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Abstract

Discrete time-series models are commonly used to represent economic and physical
data. In decision making and system control, the first-passage time and level-crossing
probabilities of these processes against certain threshold levels are important quantities.
In this paper, we apply an integral-equation approach together with the state-space
representations of time-series models to evaluate level-crossing probabilities for the
AR(p) and ARMAC(1, 1) models and the mean first passage time for AR(p) processes.
We also extend Novikov’s martingale approach to ARMA(p, g) processes. Numerical
schemes are used to solve the integral equations for specific examples.

Keywords: First passage time; level crossing probability; integral equation; martingale;
AR process; ARMA process

2000 Mathematics Subject Classification: Primary 62M10; 91B84
Secondary 45B0S; 60G17; 60J05; 65C50

1. Introduction

leté,teZ ={....-2,—-1,0,1,2,...} be a sequence of independent and identically
distributed (i.i.d.) random variables on a probability space {2, ¥, #}. A general linear process
{X;} can be defined as X; = Y > . a;&_;, where {a;} is a sequence of real numbers. The
autoregressive AR(p), moving average MA(qg), autoregressive moving average ARMA(p, g)
and autoregressive integrated moving average ARIMA(p, d, ¢) models are all special cases of
the linear process. We define a stationary ARMA(p, q) process to be a process satisfying the
following equation:

=1 Y14+ -+ PpYip+ 81+ +648-q + &, (1.1)

where t € Z, ¢1,....¢p. 61, ..., 6, are constants, and where ¢y, ... ¢paresuchthata]1the

roots of the characteristic polynomial of the AR(p) part (that is, ®(z) = 1 — ¢1z — ¢22% —
— ¢,2?) are outside the unit disk. When 6y, ..., 6, are all zero, we say that the above

process is a stationary AR(p) process. In this case,
=1 Y1+ + ¢th—p + &-. (1.2)

In this paper we study the level-crossing probabilities for ARMA(p, g) processes using
two techniques: (i) the martingale approach used by Novikov [7] and (1) an integral-equation
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approach. These processes are commonly used in econometrics to model various data. In
making decisions, we may want to know how likely it is that the process will attain a certain
high level before it drops back to or even below the present level, or we may want to know
the expected time for the process to reach a certain level. The results of this paper answer the
above questions for some of the above-mentioned linear processes by evaluating the following
quantities: (i) the probability of crossing a level b before a level a and (ii) the expectation of
the first-passage times 7 (b) and 7 (a, &) defined as

Td)=inf{t : Y, > b}, b>xp,x0,....X_py1,
T(ab)=inf{t:Y; >borY; <a}, b>xp,x_1,....X_py1 > a.

The paper is organized as follows. We present background material in Section 2. Section 3
deals with the representation of mean first-passage times for ARMA(p, g) processes using
the martingale approach of Novikov [7]. We extend his work from AR(1) to ARMA(p. q)
processes. In Section 4, level-crossing probabilities and mean first-passage times for AR(p)
processes are discussed with an example. Section 5 deals with ARMA(1, 1) processes with an
example while Section 6 gives conclusions and discussions. Some of the detailed calcuiations
are given in the appendices.

2. Background

In this section we discuss some background material. Section 2.1 deals with the state-space
representations of AR(p) and ARMA(p, q) processes used in Sections 3—5. In Section 2.2,
some of the theory of Fredholm integral equations of the second kind is described. These results
on Fredholm-integral equations are used throughout Sections 3-5. Section 2.3 describes the
collocation method, which is used in Section 5.

2.1. State-space representation and stationarity

For the stationary time series satisfying (1.2), we have the following state-space representa-
tion:
Y, = GX;, telZ,

- - 2.1)
Xiv1 =FX,+ HE, t €Z,
where
A ¢ TIUNS AR A LN

H=(,...,0,1)7,

G=(,...,0, 1),
0 1 0 0
0 0 1

F= ; o
0 0 1
d’p ¢’p—1 - 2 ¢1

The state equation demonstrates the underlying Markov property of the AR(p) mod?l that
is crucial in our discussion. ARMA(p, q) processes, defined in (1.1), can also be given a
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state-space representation:

Y, =GZ, teZ,
. L 2.2)
Ziy1 = FyZ, + 5, t € Z,

where
> T 52:
Zt = (YI—P+11 e Yt—ls Yt!é"‘Qﬁ'lu cray gt) = (i;t) ’
G=0@,...,0,1,0,...,0) (a(p+ g)-dimensional vector with 1 at the pth place),

-

%=0,...,0,1,0,...,0,1)T&41 (a(p + g)-dimensional vector with &1 at the pth

and (p + ¢q)th places),
_(Fu Fiz
FD-(F21 Fzz)
with Fi; = F, Fz1 = Ogxp,
0 0
0o 0 -.- 0 )
. . ; . 0 6 1
F12= : : T . ’ F22= .
0 o0 ... 0 M 0
0 6;-1 - B g g g (1)

Thus, the Markov property also holds for the state equation of the ARMAC( p, ) model.

2.2. Introduction to integral equations

In this section, we will only focus on results that will be useful in later discussions and
the theorems stated here will not be proved. Background material in this and the following
subsection is mainly taken from {1]. The equations that we are interested in are of Fredholm
type of the second kind. The general form is

Ax(t) — f K1, s)x(s)ds = y(2), teDL#0Q,
D

where D is a closed and bounded set in R™ for some m > 1. The function K{-, -) is called
the kernel and is assumed to be absolutely integrable. The function x(-) is the unknown to be
solved for. Since the probabilities and expectations we consider should be continuous functions
of the initial states, we assume that x(:) € C(D). Next, define the integral operator X by

Kx(t) = f K(t, s)x(s)ds, t € D,x € C(D). 2.3)
D

Definition 2.1. Let B and € be normed vector spaces and let X : B — C be linear. Then X
is compact if the set

{Xx }lixl =1}

has compact closure in C.
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Theorem 2.1. The integral operator J defined in (2.3) is bounded and compact in C(D)
equipped with the supremum norm || - ||« under the following conditions:

(i) K(s,t) is Riemann integrable in s for allt € D;
(i)
lim max max f |K(t,5) — K(t,5)|ds =0;
D

h—0t,reD jt—r|<h

(i)
maxf |K(t, s)|ds < o0.
teD Jp

Notice that the above conditions are fulfilled if K (t, 5) is continuous in s and t.
For compact operators, there is a central theorem [1].

Theorem 2.2. (Fredholm alternative.) Let 8 be a Banach space and let X : 8 — B be
compact. Then the equation (A — X)x =y, A # 0, has a unique solution x € B if and only if
the homogeneous equation (A — K)z = 0 has only the trivial solution z = 0. In such a case,
the operator ). — X : 8 — B has a bounded inverse (A — X)™1.

Next, we state a version of the useful contraction mapping theorem [1).

Theorem 2.3. Let 8 be a Banach space and let A be a bounded operator from B into B, with
|lAl < 1. Then I — A : B — B is one-to-one and onto and (I — A)~! is a bounded linear
operator, where I : B — B is the identity operator.

2.3. Collocation method

The collocation method is a convenient method commonly used to solve integral equations. A
general introduction can be found in [1] and here we give a description for our case. To evaluate
equations like (5.3) in Section 5 numerically in the domain 8 = C[a, 8], we introduce the
Lagrange basis functions for piecewise linear interpolation:

h
0 otherwise.

t—
L) = |1-—|——l|, o1 <t <t4,i=01,...,n,
Herefp = a,ty = B,ti =tg+ihfori =1,...,n— 1, h = (B — a)/n and we define the
following projection operator on Cle, 8]: for f € Cla, 8],

Pruf(x) = fulx) = Z F i)l (x), xi=a+ih i=0,1,...,n xefa,pl. 24
i=0

It was proved in [1, p. 59] that &, is a bounded linear operator and #, f — fasn — 00
for all f € Cla, 1. The projection operator P, maps any f € B to a function f, in By,
the (n + 1)-dimensional subspace of B that contains functions of the form > ;_g f (x: )i {(x).
Thus, if we represent equations like (5.3) in the form of an operator equation (with P in (5.3)
replaced by f to avoid confusion and Pj as defined in Section 4.2), we have

(1 -K1)f = P, feas. (2.5)
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We intend to approximate the solution of (2.5) by the solution f, of the following equation:
(1 - ?mxl)fn =P, fn € 5,,. (26)

We state the following theorems for general Banach spaces from [1, pp. 55, 57} which ensure
the convergence under certain conditions.

Theorem 2.4. Let B be a Banach space and assume that X : B — B is bounded and that
1—- XK : B — B is one-to-one and onto. Furthermore, assume that

K —PyKl| >0 asn— oo,
where P, is as defined in (2.4). Then the solution f, of (2.6) converges uniformly to the solution
fof (2.5).

Theorem 2.5. Let B be some Banach space and let P, be a family of bounded projections on
B such that

Pof > f asn > xofor f € B.
If X : 8 — B is compact, then
K —PuK]] >0 asn— oo.

3. ARMAC(p, q) processes: a martingale approach

The approach we use here comes from Novikov's work [7] on AR(1) processes which we
modify for ARMAC( p, g) processes. It is clearer if we start with AR(p) processes. We have to
impose a mild condition on the stationary AR(p) processes under consideration. For an AR(p)
process satisfying the state-space representation (2.1), we assume that ¢, > 0. Under this
constraint, the coefficient matrix F is nonsingular. Since the characteristic polynomial of F
is Pp(x) = x? ~1xP L —gaxP 2 ... — ¢, ®p(0) = —¢, < 0 and Pr(x) — 00 as
x — o¢. This means that the characteristic polynomial of F has a positive root, i.e. F has a
positive eigenvalue, say A. Assume that the corresponding row eigenvector is ¢ and notice that
0 < A < 1 by stationarity. We can then rewrite (2.1) as

EXr41 = CF X, + CHE1.
By choosing ¢ such that H = 1 or such that the last element of & is 1, we have
Xerr = 22X + £ (€A )
Thus, W, := X ; satisfies an AR(1) equation,
Wier =AW, + &1,

withO <A < 1.

We now develop a similar AR(1) equation for ARMA( p, q) processes. Besides stationarity
and invertibility of Y,, we further assume that the characteristic polynomial for the autoregressive
part and the characteristic equation for the moving average part have no common roots. This is
a quite natural assumption in order to have a unique cansal representation of an ARMA process
Y;. With the same notation as in Section 2.1, we observe that

det(Alpsq — Fo) = det(hl, — F)AY.
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Therefore, the eigenvalues of Fy are the eigenvalues of F and g zeros. Hence, for ¢, > 0, we
geta posxtwe eigenvalue; this eigenvalue is A, as above. We take the same eigenvector ¢ and
observe that £Fp; + ng; A¢ for any g-dimensional vector d as Fy=0and Fj; = F. We
find d by solving the following (equivalent) equations:

GFp+dFn=2d, cply....00)+dFp=2d, dOI—Fn)=c,0,.....8).

The solution is unique since, whenever 0 < A < 1, Al — F»; is nonsingular (in fact, det(Af —
Fp) = A9), Also, it can be noted from the above equations that

cpby—i+di =Adiyq fori=1,...,9 -1

Hence, cp6; + dy—1 = Ady. Notice that, if d; = —c,, then, from (3.1),

(3.2)

=A%dy; — cp(My—1 + A2 + -+ +2971y)

= —cp(A? + Ayt + A%, 5 + - + 277 1gy).
This implies that

cpBy + M1 +A%0, 2+ -+ A7 +49) =0
and, since ¢, # 0, this means that A is a root of the characteristic polynomial of the moving
average part as well. But, as ¢Fj) = Ac, A is an eigenvalue of Fy; and A is also a root of the
characteristic polynomial of the autoregressive part. This is not possible under the assumption
that the autoregressive and moving average parts have no common root. Hence, d; # —cp.
Now take i
& =
! cp+d,

with d as above and where & ¢10 = (1/(¢cp + dg))¢ and d1o = (1/(cp + dq))d Then ¢ is the
eigenvector corresponding to the eigenvalue A. Hence, if we define V; = ¢; Z,, then
C + q

£ = AV + &4 (3.3)
Cp dq

@, d) = G0, d1o),

Vet = &1 Z1p1 = E1FoZs + E18a = A& Z, +

Next we assume that &, has finite expectation and that
Eexp(ué1) = exp{¢(u)} < oo forallu > 0.

The function ¥ (#) := InE(u&;) is convex and is bounded by a linear function for small u.
Define

[>9]
g =Y ¥k, w0 (3.4
k=0

Then, ¢, (+) is bounded on any finite interval and
or(u) = @ (Au) + ¥ (u).
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In the case of a normal distribution, say & ~ N(u, 02),

11:(u)=uu+-21-crzu2,
n 1 o2 2
T Tar—a*

or(u) = ju] < oo.

Now suppose that 20_.= (Y=pt1s ey yo,olxq)T is the initial vector with yg, y_y, ...,
y—p+1 < b. Let F; = 6(X;5); <. Following Novikov’s construction [7], we define a martingale,
with respect to {;},

o - - = - 2 1
G; = fo ] 1[exp(uclzt) — exp(uci Zo)) exp(—¢n (w)) du — tlog(x)

- f " 4 [exp(eVs) — exp(u Vo] exp(—g () dut — tlog(%),
0

whenever o
f ul exp(uE'loin — () du < oo. (3.5)
1

A proof of the martingale property of G(z) is given in Appendix B.
Theorem 3.1. Assume that

oo
f ulexp(uk — ¢r(w)) du < 00 (3.6)
1

Jor any positive constant K. Then ET (a, b) < o0 and

1
log(1/3)

This theorem is proved in Appendix B.

The above result is particularly useful when the disturbance follows a normal distribution.
In that case, & satisfies the basic assumptions and the condition (3.6). Thus, for stationary and
invertible Gaussian ARMA(p, g} processes with no roots common to the autoregressive and
moving average parts, E 7 (a, b) is finite for any a, b such thatb > y(—p+1),...,y(0) > a.

ET(a,b) =

00
E fo U fexp(ui 2 (a.5y) — expluls Zo)] expl—gpr @) du. (3.7)

Theorem 3.2. Assume that the autoregressive coefficients ¢; are nonnegativefor j =1, ...,
p—1and ¢, > 0 and that the moving average coefficients 0; are nonnegative fori = 1, ..., q.
Furthermore, assume that

[ > u! exp(uk — ¢gr(u))du < 0 (3.8
1

Jor any positive constant K. Then E T (b) < oo and

1 had 1 - = - 3
= - - Z, —_ . 9
T®) fog(i /A)E fo u" [exp(uciZy ¢)) — exp(uci Zo)lexp(—pr () du.  (3.9)
This result is proved in Appendix B.

Stationary AR(p) processes are important special cases. We can achieve similar results with
a slightly milder assumption.



650 G. K. BASAK AND K.-W. R. HO

Theorem 3.3. Assume that

oo -
[ w1 exp(ulldBall - ¢2)) du < o0,
1

where by = (b V (—a), ..., bV (=a))7 and |IXF|| = txiyil + -« + xpypl for £, 5 € R2.
ThenET (a,b) < oo and

1 o0 1 -3 P 4
,b) = ————E “Hexp(ucXg(a,p)) — explucXop)] exp(—; (u)) du.
BT (05) = s B [ w expiy ) - expl P(~r (W)
Thus, for stationary Gaussian AR(p) processes with positive ¢p, E T (a, b) is finite for any
a,bwithd > y(—-p+1),...,¥0) > a.
Theorem 3.4. Assume that the autoregressive coefficients ¢ are nonnegativefor j =1, ...,
p — 1 and ¢, > 0. Furthermore, assume that
m -
f u~! exp(udob — @2 (u)) du < oo, (3.10)
1

whereb = (b,...,b)T. Then ET (b) < 0o and
1

ET0) = am

o
B fo u [exp(udoR o) — exp(udoRo)] exp(—gn () du.

4. AR(p) processes: an integral-equation approach

The main objective of this section is to derive integral equations for AR(p) processes that
lead to the evaluation of (i) the probability of crossing a given level b before another given
level ¢ and (ii) the mean first-passage time to attain a level b. In our formulation, we depend
heavily on the Markov nature of the state-space representation of the time series. The form of
the state vectors of AR(p) processes means that the integral equation is of Fredholm type of
the second kind and can be handled through developed numerical schemes.

4.1. Time-homogeneous Markov processes

We define a discrete-time real-valued Markov process {X,; } on a probability space {2, F, P}
with stationary continuous transition density f(x, y) continuous in both x and y. The term
f{(x,y) denotes the transition density of reaching y at the next step given that the present state
is x. Suppose that X = xg and that we are given levels b > a, where xg € [a, b]. Define

Py(xp) := PP (x0)
=Pla<X;<b,....a<X,_1<b,X,>b| Xy=xp).

By looking at the first step and using the Markov property, we have, forn > 2,
b
Pati) = [ Paci)f 0, 9 d. @1
a
Summing the terms P, (xg) in (4.1) for n > 1 gives

b
P(xg) = f P(¥) f(x0, y)dy + Pi(xp), 4.2)

where P(x) ;= j';l P, (x). The equation (4.2) is a Fredholm integral equation of the second
kind. The first concern is the existence and uniqueness of a solution to (4.2).
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Theorem 4.1. The equation (4.2) exhibits a unique solution in Cla, b] given that
b
f fix,y)dy <1 forallx € [a, b]. 4.3)
a

Proof. By virtue of the contracncn mapping theorem (Theorem 2.3), it suffices to show that
the integral operator A(P)(x) := f P(¥) f(x, y)dy has operator norm less than 1. Here we
use the supremum norm in C[a, b]. The condition is fulfilled when (4.3) holds.

Thus, solving (4.2) leads to the probability of crossing the level b before the level . To
formulate the result for mean first-passage time to a given level, we first have the following
well-known result which we now prove in a new way.

Theorem 4.2. Under the condition (4.3), P(7,5(x0) < o0} = 1. Here T, »(xo) denotes the
exit time of the interval [a, b] provided that the Markov process defined in this section starts at

xp € [a, b).

Proof We can formulate an integral equation similar to (4.2) by replacing P by P’ and P;
by P{, where P'(xp) = Y Pixo) and Py(xp) =Pl@a <y <b,...,a < yp—1 < band
¥n > bory, <a| Xg= xp). Thus,

b
Po) = [ P/0)f (0, 3)dy + P{Go) @)
a
We see that P'(xg) = P(T,.5(xg) < 00). It is clear that P/(-) = 1 satisfies (4.4). So, by the

uniqueness of a continuous solution, the result follows.

Next define M(xq. z) := Y o2, P, (x0)z" where 0 < z < 1. Analogous to the formulation
of (4.2), we have

b
Mxo.2) =z f MGy, 2) f (xo, y) dy + 2Pl (xo). @.5)

Differentiating (4.5) with respect to £ and evaluating at z = 1 give

b ]
BT 5(x0)) = f BT, 5(8)) f (x0, w) du + f M, 1) Gro, uydu + Pl(xo).  (4.6)

a

Since M(u, 1) = P(T, (1) < o0) = 1 for all u € {a, b), by Theorem 4.2, the last two terms
on the right-hand side of (4.6) sum to 1. Thus,

b
E(T; 5(x0)) = f B(Ta.5)) f (50, w) die + 1. @7
a

Although, in general, we can only solve the integral equations numerically, there are some
special cases where the integral equations can be solved analytically. One of these cases was
addressed by Greenberg [6] who used a Markov-chain approximation to evaluate a Kind of
mean level passage time. In his paper, the innovations follow a hyperexponential distribution
which is useful as an approximation to other positive distributions (see [2]).
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4.2. AR(p) processes: level-crossing probability
On a probability space {Q, ¥, P}, define an AR(p) process as in (1.2):

Yi=¢1Ye1+--- +¢th—p + &,

where §; are i.i.d. random variables.

Hereafter, we will assume that &, has N(0, o2) distribution, but the results also hold for most
disturbances with a continuous density function satisfying certain conditions. Now, (1.2) has a
state-space representation

Y t = Gi t te Z,

2;+1=F52;+H5h teZ,

where X; = (Yi—p+1,..., ¥-1¥:)T and F, G, H are as defined in Section 2.1.

Notice that the state vector X; consists of exactly the past p states of the original process.
This is crucial for our integral equation to remain of Fredholm type. Analogous to the previous
section, we define, forn > 1,

Po(io) := P2 ()
=P@<y <b,...,a < yo1 < b,y > b | Xo =),

where %0 = (Y_p+1,-..,¥-1,¥0)' anda < y; < bfori =0,—1,...,—p + 1. So,
b Ry
- - (u — o) )
Ppy1(xg) = f Py(x1)ex (——-———-—-—-— du, 4.8

where %1 = (Y—p+2, ..., Yo, ¥)T and é = (¢, ..., d1)".
Define P(Xp,z) = ) g, Pa(%0)z" for z € (0,1]. Then, multiplying (4.8) by z* and
summing over all # > 1, we get

b FeXY)
P(¥%y,2) = \/;;a f P, 2) exp(—%@z—) du + zP(Xp). 4.9)

The integral equation of the probability generating function will be useful in determining the
mean first-passage time. For calculating the level-crossing probability, set z = 1 and rename
P(Xp, 1) as P(Xp). Then iterate (4.9) p times to get an integral equation of order p:

. 1 b b
P(xo)=—--—-—-f f P(uy, uz, ..., up)
a a

(ro2)p/2
p 2 — e )2 p
1 (epXi — Px;- .
y exp(__Z:._l pz;z $Xi-1) )dup... duy + Y P;i(o), (4.10)
j=1
where 'ito = (y—P‘i‘l’ ey yO)T’ '-x.l = (y—'P+2, +e s Y0 uI)T, i.2 = ()’—p+3‘ - oay Y. U1, u2)T’

etc.,ande, = (0,...,0,1)7.
The equation (4.10) is a standard Fredholm integral equation of the second kind. The
existence and uniqueness of a continuous solution is guaranteed by the contraction mapping

theorem because the kernel is just a p-dimensional Gaussian kernel and the integral is taken
over a compact set.



Linear processes 653

4.3. AR(p) processes: mean first-passage time

In this subsection, we want to calculate E(73(Xg)), that is, the mean first-passage time over
a given level b of an AR(p) process starting at an initial state vector ¥p. We proceed by adding
a lower boundary q first. Let 7; 5(¥g) be the first-passage time of an AR(p) process over the
upper level b or the lower level a given the initial state vector Xp in [a, b]P, let

oo
P'@#.2)=)  Pl®7
i=1

and
PXY=Pla<y <bh....a<y-1<hyi>bory <a|Xo=X).

In line with the argument of Theorem 4.2, differentiating (4.9) with respect to z and evaluating
atz = 1 give

- l b N - e 2
E(Ta,6(x0)) = f E(T,.5(%1)) exp(_(“ :xo) ) du
a

V2o 02
* pris (u — $%o)? .
* Jare f FéLD eXp(_T) du+Pj(F).  (@11)

From a result analogous to Theorem 4.2, we find that the last two terms on the right-hand side
of (4.11) sum to 1. Thus,

- l b - - b3 2
B(Tp(G0) = = f Em.b(xmexp(——————‘" 2:’:“ )du+1. 4.12)
v a

Through iterating (4.11) p times as in the formulation of (4.10), we get a Fredholm integral
equation of order p and we can calculate E(T7 5(Xo)) for any given a, b and initial state vector
Xg in [a, b]P.

Since E(7, p{%0)) converges monotonically to E(73(Xg)) as a — —oo, we can get an
approximation of E(73(Xg)) by evaluating E(77 5(%0)) as a = —oc instead.

Notice that, under the sufficient condition (3.10) of Section 3, E(7(3g)) < co. Clearly, the
Gaussian kernel satisfies this condition.

4.4. Numerical example: an AR(2) process

As shown in previous subsections, the determination of P(¥Xp) and E(7;5(¥o)) through
solving (4.11) and (4.12) in general can only be treated numerically. In this subsection, we give

a numerical scheme for an AR(2) Gaussian process and some numerical examples. Consider
the integral equation

b pb
f(x-.\')=[ f K, v.&,mfE.mdEdn+¥(x,y), x,y) €la,blx[a,b), 4.13)

where the function X : [a, b}* — R is continuous and integrable with respect to all variables
and the function ¥ : [a,b]> — R is continuous in both variables and is not identically 0.
We adopt the Nystrém method and a particular quadrature rule as discussed in Appendix C to
handle (4.13) (see [1] for details).

We study an example of an AR(2) process:

= 0.2_)’:—1 + 0-3)’:—2 -+ é-t' Et ~ N(O, 1).
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TaBLE 1: Probability of crossing level b before —1 for y; in (4.14),

b=1 b=2 b=3 b=4

0.5908 0.2426 0.0343 0.0016
0.5911 0.2426 0.0343 0.0016
05913 02426 0.0343 0.0016
0.5914 0.2426 0.0343 0.0016
Simulation 0.5912 0.2433 0.0352 0.0015

AW b W]

TABLE 2: Mean ﬁrst-passa_ge time of level a or level b = 1 for y, in (4.15).

a=-1 a=-2 a=-3 a=-4 a=-5 a=—-6 a=-7 a=-8

n

4 3.0404 52297 6.5769 6.8044 68281 6.8567 69731 7.3217
5 3.0414 52304 65750 67974 6.8141 6.8228 6.8358  6.8690
6 30420 52309 65743 67949 68086 6.8132 68197 6.8284
7 30424 52312 65741 6.7938 6.8063 6.8089 68125 6.8176
8 30426 52315 65740 6.7933 6.8052 6.8068 6.8094  6.8120
9 30427 52316 65740 6.7931 6.8046 6.8059 6.8070  6.8089
10
i1
12

3.0427 52317 65740 6.7929 6.8043 68051 6.8059  6.8071
3.0427 52317 65740 67928 6.8041 6.8048 6.8053  6.8061
3.0427 52317 65740 67928 6.8040 6.8044 6.8052  6.8054

‘We further assume that yo = 0.5 and y_; = 0.5. We study the following cases:

(a) Fix a = —1. We calculate the probabilities of crossing a level b before a level a by
solving the following equation:

- 1 b b ?_ x> "-"_ 2
PGo) = —— Py, upyexp — izt — 9T ¢ 4
2na? J, Ja 202

2
+ Y Pj(o). (4.14)

j=1
We can use the numerical methods discussed here to obtain the results in Table 1.

(b) Next we derive the mean first-passage time for y, for two specific levels. We solve the
following equation, letting a — —oc:

202

1 b (uy - afo)z)
+1+ f ex (————-—-—-—-——-——- duy. (4.15)
\/ZJTO' a P 202 !

The results for b = 1 are given in Table 2.

b pb 2 222 82
E%.b(i.()) = i—ﬂ—lj;if f ETa,b(ul, uy) exp(_ E:=l(€2xl ¢x;—-1) )du2 duy
a Ja

The mean first-passage time in this case is about 6.805 while the simulation result is
around 6.845.
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5. ARMA(1, 1) models

In previous sections, we mainly discussed the derivations for AR(p) processes where we
naturally used their Markov properties in the state-space representations and formed standard
Fredholm integral equations that can be solved. In this section, we will follow the same idea and
use the Markov nature of the state-space representations of the ARMA model to form similar
integral equations. However, the integral equations formed will not be of standard format
and will need further considerations in the numerical procedures. Moreover, we restrict the
discussions to the Gaussian ARMA(1, 1) case to simplify the calculations, but the main idea
can be applied to processes of other types or with higher dimensions.

We give the formulations of the integral equations in Subsection 5.1 and discuss the solv-
ability in Subsection 5.2. We then use the collocation method introduced in Subsection 2.3 to
obtain numerical results for specific examples.

5.1. Formulation of integral equations for level-crossing probabilities

The process {y;, ¢ € Z} is said to be an ARMA(1, 1) process if {y;} is stationary and if, for
all ¢,
Y = ¢y—1+0z-1 + 21,

where {z;) are i.i.d. random variables. Here we assume that {z,} ~ N(0, o2). This process has
the following state-space representation:

ye =Xy + 21, teZ, 5.1)
Xi+1 = 0X, + ¥z, telZ. (5.2)

Here ¥ = ¢ + 0 and note that ¢ = ( implies that y, = z;, which is an i.i.d. case that we shall
not consider; we assume that 1 > 0. We use the notation from Section 4.2 where

Pp(xy) := P,‘,‘"’(xn) =Pa@as<y=<b...,aLy-15b,ya>b| X1 =1x1),

P(x1) =) Pa(x1).

n=1

Here the level-crossing probability is a function of the initial state variable x; in (5.1) and (5.2)
because that variable captures the necessary initial information for the evolution of y1, 2, ....
By considering the first step, using (5.1), the Markov property of (5.2) and a change of variables,
we get, for x; € R,

Pa(x1)=Pla <y  <b,...,.a <y-1 b,y > b | X1 =x1)
1 Yb+(d—y)x (x3 — ¢x1)2
= V2mov Jyare—win = (_ 202y? )
xPl@a<yz<b,....a<yp-1<b,yn>b| Xo=x)dx>

(x3 — ¢x1)2) dx.

1 Vb (d—y)x)
f Pp_1(x2) exp(-—

2oy Jyarig-vin 20%y?
Summing for all n > 1, we have
lllb+(¢"‘1l")xl (x2 -— ¢xl)2
P(xy) = [ P(x2) exp(- ———"—) dxz + Pi(x1).
(1) V2o Jyatr@-vin 202y
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TABLE 3: Probabilities of crossing a level b before 0.
n b=1 b=2 b=3 b=4

0.6081 03468 0.3099 0.2310
0.6111 03722 0.2251 0.1721
0.6130 03361 0.1209 0.0407
16 0.6136 03180 0.1048 0.0229

32 0.6135 03156 0.0997 0.0187

64 0.6134 03150 0.0980 0.0177

128 0.6134 0.3151 0.0977 0.0174
256 0.6134 03151 0.0976 0.0174
Simulation 0.6120 0.3148 0.1002 0.0177

o0 SN

When ¥ < 0, we just interchange the limits of the integral and everything else remains
unchanged. Next, letting y = x2 — (¢ — ¥)x1, we get the following integral equation with
constant limits that we are going to solve in later subsections:

P(x1) =

1 vb s )2
N j’; P(y+ (o~ V’)xl)exp(—g—ZJTx;))dy 4+ Pi(x1).  (5.3)

5.2. Existence and uniqueness of a solution

Analogous to the AR(p) case, we prove the uniqueness of the solution for (5.3) in C(D)
where D is compact. Define the operator X, by

K1(f)x) =

wb . 2
1 (y — ¥x) ) dy. 5.4)

Tonov Jve fy+(@—9¥)x) °"P(_—_202¢2

Theorem 5.1. The operator X defined in (5.4) is compact in Cla, 8] for some B > a.
The proof is given in Appendix B.
5.3. Numerical examples

In this subsection, we use the collocation method described in Subsection 2.3 to deal with
two ARMAC(1, 1) processes which correspond to the cases where 6 is positive and where 6 is
negative. The range [a, 8] should be chosen according to the criteria established in Appendix D.
In these cases, all conditions in the theorems of Subsection 2.3 are satisfied and so we can

use (2.6) to approximate (2.5). In practice, we solve the following system of equations for
i=0,1,....,nandx; =a +ih:

1 e (v~ ¥x)®
Pp(xi) = NG fa jzz:OP,,(xj)lj(y + (¢ — W)x.-)exp(———m—z—)dy + Pi(x).

After solving the values at the collocation nodes, we can approximate the whole solution through
(2.4).

Simulation resuits are also provided for comparison.

Case 1. Here we choose ¢ = 0.5, 8 = 0.4 and o = 1 as the process parameters and the lower
barrier a = 0 and the initial state x; = 1. The results are given in Table 3.
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TABLE 4: Probabilities of crossing a level b before 0.
n b=1 b=2 b=3 b=4
2 0.5436 0.2239 0.0465 0.0043
4 0.4980 0.1952 0.0347 0.0027
8 0.5333 0.1757 0.0353 0.0020
16 0.5807 0.2417 0.0331 0.0018
32 0.6430 0.2407 0.0326 0.0017
64 0.6431 0.2406 0.0324 0.0017
128 0.6431 0.2406 0.0324 0.0017
256 0.6431 02406 0.0325 0.0017
Simulation 0.6445 0.2430 0.0325 0.0016
Case 2. Here we choose ¢ = 0.5, = —0.4 and o = 1 as the process parameters and the

lower barrier a = 0 and the initial state x; = 1. The results are given in Table 4.

The result is quite satisfactory and a faster rate can be obtained if higher-order polynomials
are used in interpolations.

6. Conclusion and discussion

In this paper, we have proposed an integral-equation approach to evaluating the probability
of AR(p) and ARMA(1, 1) processes crossing a level before another level and the mean
first-passage time to cross a level for AR(p) processes. We have also extended a martingale
approach, developed by Novikov [7] for autoregressive processes, to ARMA(p, q) processes
for a representation of the mean first-passage time. While time-series processes are commonly
used in modelling data such as exchange rate, GDP and unemployment rate, this type of level-
crossing probability is useful in making decisions where we have to weight the gain against the
loss with some threshold levels in mind.

Our method relies heavily on the Markov nature of the state-space representations of time-
series models. As discussed in [3], any ARMA or ARIMA model can be represented as a
finite-dimensional model. Thus, the integral-equation approach can be extended to handle
more complex time series. Of course, some conditions on the parameters will be needed as in
the ARMA(1, 1) case to make the integral equation solvable.

We further aim to develop a methodology for long-memory, ARFIMA(p, d, q), processes.
Since long-memory processes have infinite-dimensional state-space representations (see [4]
for details), we believe that, using a truncated state-space representation (as used in [4]), an
approximate level-crossing probability can be found and proved to converge as the dimension

tends to infinity. We intend to pursue this in future.
Appendix A. Characteristics of ¥ (-)
We first prove that ¥/ (-) defined in Section 3 is convex. Forallx,y > 0and0 <A < 1,
M) + (1 - VDY) = AinEe™) + (1 — 1) In(B ™)
= In(E e*é1)* (E eYé1)yl-2

> In(Ee*51+1-2¥61) by Holder’s inequality)
=Y(Ax + (1 = 2)y).
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So ¥(-) is convex. Next we show that ¥ (u) is bounded by a linear function foru < 1. Consider

Y@ _ InEe)
u u
= In[(Ee"1)"/"]
< ]n(EeEl) foru <1
= ¢ (1).

So y¥r(u) is bounded by a linear function for ¥ < 1. The boundedness of ¢, (u) comes directly
from the definition and the above properties of yr(u).

Appendix B. Proofs

B.1. Proof of the martingale property of G;
We show that G, is a martingale:

E(G1 | F)
* > -
= E[ j(; u N expuAcy Z; + uksy1) — exp(uéi Zo)l exp(—ey (1)) du y't]
1
~(t+1) log(x)
* > .
= j; “expuAL Z; + ¥ (1)) — exp(uéi Zg)] exp(—pa () du — (¢ + 1) log(—li)

u
00 - - 2 1
= f u"l[exp(ukcl Z;) — exp(urc1 Zo)l exp(—@p (Au)) du — (¢ + 1) log(x)
0

[ o]
- .[0 u expuéi Zo — o () — exp(uAciZo — @ (Au))ldu.

The last integral equals log A by the Frullani identity,

[ W f ) - FGuldu = f©)logb/a),  b>a >0,
0

which holds whenever the function f is continuous at 0 and f(;’° u~! f(u) du converges (see
[5] for details). Thus the result follows.

B.2. Proof of Theorem 3.1

Note that (3.6) implies (3.5). Hence, by Doob’s optional stopping theorem on martingales,

(3.7 holds if 7 (a, b) is replaced by any bounded stopping time, say by 7 (a,b) A t. As
Z(-)r = (XOa Oq)T9

E(T (a,.b) At)log(1/A)

oo
=E fo U~ [exp(ué1 Z7 (a,pyne) — exp(udt Zo)] exp(—ga (1)) du

[+.0]
=E -[0 u” [exp(u10X 7 (a,pynr + Ud100T (a.p)ne) — EXP(UE10X0)] exp(—py (u)) du.
(B.1)
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We intend to take the limit as # — oo and interchange the limit and integral using the dominated
convergence theorem. Split the domain of the mtegral on the right-hand side of (B.1) into the
sets [f < T(a,b)}. (T @, b) < t,di1o¥7qp) < k@?+ 1)~} and {T (a, b) < 1, dioVr@ap) >
k(u? + 1)~1}, where k > 0. Then the right-hand side of (B.1) does not exceed the following
sum:

o -
fo u~ [exp(ullZroballl + #K)] exp(—n () du

oo 1 - ku - +
+ f u [exp(u|||cmbam+ k )—exp(ucmxo)] exp(— (W) du
0 us 41

o
+Bf 1{7 (a, b)< t, d1oV7(a,5) > k(w® + 1)~ Ju!
0
x [exp(ullCioballl + udioV7 (a b)) — expu1Zo)]" exp(—pr(w)) du.  (B.2)
Invertibility of the ARMA process implies that

dove < Ch —-g?Ldil =K sa
10V = a Yy +Cp y’
where C = 372, |¥;] < oo and where the ; are such that & = ?°=0 ¥iYe—j.
By (3.6) and the boundedness of ¢, (-) (defined in (3.4)) on [0, 1], the first and second

integrals in the sum (B.2) are bounded and independent of ¢. Denote the upper bound by C;.
Now, for a stopping time t for X and fora nonnegative function f, observe that

™A

E(f(diobr) Lec) =E Y f(d10¥1) Le=;
i=l1
TAL

<E Z F(dio¥).

i=1

The last inequality is valid as 1,=; < 1 and f is nonnegative. Now, using the above argument
(which is similar to Wald's identity) the third integral in (B.2) can be bounded as follows:

Ta, b)At
= f Ydio¥; > k@® + 1)~ 1}u"l[e"m‘“"b“"i“"'“‘lo"s —e""mx"]"‘e“ﬂ(“)du
<E({ (a,b) /\t)[ u~ E 1dioV, > k@? +1)71)
0

x [ellEroball+udiody _ guéioXoyte—r () gy,

q_ - - -
+EY f W E Mdiod > k@ + 1)1 e Wroball+udon _ guioorte—m®) gy
-1 V0

(B.3)

Letting k — 00, the above integrals decrease monotonically to zero by the dominated conves-
gence theorem, (3.1) and (3.6). So, by choosing k large enough, the values of the integrals in
(B.3) can be made arbitrarily small, say smaller than & log(1/A) with 0 < & < 1 for the first-
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integral while the sum of integrals in the second term can be bounded by a constant C,. So,
from (B.1), (B.2) and the above,

E(T (a, b) A 1) log(1/A) < Ci + G

< 0

This implies that E 7 (a, b} < oo simply by Fatou's lemma. Using a similar argument for
T (a, b) as is done above for 7 (a, b) A t, we obtain that

oo - - =
E ](; u‘l[exp(ué'l Zg (a,)) — exp(ucy1Zo)] exp(—es (u) du < oc. (B.4)

In addition to the integrand of (B.4), which acts as an upper bound, we also need a lower bound
to apply the dominated convergence theorem in (B.1). To find this, note that

o0
fo uexp(ué) Zo) — exp(ucy Z7 (a.5)n)] €Xp(—@2 (u)) due
m s d
< j; u~ " expl(uéi Zo) — g2 (u)]du
1
+ j; u~ ! expl(uéi Zo) — ¢ )11 — exp[—ullér(Zs @,bynt — Zo) D) du

w -
< j; 1™t expl(ué1 Zo) — ¢p )] du

+ sup expl(uéiZo) — o (WINEL(ZF @pyar — Zo)II-

0<u<l

Since & 2, = Ay 20 + E:=l Mg,

. T(a,bint
We1Zr@mne = E1Zoll < 1 Zoll+ Y I&il.
i=0

Also, since E 7" (a, b) < 0o and by Wald's identity,
E li¢; 2T(a,b)/\t - Eléolll < 00,

With the upper and lower bounds, we have (3.7) by the dominated convergence theorem.

B.3. Proof of Theorem 3.2

For an ARMA(p, q) process satisfying the state-space representation (2.2), if we assume that
¢p > O0and @1, ...,¢p—1 = O, then the coefficient matrix F is nonnegative and nonsinguiar.
As a result of the Perron—Frobenius theorem, FT possesses a largest real positive eigenvalue
A and that corresponds to a real positive eigenvector E"._ We further notice that 0 < A < 1 by
stationarity. Again, from (3.2) it is clear that, if ¢ and 6 are nonnegative and A > 0, then d is
also nonnegative. In fact, if 6, > 0, then d is positive as ¢, > 0. So we can rewrite (2.2) as:

- = - pud - -
C1Zi41 = L F0Z; + C16141-

Asin (3.3), . .
E1Zey1 = AL Z; + Er41. (B.5)

Thus, V; := ¢; Z satisfies an AR(1) equation with 0 < A < 1.
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Now we mimic the the proof of Theorem 3.1, but with a variation, to give the upper and
lower bounds for the right-hand side of (B.6) below.

Note that (3.8) implies (3.5). Hence, by Doob’s optional stopping theorem on a martingale,
(3.9) holds if 7 (b} is replaced by any bounded stopping time, say by 7 () A t. So,

20
E(T (b)rt)log(l/A) =E .[0 u‘l[exp(u(':'lZg-(bw) — exp(uc Zo)] exp(—¢s (1)) du. (B.6)

We intend to take the limit as ¢ — oo and interchange the limit and integral by the dominated
convergence theorem. Split the domain of the integral on the right-hand side of (B.6) into the
sets

{t <T®)},
(T(b) <1,dioVrepy <k@®+1)7})

and .
(T (b) < t, droVrm > k@ + 171,

where k > 0. Then the right-hand side of (B.6) does not exceed the following sum:

o0
f u“l[exp(u&'lb + uK — exp(uc1Zg)) exp(—ey (1)) du
0

o0 - o ku . b
+ f u‘l[exp(ucmb+ 5 )—exP(quo)] exp(—ea(u)) du
0 u- + 1
m -
+E f LT ®) < t.digbra > kw? + 1)~
0

x [exp(ui0b + udioVr ) — expuéi Zo)It exp(—or))du.  (B.7)

Here, K is derived as in the proof of Theorem 3.1. By (3.8) and the boundedness of ¢, (-) on
{0, 1], the first and second integrals of (B.7) are bounded and independent of . Denote the
upper bound by G1. Now, using Wald's identity, the third integral of (B.7) can be bounded as
follows:
That o e = -
E ). f Hdiob; > k(u? + 1)~ Ju1[gwrbHudol _ gurZopte—ar) gy
i—1 )]

30 . - =
<E([T B AL [ T E1{diov, > k(u? + 1)~ L)[e¥erbtubr _ guciZoyte—nrlu) 4y
0
9-1 . . e V=
+ EZ: f u-! El{aloﬁi > k(u? + 1)—1}[eulllflobﬂlﬂdlow — e¥i1Zo) el g, (B.8)
i=1Y0

Letting k — 00, the above integrals decrease monotonically to zero by the dominated conver-
gence theorem, (B.5) and (3.8). So, by choosing k large enough, the values of the integrals
on the right-hand side of (B.8) can be made arbitrarily small, say smaller than & log(1/) with
0 < & < 1 for the first integral while the sum of integrals in the second term can be bounded
by a constant G3. So,

G1+ G2
1—¢

E(T(b) At)log(l/A) < < 00
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‘This implies that E 7" (b) < oo simply by Fatou’s lemma. Similarly,

oo - - =
E j(; u'l[exp(uEIZg-(b)) —exp(uc1 Zo)] exp(—¢ar(u)) du < oo. (B.9)

In addition to the integrand of (B.9), which acts as an upper bound, we also need a lower bound
to apply the dominated convergence theorem in (B.6). To find this, note that

w - - e d
fo u~ exp(ud1 Zo) — exp(ue1 Z7 yar)} exp(~@) (1)) du

< f ” ™t expl(uc) Zo) — @y (u))du
1

+ sup expl(utiZo) — o WINE1 Zrwyar — Z0)I.

O=<u<l
Since &1 2; = AG 20 + Zt__l Mg

T (b)Ae
We1Zgeyne — E1Zolll < NE1 Zoll + D IEil.
i=0

Since E 7 (b) < oo and by Wald’s identity,
Eé1Zg pyar — E1Zolll < 0.

With these upper and lower bounds, we obtain (3.9) by the dominated convergence theorem.

B.4. Proof of Theorem 5.1

In (5.4), we see that there is a shift in the argument of f in the integrand that may stop us from
defining f just inside a compact interval. However, if the domain of f is chosen suitably, this
problem can be avoided. For any nonzero values of i, we can show that a sufficient condition
for considering f just on [e, ] is that —1 < @ < 1 and that [«, B] be sufficiently large (see
Appendix D).

Now, with —1 < 8 < 1 and [e, 8] large enough as mentioned above, we can show that a
unique solution of (5.3) exists in C[e, B]. First we observe that X in (5.4) is a linear operator
on the Banach space C[a, B] equipped with the supremum norm. Next we see that this operator
has norm less than 1 once [a, b] is a proper subset of R. So, by the contraction mapping theorem
(Theorem 2.3), we know that a unique solution exists for (5.3). Moreover, X is a compact
operator on Cle, 1. To justify this fact, we know from the Arzela—Ascoli theorem that any
subset 4 C C(D) has compact closure if (i) 4§ is a uniformly bounded set of functions and (ii)
4 is an equicontinuous family. Now consider the set

$§={K1f 1 feCD)|fllo =1}

So, by Definition 2.1, we just have to show that § satisfies (i) and (ii). Firstly, 4 is uniformly
bounded as the norm of X; < 1. Secondly, let x, s € [«, B] and, for convenience, let x > §
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and¢ — ¢ > 0. Asx — s,
| K1 f(x) — K1 f @)

1 vb
= |\[27—T.O"W v f(,‘r’+(¢—1/f)x)exp(—

(y - fo)z) q
“aaryr )Y
1 ¥b y — 2
-7 ), FO+ @@= exp(—%%—) dy|
1
V2roy

vo+(p—vix
vzl

(z -~ ¢x)2)
2= la
Va+@—y)x /@ exp( 202y2 ¢

Yh+(P—y)s (z — ¢S)2

- f@ exp(————-———) dzl
La+(¢—w)s 202y2

1

vore-vs (z—-¢x)2) ( (z—¢s)2)] I

\/—2;0'1.0 ];ra+(¢—\(f)s f(~) [exP( 20,210.2 — EXp 202‘#2 dz
1 Yb+(p—y)x (z - ¢x)2)

—— | d

* 2oy fwb+(¢—ws 1@ BXP( 2297 )

1 fxlra+(¢~1!f)x
V2o ¥ |Jyato—v)s
1 Yb+(d—¥)s

exp (_ (z— ¢x)") _ exp(_ (z - ¢S)2)
V2roY Jyatie-wis 20242 202y

yh+(d—¥)x — 2
e [ ()

=<

+

Ry
(z — ¢x) )dz

f(@) exp(— 20797

=

dz

V2o Jyb+rig—y)s 202y2
1 Ya+ip—¥)x (z — ¢x)?
+ f exp(————————) dz since || flleo < 1.
V2o Jyatigp—y)s 202yr2 %

Since the kernels are continuous and x, s were chosen from a compact set, this upper bound
converges to 0 as x tends to 5. As the convergence rate is independent of f and by uniform
continuity, we established the equicontinuity of §. Thus, by the Azela-Ascoli theorem, the
operator X; is compact. A similar argument holds when ¢ — ¥ < 0.

Appendix C. Numerical integration over triangles

The background material in this appendix is mainly taken from [1]. The first step of
the numerical scheme is to divide the domain of integration into small triangles and apply
a quadrature rule to perform numerical integration. Since our domain here is simply the square
[a. b] x [a, b}, we naturally divide it into 2n> triangles as in Figure 1 (with » = 2 as an example).

Suppose that A is one such triangle, with vertices vy, v, v3. Introduce the unit simplex

oc={(s,1)]51t=0s+t=<1}.
Define a one-to-one and onto mapping T : ¢ — A by

T(s,t) =(1—~5—1¢t)vy 4+ tvy +sv3.
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(a,b) (b, b)

(a,a) (b, a)

FIGURE 1: The square [a, b] x [a, b] divided into 8 = 2 x 22 triangles.

Through the change of variables (x, y) = T' (s, t}, we have
f g(x,y) dx dy = 2area(A) f g(T (s, 1) do,
A o

where the function g : [a, b]* — R is continuous and integrable. We can thus use schemes
developed on the unit simplex to do the numerical integrations on the triangle A. The quadrature
rule used here is a seven-point formula provided in [1]:

f g(s,Ndo =~ ze(3, 1) + %1g(0,0) + g(0, 1) + g(1, 0)]
o
+ 35060, H+2G. H+ 2. 0. (C.D

This rule has degree of precision equal to 3, i.e. there is no error if g is a polynomial of degree
no greater than 3, and it can be derived using the method of undetermined coefficients. When
it is used in the composite formula, the nodes from adjacent triangles overlap. Thus, the total
numbser of integration nodes will be 6n% + 4n + 1 instead of 14n2.

Suppose that K (x, y, §, ) is continuous over [a, b] X [a, b] and that we use the composite
numerical integration rule (C.1), which can be written as

7
f gls,Ndo ~ Y wig(ms), (C2)

i=]

where u; € {(3,3),(0,0),(0,1),(1,0), 0. 1. (. ). }, 0} and w; € {5. 7. F5) is the
corresponding coefficient. We can now approximate the integral in (4.13) by

2n2

7
area(Ar) D wiK (x, y, Te(pi)) £ (Te(i))
1

i=1

b pb
] f K(x.y, £, ) F (&, m) dE dn ~ 2

k=

=3 0K, v, 6. 1) f &),

j=l

where Ty =T : 6 — Ag, m = 6n + 4n + 1 and w; is the weight of the jth node. Thus, the
integral equation (4.13) can be approximated by

£,y =) 0K, 2,8, 1) fal€jon)) = W, 3),  (x,y) €la, b] x [a,B]. (C3)
j=l1
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We can then evaluate the values of f, on the node points by solving the following system of
linear equations:

fm&imi) — ) wjKE&.,ni, &, n;)faEjnj) = VY&, m), i=1,...,m.

m
j=1

Finally, we can use the Nystrom interpolation formula to obtain the remaining values of f, on
{a, b] x [a, b):

Jalx,¥) = ijK(x! y. sj' ﬂj)fn(fja ﬂj) +¥(x,y).
j=1

We state the following theorem (from [1]) to justify the convergence of f, to f and to calculate
the rate of convergence.

Theorem C.1. Let R be a polygonal region in R? and let {7} be a sequence of triangulations
of R. Let

8 1= knllax diameter(Ag) = 0
=1,

and assume that 8, — 0 as n — 00. Assume that the integral equation (1 — X)f = ¥
is uniquely solvable for ¥ € C(R), with X a compact operator on C(R). Assume that the
integration formula (C.2) has degree of precision d > 0.

(a) For all sufficiently largen, sayn > N, the approximating equation (C.3) is uniquely solvable,
and the inverses (1 — X,) ™! are uniformly bounded on C(R). For the error in f,

F=fa=U0=J)UKf - Knf)
and fn = fasn — oo.
OYIFK(x,y,-.-) € CHHU(R), forall (x, y) € R, and f € C**1(R), then
If = falloe <c83*',  n=N.
The proof is omitted here; the interested reader can consult the reference [1]. Note that the
quadrature formula (C.1) we used is of precision d = 3, so the rate of convergence is on=4.
Appendix D. Sufficient condition for (5.3) to have a unique solution

For fixed a, b we want to make sure that (5.3) can be solved uniquely in C(D), where D is
a compact interval.

Case 1. ¥ > 0,0 < 0. We want
Ya—fa>a and Yb-—068 <8,

in other words,
Ya>(1+6)a and ¥b=<(14+0)8,

which is the case if and only if

Yra vb
el —1.
a51+9 and ﬁ21+9 if@ >

Thus, if 0 > § > —1 and « is chosen sufficiently small and g8 sufficiently large, we can
guarantee that the argument inside f will fall in [c, B].
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Case2. ¥ > 0,0 > 0. We want
Ya—-68>a and yb-—0Oa <8,
which is the case if and only if
va>a+6B8 and b < B+ 6.
So,if @ < 1, we choose @ = —f and the above inequalities become
Yaz(@—-1)f and ¢b=<(1-0)8.

Thus, B can be chosen large to satisfy the inequalities.
In the cases where ¢ < 0, the proof is similar.
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