency motif occur-
1ing among cases. Except for this nmatural modification in the
objective function, no change in the search algorithm described
earlier was made. An example and details of its implementation
are given in Supplemental text 1.

Upon termination of the algorithm, we test whether the
odds-ratio estimated from the 2 X 2 table comprising the fre-
quencies of the two motifs identified among cases and controls
(or in the two data matrices under consideration) was signifi-
cantly different from unity (Breslow and Day 1993).

Following the same spirit as for a single data set discussed
and described earlier, one may also assess the statistical signifi-
cance of the discovered motif in case-control data by using a
permutation algorithm to generate a large number of “random”
data sets of a structure similar to that of the controls. We have
done this. For each case-control data set, synthetic or real, after
having identified a motif in the case data by using the variant-
motif algorithm, we generated a large number of control data sets
by permuting the elements of each column of the control data
matrix. We then used the algorithm, and empirically estimated
the probability that the odds-ratio obtained for the real data sets
of cases and controls is lower than the odds-ratio obtained from
the real case data and a randomly generated control data set. We
have used this probability as a measure of statistical significance
(p-value) of the motif discovered from the real data sets.

In data sets pertaining to evolution, the method of finding
a variant motif is simpler because a specific reference sequence is
generally given. In this setup, given a string, §,, of length p, we
enumerate from the data all possible sequences &, , (/ = 1,2,...) of
nucleotides, at the sites included in §,. For each such sequence
&, we calculate its frequency f, ,. We then calculate the number
of mismatches, m,,, of each of these sequences ¢, (I=1.2,...)
with the reference sequence. The objective function is obviously
to be modified as

G(S,) = &(fo,m).

It is evident from the objective function that the value of m; ,, for
which G(5,) is maximized is =<p. This indicates that, if the value
of m,, realized at the maximum value of the above objective
function is less than p, then there may exist sequences of length
p with more than m, , mismatches with the reference sequence.
But the frequency of such a sequence will be much smaller than
/1 tesulting in a drop in the value of G(S,). One effective strategy
that we have used in implementing the above objective function
is to start the algorithm with a large value of p. This enables us 10
find a sequence with a considerably high frequency, where 1;,
out of the p sites differ from the reference sequence. By keeping
track of the sites at which the sequence differs from the reference
sequence, we can find the sequence at the sites constituting the
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variant motif. Another advantage of A
using the algorithm is that, even
without any prior on the actual
length of the motif (discussed in de-
tail in the previous section), the ob-

u=03

u=08

b ik

mum at some value of m,,, which
enables us to get the motif length,
the best estimate of which is m,,
from a single run.

jective function obtains its maxi- ;
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cance of the discovered motif, we

generated a large number (10,000) of €
“random” data sets of a structure

similar to the original. If the length

of the motif discovered in the origi-

nal data set was p, we restricted the

search algorithm to maximize only
over those sequences for which m, ,
was equal to p. That is, in the ran-
domly generated data, given a string

Meaan No. of Sweeps
-=2888

S, the frequency of a sequence was

50 100 180 200

L

[—o=u=0.3 ~8—us0,5 —a—u=0.7

set to O if it had less than p mis-
matches with the reference se-
gquence.

Figure 1.

Resulits

Performance of the algorithms: Assessment using synthetic
data sets

Data Set |

We designed various synthetic data sets, so that the motif in each
data set was known, to assess the performance of our algorithm.
In our synthetic Data Set 1, a data matrix (N X L) was created,
and a known motif of a fixed length (p } was planted in a pro-
portion u of individuals. Data sets were created with different
values of relevant parameters; details are given in Supplemental
Text 2. The algorithm was applied on each synthetic data matrix,
with different values of the control parameter ¢. As stated earlier,
instead of maximizing G(S), we consider an equivalent problem
of minimizing a monotonically decreasing function H(S) of G(S).
We have taken

HS) = 1766

in this and in all of the remaining analyses. This choice was
subjective and was guided by its simplicity. However, any other
monotonically decreasing function, H(S), of G(S) will also obvi-
ously work. The results are presented in Figure 1A-C, for N = 200,
p =10, L =50, 100, 150, and 200, u = 0.3, 0.5, and 0.7, and ¢ = 50,
100, and 200. (More detailed results for various other values of
the parameters are presented in Supplemental Table 2.) For every
combination of values of N, L, and p, with an appropriate choice
of the control parameter ¢, our proposed algorithm correctly
identified the planted motif in 100% of simulation runs. (Al-
though, for brevity, we have presented results only for N = 200
and p = 10, resuits are similar for other values of N and p.) The
role of the control parameter ¢ is that it speeds up convergence
with larger values, but the convergence may not be to the correct
optimum. In our simulation experiments, while for values of

Summary of results of synthetic Data Set 1 with motif length, p = 10: (A-C) Effect of the control
parameter ¢ on time to convergence for three values of u, and (D) the effect of increase of the number of
polymorphic sites on the probability of correct motif identification (with ¢ = 200) for various values of wu.

¢ = 50, 100, and 150, the planted motif was correctly identified in
100% of simulation rnuns for any set of values of L and p, the
proportion of correct identification was substantially smaller for
¢ = 200 (Fig. 1D). For ¢ = 200, the mean number of sweeps to
convergence was the lowest compared with the other values of ¢
(Fig. 1A-C). Thus, there is a trade-off between speed of conver-
gence and convergence to the correct value. In any application of
our algorithm, we recommend that multiple values of ¢ be used,
starting with a small value. In other words, we recommend that
some experimentation on the convergence behavior of our algo-
rithm with respect to ¢ be done before accepting the results ob-
tained by using a specific value of ¢.

For every synthetic data set (for different values of N and L)
on which the algorithm was used to discover a motif of length p
(= the length of the planted motif), we generated 10,000 random
data sets of similar structure to test the statistical significance of
the discovered motif, as explained earlier. In every case, the es-
timated probability that a random data set has a motif of fre-
quency higher than that of the discovered motif was <10~7.
Thus, in every case, the discovered motif was statistically signifi-
cant at a level <1077,

We have also assessed the levels of significance as the motif
length was increased. The significance levels were all <0.00S as
the motif length was increased from 2 to 10, but were >0.5 when
the motif length was increased from 10 to 11. (Statistical signifi-
cance was assessed using both the criteria described in an earlier
section—assessing the significance of a “drop” in frequency with
increase in motif length and also of the addition of a site. Both
criteria yielded concordant inferences in every simulation
run.) This indicates that our algorithm was not only able to dis-
cover the planted motif of length 10, but the discovery was sta-
tistically significant. Further, increase of length to 11 was not
statistically significant. Detailed results are presented in Supple-
mental Table 2.

Some general results on the validity and good performance



Basu et al.

of the proposed method of assessing statistical significance of a

motif discovered by our algorithm are presented in Supplemental
text 3.

To examine the limits to which our algorithm can perform
well, we constructed new data sets. The descriptions of the data
sets and results are given in Supplemental texts 4 and 5.

Data Set 2

We created a synthetic data set analogous to that generated by
a case-control study. Two separate data matrices, each of size
N X L, corresponding to the cases and controls, were created.
We planted, in the case data matrix, a motif of length p in a
proportion u; of individuals. Under the common-disease,
common-variant model {Collins et al. 1998), each of the p sites
(SNIPs) carries a small relative risk (RR) to the disease, that
collectively results in a large haplotype (motif) relative risk.
Hence, in the data matrix corresponding to the controls,
we changed the proportion of the motif relative to the cases
in such a way that the relative risk conferred by the high-
risk variant at the i! site of the motif was >0. Details of the
methodology for creation of Data Set 2 are given in Supplemental

text 6.
In creating synthetic data sets, we have used various values

of u, and RR. The algorithm for finding variant motifs was
used. Statistical significance was assessed by testing the null hy-
pothesis of the odds-ratio being equal to unity, as described ear-

lier.
The values of the parameters used in generating the syn-

thetic data sets were as follows: N = 100; L = 100, 200, 300; p=4
and 6; ¥, =0.2, 0.4, and RR=1.2, 1.5, and 2.0. For each com-
bination of L and u,, 1000 synthetic data sets were generated
with each of the various combinations of the other parameters.
The algorithm was run on each data set for values of the control
parameter ¢ = 50, 75, and 100. The results are given in Table 2, for
¢ = 100. (For ¢ = 50 and 75, the results, not shown, were virtually
identical.) In general, our algorithm correctly identified the
planted motif in a Jarge proportion of simulation runs only when
the RR attributable to a single site was high. The probability
of correct identification decreased with decrease in RR. Further,
for fixed values of the parameters #, and RR, this probability
decreased with increase in the motif length, p, but was found to
be not strongly dependent on the value of L. Although, for sev-
eral combinations of simulation parameter values, the probabil-
ity of correct identification was small or zero, we note that the
number of sites and nucleotides that matched between the
planted and identified motifs was large, except for RR = 1.2, This
indicates that just by chance there may exist motifs with haplo-
type (motif) relative risks higher than that of the planted motif.
However, it is clear that unless the relative risk is small, the true
motif will share many sites and nucleotides with the identified
motif.

Whether or not the identified motif matched with the
planted motif in a synthetic data set, we carried out a test of
statistical significance of the identified motif by generating
10,000 random data sets of a similar structure as the control
data and estimating the odds-ratios, as explained earlier. The
p-values corresponding to the identified motif in the real data,
are given in Table 3. None of the identified motifs for the various
combinations of the parameter values (motif-length, p; u,; and
the number of polymorphic sites) was statistically significant
when RR was small (=1.2). However, when the RR was 1.5 or 2,

the identified motifs were all statistically significant at the 5%
level.

Data Set 3

This data set was constructed to mimic an evolutionary scenario.
When two populations that have diverged from an ancestral
population evolve separately, the daughter populations accumu-
late separate sets of mutations that increase in frequencies be-
cause of natural selection or other evolutionary forces. Thus, one
may find motifs in the daughter populations, with some motif
sites being shared between the two populations, while some be-
ing unshared (Schwaiger and Epplen 1995). The shared sites are
presumably those sites that belonged to a2 motif that was present
in the ancestral population, while the unshared sites are those
that have arisen and increased in frequency since the divergence
of the two populations from the ancestral population. We con-
structed a synthetic data set to mimic this evolutionary scenario
(details are provided in Supplemental text 7) and applied our
algorithm to assess whether it is possible to discover the relevant
motifs. In this data set, the parental population (D,) carried a
motif of length 10, while each of the two daughter populations
(D, and D;) carried motifs of length 15, with the 10 parental sites
and five additional sites in each motif.

We carried out 1000 independent simulation runs using the
procedure described above, with ¢ = 200. Detailed results {or five
runs are provided in Table 3, which show that our probabilistic
search algorithm always converged and identified the correct
motifs of correct lengths in the parental and in the daughter
populations in a small number of sweeps. The final motifs were
statistically significant at levels <0.005, as assessed by the proce-
dure in which 10,000 random data sets were generated. As a
matter of fact, correct convergence was achieved in every one of
the 1000 runs (detailed results not provided) and the conver-
gence using the proposed algorithm was fairly fast (Supplemental
Table 6).

Identification of variant motifs: Applications to real data

Gilbert’s syndrome: Case~control study

In an ongoing study on Gilbert’s syndrome (OMIM #143500), we
have generated DNA sequence data of the promoter of UGT1Al
gene among affected individuals and normal controls. The syn-
drome, characterized by elevated levels of unconjugated serum
bilirubin, is caused primarily due to the homozygous insertion of
a pair of nucleotides T and A at specific sites in this promoter
(Bosma et al. 1995). However, a small fraction of normal indi-
viduals also carry these insertions in heterozygous form. In ad-
dition to these insertions, in our study, we have found a subset of
affected individuals to carry an additional trinucleotide (CAT)
insertion at a specific site in the promoter. This insertion has not
been found in any of the unaffected control individuals. Haplo-
types and their frequencies were estimated from the sequence
data, separately for the cases and controls. The size (80 x 456) of
the data matrix was the same for both cases and controls. We
have used the algorithm for finding variant motifs (with ¢ = 100}
and were able to identify the 5-site motif (corresponding to the
TA dinucleotide and the CAT trinucleotide insertions) correctly.
The 5-site motif was estimated to be present in 11.25% of the
cases and 0% of controls, which agreed with the actuai count.
Since none of the controls possessed this motif, the relative risk
cannot be computed, but the finding is obviously significant
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(11.25% among cases, vs. 0% among controls). The exact p-value
computed from the binomial distribution (using the estimate of

the probability of the motif from the pooled data of cases and
controls) is 9.74 x 102,

LDL receptor haplotypes among Individuals of E uropean and African
descent: The PARC study

In an ongoing project entitled “Pharmacogenomics and Risk of
Cardiovascular Disease” (PARC) at the University of Washington,
Seattle, data on haplotypes of individuais belonging to African
descent {n = 48) and European descent (n = 46), pertaining to the
LDL receptor gene (located on human chromosome 19p13.3),
have been made available in the public domain (http://
droog.gs.washington.edu/parc/data/ldlr/welcome.htm). The
number of polymorphic sites (L) in this data set is 117. We
have used our algorithm to find whether there are any high-
frequency contrasting (variant) motifs present among individu-
als of European and African descent. We have used our algorithm
for finding variant motifs (with ¢ = 100) and discovered that the
motif TTTGGTAGC of length 9 occurs at the nucleotide sites 26,
34, 41, 43, 50, 54, 57, 58, and 61 with a frequency of 19 (39.5%)
among individuals of African descent, and a completely contrast-
ing motif CCGACCCAT occurs at these sites with a frequency of
34 (73.9%) among individuals of European descent. The degree
of association in the corresponding 2 X 2 table is statistically
significant at a level <0.001. Both of these motifs were statisti-
cally significant with estimated p-values < 1077, (To test the sig-
nificance of the discovered motif among Europeans, we gener-
ated 10,000 random data sets of a structure similar to that of
African-descent individuals, and vice-versa for testing the signifi-

cance of the discovered motif among individuals of African de-
scent.)

Mitochondrial DNA haplogroups M and U

Extensive sequence data on the hypervariable scgment 1 (HVS1)
of the mitochondrial DNA (mtDNA) have been generated (Handt
et al. 1998} and analyzed (Macaulay et al. 1999} in various global
populations (http://www.hvrbase.org). Based on the presence or
absence of speciftic restriction sites outside of the HVS1 in the
mtDNA, two of the major haplogroups (HGs) identified are M
and U (Wallace 1995). Within these haplogroups, specific motifs
have been found in the HVS1, some of which are in contrast to
those found in the CRS (Anderson et al. 1981). These motifs have
been used to define haplogroups within the HGs (Kivisild et al.
1999). We have used data of 528 individuals from various ethnic
populations of India (Basu et al. 2003). The total nurnber of poly-
moiphic sites in this data set was 153, and the numbers of indi-
viduals belonging to HGs M and U were, respectively, 338 and
115. We applied the motif-finding algorithm (with ¢ = 100) sepa-
ratcly on the HVS1 sequence data of HGs M and U. An objective
function,G(S,), that gives considerable weightage to the number
of mismatches was used, that is,

G(S,) = m'_ax{ff;,‘d’j.

For HG-M, G(§,} attained a maximum value with m, = 4, for all
values of p = 4. For m, = 4, the sites at which nucleotides
differed from the CRS were S = (16223, 162/0, 16319, 16352).
The frequency of this string, f;, was 21 (= 6.21% of the total
number of samples), and the nucleotides at the relevant posi-
tions were T, T, A, and C, respectively. The next most frequent

string was (16223[T], 16274[A], 16319[A), and 16320(C]) with a
frequency of 17 (5.03%). These two motifs belong to known sub-
haplogroups M* (defined by C—T transition at the site 16223)
and M2 (defined by C—T transition at the site 16223 and a G—T
transition at the site 16319), which are prevalent in Indian popu-
lations (Bamshad et al. 2001).

For HG-U also, the objective function, coincidentally, at-
tained 2 maximum at m, = 4, and the motif identified was
(16051[G], 16206({C], 16230{G], 16311[C]), with a frequency
of 18 (=15.65% of the total number of samples). The vast major-
ity of HG-U individuals in India belong to HG-U2i and U7.
The U2i is the Indian-specific subcluster of U, as opposed to
the Western-Eurasian subcluster U2e (Kivisild et al. 1999). In-
terestingly, the motif GCGC at nps 16051, 16206, 16230,
and 16311, respectively, has been found on the U2i background,
which is present in 18 of the 115 individuals. This motif is
found almost exclusively among tribal, middle- and lower-
Caste populations, but not among the upper-caste populations
or the Muslims (of Uttar Pradesh). This motif is also pres-
ent in many of the PakKistani samples screened by Kivisild et
al. (1999}. Our bootstrap procedure for testing statistical sig-
nificance of a motif indicated that in all of the above cases,
the identified motifs were statistically significant at level
<0.0S.

These examples demonstrate that the proposed algorithm
was able to identity previously discovered motifs, and therefore,
can be profitably used in evolutionary studies to identify new
motiks. The anthropological implications of our findings on HGs

M and U presented above have already been described in Basu et
al. (2003).

The 'Kungs of Botswang, Africa

We have also applied our algorithm (with ¢ =100} on mtDNA
HV5-1 data sets (Handt et al, 1998) of various African popula-
tions. The algorithm identified a motif of length 5 in the
'Kung population of Botswana, which contrasts with the
CRS. The motif is constituted by the sites 16129, 16223, 16230,
16294, and 16311. The nucleotides in the respective sites in
the CRS are G, C, A, C, and T respectively, while in the
'Kung population, the motif is ATGTC. The motif is present
in 17 (68.09) of 25 |IKung sequences. Using the procedure
suggested earlier, with 10,000 replications, no variant motif
of length 5 with a frequency higher than that of the iden-
tified motif was found, indicating that the statistical signifi-
cance of the identified motif is very high. The uniqueness of
the motif is not only characterized by its difference from
that present in the CRS, but also because this motif is not pres-
ent in any other African population (Table 4}, and has probably

risen to the present high frequency among the !Kungs by genetic
drift.

Discussion

The problem of identifying motifs in genetic data arises com-
monly in human genetical research, Such data include DNA se-
quence data, haplotype data, and genotype data. Motif identifi-
cation is necessary to draw inferences on evglutionary histories
of populations or lineages, to examine associations in case-
control studies, etc. More recently, with the initiation of the Hap-
Map project (Couzin 2002), the problem of finding motifs within

—

75



Basu et al.

—— e —— —— . -

Table 4. Motifs in mtDNA HVS? discovered in various African
populations using the proposed algorithm

e N e N e —T

Frequency of the
Sample most frequent

Population size sequence (%) Motif*
Egypt (Assiut) 23 8 (35.8) GC-C~A~C-T
Egypt (Cairo) 10 3 (30.0) G-C-A-C-T
Egypt (Manasoura) 46 13(28.3) G-C-A-C-T
Sudan (Kerma) 42 12 (28.6) C-C-A-C-T
Sudan 86 23 (26.7) G-F-A~-C-C
Ethiopia 10 3 (30.0) C-T-A-C-T

C-T-A-C-C
Somali 27 7 (25.9) G-T-A-T-T
Somali (Kenya)} 15 4 (26.7) GC-T-A-T-T7
Turkana (Kenya) 37 9 (24.3) GC-T-A-C-C
Kikuyu {Kenya) 25 8 (32.0) G-T—-A-C~-C
Tanzania 17 10 {(58.8) G-T-A-T-C
IKung (Botswana) 25 17 (68.0) A-T-G-T-C

— — e e — _

sNucleotides dencted in boldface are different from the nucleotides in the
CRS at the corresponding sites.

haplotype blocks, which probably occur because of variation in
recombination rates actoss the human genome, arise naturally.
In most of these applications, it is pertinent to identify motifs of
nucleotides at a set of polymorphic sites, which may not be con-
tiguous. For example, in research on complex diseases, often data
are generated on multiple unlinked genes, and if, indeed, geno-
types or haplotypes at a subset of these genes determine the
susceptibility to the disease, then motifs will exist at a set of
noncontiguous polymorphic sites. A search based on complete
enumeration for such motifs can be computationally extremely
time consuming and inefficient—it might not even be feasible in
practice for large data sets. To the best of our knowledge, no
computationally efficient algorithms exist for finding motifs at
noncontiguous polymorphic sites. We have, therefore, devised a
set of computationally fast and efficient algorithms based on
probabilistic methods. We have first devised a search algorithm
when the length of the motif is specified a priori, and have then
extended it to take into account the possibility of the motif
length not being known a priori. The specific functions (e.g., B,,
H(S)) used by us were chosen not only to satisfy the criteria re-
quired for convergence of this class of probabilistic search algo-
rithms (Winkler and Lutz 2003), but also because of their sim-
plicity and intuitive appeal. Our algorithms are not tied to these
specific choices of functions; users may try other functions sat-
isfying the general conditions required for convergence. For a
given motif length, we have proposed a statistical criterion of
assessing the significance of the motif discovery using a boot-
strap procedure. When the motif length is not specified, we
have devised a statistical criterion for determining the motif
length from the data simultaneously with the search for a motif.
We have proposed an alternative criterion of assessing statistical
significance when the motif length is extended by sequential
addition of sites and nucleotides. Finally, we have proposed
methods for assessment of statistical significance of a discovered
motif in a real data set, in relation to a random data set of similar
structure. Using various synthetic data sets to mimic real-life ap-
plications, we have demonstrated that the proposed methods
work well. We have also applied these methods to several real
data sets—pertaining to case-control data on complex pheno-
types and evolutionary data—and obtained many useful infer-

ences.

Through our simulations, we have discovered some of limi-
tations of our algorithm as well. In particular, when we assessed
(Supplemental text 4) whether our algorithm converges correctly
in a search space that contains exactly one global maximum,
and also a large number of local maxima with values not very
different from the global maximum, our algorithm failed to
converge to the global maximum. This limitation is, of course,
inhberent to all numerical search procedures that do not use
complete enumeration. Further, in simulated case-contro]
data, our algorithm failed to identify the correct motif, especially
when the relative risk attributable to a site included in the
motif was small (Table 2). For a small relative risk, the identified
motif was also statistically nonsignificant (Table 2). However, in
most simulation runs, the identified motif shared several sites
in common with the planted motif. The reason for noncon-
vergence to the correct motif was due to the fact that in realistic
case-control data sets, there may be multiple motifs with high
haplotype (motif) relative risks just by chance, especially
when individual sites (SNPs) do not confer a large relative risk
to the disease. This finding is consistent with published ob-
servations (e.g., Cardon and Bell 2001) that significant find-
ings of haplotype associations from case-control studies are
often not replicable. Our simulation results also underscore the
need for replication of findings of case-control association stud-
ies.

We would finally like to emphasize that the convergence
properties of the proposed algorithms are critically dependent on
the control parameter, ¢. While from the user’s point of view it is
desirable to be able to prescribe some universal and objective
guidelines for the choice of ¢, this is not possible. In specific
applications like those presented here, one can identify a range of
values of ¢ that makes the algorithm computationally feasible,
with a high probability of convergence to the true optimum. In
practice, this range of ¢ needs to be identified by trial and error.
We first note that the speed of convergence is directly propor-
tional to the value of ¢. Further, the probability of convergence 1o
the true optimum for a specific choice of ¢ is more dependent on
the vaiue of L than on N. Using these two facts, the user should
make a judicious choice of ¢, but try with multiple values. We
strongly recommend that some experimentation on the conver-
gence behavior of the algorithm with respect to ¢ in multiparam-
eter settings be done to make a judicious choice of ¢. We have
found that with N in the range of from 200 to 500 and L in the
range of from 200 to SO0, any value of ¢ in the range of from 50
to 100 works very well.

Although we have formulated cur algorithms keeping hap-
lotype or haploid DNA sequence data in mind, there is no inher-
ent limitation to use these methods on genotype data. Genotype
data need only be recoded in order to apply these algorithms. For
example, at a biallelic locus, with alleles A and a, the genotypes
AA, Aa, and aa may be recoded as 1, 2, and 3. We finally note that
there are other classes of probabilistic search algorithms—such as
genetic algorithm (Goldberg 1989), Gibbsean annealing (Winkier
and Lutz 2003), and evolutionary Monte Carlo (Liang and Wong
2001)—that may also be applicable to the problem considered in
this study. We have not explored these classes of algorithms in
any detail, and therefore, make no claim that the algorithms pro-
posed by us will outperform other probabilistic search algorithms.

We have developed a computer program, MOTIFIND,
implementing these algorithms. This program is written in C,
and can be obtained by writing to the authors. This program <an
handle both haploid and diploid genotype data.
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