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A SOLUTION OF THE MARTINGALE CENTRAL
LIMIT PROBLEM, PART I*

By P. JEGANATHAN
Indian Statistical Institule

SUMMARY. Bequence of triangular arrays of martingele differonces is considered, and
noosasary and euffloient oonditiona for the weak counvergence of the gums of theso triangular
arrays to 6 mixture of infinitely divieible distributions are investigated. Resulta obtained here
are analogous to the cass of independont summands, and in pmmulnr it is shown that the eondx
tional Lindeberg condition is in some eense necessary for the g to
of normal distributions.

1. INTRODUCTION AND THE RYSULTS

Lob {(Snpy Au)h 1 <j <k, be a zero mean square integrable mar-
tingale for each 7 =1,2,..., defined on a probability space (&, A, P),
such that

(A1) k,too and A, ;C Ay forall j < k.
Define

8,=8,,, Xu= 80— 8,180 = 0)

by
T, =!2, B(X3| A1)

In the rest of the paper it i8 assumed that A4 =0 (U ./1,,_“") and
(X, A. P) is complete, ‘2, 0’ denotes oonvergence in probability.

The purpose of this part is to investigate the necessary aund sufficient
conditions for the stable convergence in distribution of the sequence {8}
to & mixture of infinitely divisible distributi (The definition of stable
convergence in distribution is given below). In order to introduce the nature
of the problems treated here, we start with a disoussion of the more familiar
problem of martingale convergence to & mixture of normal distributions.

* ‘This paper is 8 rovised and oxtendad version of an earlior vorsion entitled **On the nocossity

of Lindoborg type conditiona for martingslo contral limit theorems” (T-R. 27/80, 11 Septembar,
1080).
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Consider the following conditions :

(A.2) For every € > 0
)
T EXLH( Xyl > O] Ansa) DO
1

where I(-) denotes the indicator of the sot in the parentheses.
This condition is known as the conditional Lindeberg condition.
(A.3) There exists a r.v T such that

7,57

Under the conditions (A.1)~{A.3) it i3 kncwn that the sequence (S}
converges wealdy to a distribution whose characteristic function is given by

E lexp{ —[; ’I‘)‘. For the case T =1 a.s., this result in some form goes
\

back to the work of Lévy in 1935, and was later developed in this generality
by Dvoretsky (1972) and, independently, by Brown (1971); Scott (1973) has
used the Skorokhod representation approach to prove the above result for
this case. For some earlier important works in this area see the references
in e.g., Billingsley (1968) and Dvoretsky (1972). A satisfactory treatment,
with weaker conditions, of this case T = 1 a.s. was given by McLeish (1974)
who also pointed out that the convergence in distribution can be strengthened
to mixing convergence in distribution. In this connection Drogin (1972)
and Rootzén (10772 and 1980) shoud also be mentioned where thoy have
congidered random time scales and in particular natural time scales, i.e.,
time measured according to the sums of conditional variances or the sums
of aquares, an idea which also in some form goes back to the work of Livy in
1935. (For the relevant informations regarding Livy’'s results mentioned
in the present paper, one may consult LeCam (1972).

For the case where T is a r.v, a result which is essentially in the above
gonerality with stable convergence in distribution was given by Chatterji
(1974). This general case waa also treated to some extent by FEagleson
(1976). A satisfactory treatment of the general case waa given by Hall (1877)
and, independently, by Rootzén (1877b). (In Section 2 of the present. paper
it is showm that this general cass can be reduced to the case 7 = 1 &.s.).

It should be mentioned here that the acope of the majority of the papers
mentioned above is much more oxtensive than what is indicated here, o.g.,
they have also treated functional CLTs, also called invariance principles.
Also, sse Rootzén (19805 for further recent references.
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A result concerning the martingale convergence to infinitely divisible
distribution was given by Brown and Eagleson (1871) and thia has been to
some extent extended to martingale convergence to mixturea of infinitely.
divisible distributions by Eagleson (1975).

When the ds are independent it is well-kmown that a completely.
satisfactory theory regarding the necessary and sufficient conditions for the
weak convergence to infinitely divisible distributions exists, see e.g., Lotve
(1963 or Feller (1986); in particular it is very well-known that the Lindeberg
condition is in some sense necessary for the normal convergence, as waa proved
indopendently by Feller and Livy in 1835 and 1934 respectively. But
regarding tho necessary problem for the general case where the summanda are
martingale differences, it appears that there are casentially no non-trivial
published solutiona aveilable even for the particular normal convergence
case, though this particular case has attracted several authors, see eo.g.,
Dvorotsky (1972), Brown (1971) and Rootzin (1977a). Note that regarding
the problem of martingale invariance principles with Brownian motion limit,
Rootz¢n (1977a and 1980, see also Ganssler and Hansler. 1979) has given a
rather complete solution and in particular has shown that Lindeberg and
some other conditions are nccessary, but it is clear that what we are interested
in the present paper are different problems. Wa try to obtain results which
are analogous to the case of independent summands with bounded variances,
(the general “Martingale” Central Limit Problem with not necessarily finite
mean or variances will be treated separately). and in particular we show that
the condition (A.2 is in some sense necessary for the martingale convergence
to mixtures of normal distributiona. The sufficiency part (Theorem 2) of
our results strengthens and clarifies the results given in Brown and Eagleson
(1871) an4 Eagleson (1875).

In what follows stable convergence in distribution will play a central
role; stability and mixing in limit theorems were introduced and developed by
Renyi, sse his book (1870). Recently, an llent t t of stebility
and mixing with applications to martingale CLT has been given by Aldous
and Eagleson (1978). For the sake of convenience we recall a veraion of the
definition of stable convergence.

Definition 1: Let {F.} be a sequence of distribution functions of &
sequence of r.vs {X,} defined on (&, .4, P). Suppose that {F,} converges
weakly to a distribution function F. Then the sequence {X,} is said to
converge stably in distribution to F if the sequence of vectors f(g, X))
jointly weakely converges to a dietribution for every _#-mble function g.
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In such a case it is poasible to find ar.v X* such that the sequence
{(g, X,'} converges weakly to (g, X°) for every A#-mble function g. (See Aldous
and Eagleson (1978, p. 827 for a precise statement).

When the r.v. X* oan be chosen to be independent of _4, then stable
convergence in distribution is called mixing convergence in distribution.

We next define what we mean by a kernel in the present paper.

Definition 2: A function G: RXZ— R will be called a kernel if for

every resl £, w — G(t, w is an A-mble function, and for every we X,t—
@ (t, w) is & non-d ing, right i function of bounded variation.

The next definition specialises Definition 1 for the purpose of the present
paper.

Definition 3: A sequence {X,} of rve defined on (&, ¥, P)is said to
converge stably in distribution to the distribution of a mixture of infinitely
divisible distributions with the kernel @ if, for every _f-mble function g,

B c'uw“l‘,.) — Elefuoraty
for every real « and ¢, where
Yt = J ("7 —1—ilz)a? {dz, w);

here the integrand, defined by continuity at z — 0, takes there the value
—np2,

Henceforth, “mixture of infinitely divisible distributions with the kernel
G will be abreviated as “MIDD with G”.

Before introducing the conditions and the results, we first introduce
some notations. Let F((z, 1) be a regular conditional distribution function
of Xyt given Anx_;. Now define

Pl x) = (eMr—1—ilz)a? if 250
=3 if z=0.
Note that the function (¢, 2} is jointly continuous in ¢ and z. Now let
k" z
Oz, wy =2 | y'F . (dy, )
1 -»

and
Yalt, w) = [ §(t, %G (dz, w).
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Note that, gince B(X .| Ayg,)=0,§ <k, n> 1,
K'“
B 1) A )
1

l‘n
=% B —1—itX ) A, 1)

= ¢t w) as.

We now state the conditions.

(A.3') For every subsequence {r} C {n} there exiata a further subsequence
{m} C {r} such that {T'} converges in probability.

(A4) b,= sup E(X}Y|.A,y,) 2o
1€ 18k,

(A.5) For every real ¢ and for every subsequence there exists & further
subsequence {m} ¢ {n} such that {y(¢, w)} converges in probability.
It is important to note that this condition (A.5) is automatically satisfied
when the ds are independent under the usual condition that the
quence of constants (7'} is bounded
In what follows it will be assumed, without further mentioning, that
the condition (A.1) is satisfied in the stat te of all the results atated below.

Theorem 1 : (i) Suppose that the conditions (A.3') and (A.6) are satisfied.
Then for every subsequence there exisls a further subsequence {m} C (n), & P-null
st N and a kernel G such that

eltz eltz
IT—}? Quldz. w) > | T+ G{dz, w)

for all we L—N and Le R, and Ty = T for all we L—N.

{ii) Suppose that the conditions (A.3’), (A:d) and (A.6) are satisfied. Let
the subsequence {m) and the kernel @ be as in the above statement (i\. Then the
sequence {Sm} converges stably in distribution to MIDD with G.

Theorem 2 : (i) Suppose that the condition (A.3) s satisfied. Then the
following two conditions (A.8) and (A.7) are equivalent :

(4.8) For all real t, the sequence (Y (t)} converges in probability.
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(A.T) There exists a kernel G such that for all real ¢,

efts

| o Gz )

G{dzx, w).

5 l+z’

(ii) : Suppose that the conditions (A.3), (A.4) and either (A7) o,
cquivalently, (A.8) are satisfied. Then there exists a kernel-G such thal ik
sequence {8} converges stably in distribution to the MIDD with G.

Theorem 8 : Suppose that conditions (A.3'), (A.4) and (A.5) are salisfied.
Further suppose thal lhe seq {S.} ges alably in dislribulion lo the
MIDD with G. Then the condition (A.7) holds wilk this G.

Corollary : If the condilions (A.2) and (A.3') are salisfied, then the sate.
ment, (+) : the sequence {S,} converges slably in distribulion lo the distribulion

12
whose characteristic function is given by E [ezp( —T 12 )], holds. Conversely,

if the conditions (A.3'), (A.4) and (A.5) hold and further the above statement (»)
holds, then the conditional Lindeberg condition (A.2) holds.

A major part of the technical arguments of the proofs are presented in
Section 2 through a series of lemmas. Final arguments of the proofs are
presented in Section 3.

Remark 1 : Suppose that {m} C {n} be a subsequence such that Tp-5 7.
Then using the standard arguments, it can be shown that the following four
statements are equivalent, where @ is a kernel.

eltx

eitx
0 o Omid B 07 G

for all real ¢
N f(z) 2 . fl=)
(@) <5 Omldn)> e @ (dz)
for all bounded continuoua function f.
@) Jo=)On(dz) D | gla) € (d2)
for all continuous functions g vanishing outside compacta.

@) | Mz)Gn(dz) D [ M) G (d2)

for all continuous functions 4 such that A(z) = 0 a8 x — o0,
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Remark 2: Note that we have assumed E(X,| A, s =0, j < k.
n» 1. Results, analogous to the case of independent summands, can be
obtained without this restriction; sinco the dotails of the statements of the
required conditions and the results will be clear from the foregoing results
and their proofs and from the known results for the cass of independent

ds, they are omitted. Note that, as & corollary to this extension,
necossary and sufficient conditions for the stable convergence to mixtures of
Poisson distributi can be formulated

2. SOME PBELEMMAS
The first lemma is just the statement (i) of Theorem 1.
Lemms 1: Stalement (i) of Theorem 1.

Proof : First note that (A.3) entails that there exists a subsequence
{m} C {n} such that {T'n} converges to T almost surely. Furthor, the condi-
tion {A.5) entails that for every ¢ and for every subsequence there exists a
farther subsequence {r} such that {y.(t)} converges almost surely. Therofore
by a standard diagonal argument (sce c.g., Feller, 1966, p. 261) one can find
for every subsequence a further subsequence {r}C {n} and a P-null set N
such that, denoting the set of all rational points by D, the sequence {,()}
converges for all t¢ D and we &’—N and that Ty — T for all we L—N.

We now show that [ f(z)G,(dx) converges for all f¢C,(R) and we 22—N,
where C.(R) denotes the class of all continuous functions f such that f(z)— 0
8 z— +0. In what follows assume that we JC—N is fized. Note that
Gfw) =T, - T and so by Helly’s theorem, for every subsequence of {r}
there exists a further subsequence {p} C {r} and & non-decreasing, right conti-
nuous function G{(z) of bounded variation such that

{(z) Gy (dz) — | flz) G {d=)

for all f¢ Cu(R). Lat {9} C {r} be an another subsequence with a limit G°
wuch that

[ f(z) Gq (dz) - [ flz) G° (dz)

for all f¢ C.(R). Now note that, for all real ¢, ¢{t. x) 6 C,(R). Hence. since
[¢4t, ») G, (dz) converges for all {6 D, we have

§ 8(t. 2) G (dz) = [ $lt, 7) 6" (d)

forall t¢ D. Since D is dense in R and since both sidea of this equality are
continuous (in ¢), we have

[ $(t, z) G (dz) = [ ${t, ) G (d=)



808 P. JEGARATEAN

for all real ¢, and hence the sscond derivatives of thess funotions are also equal,
1.6,

f et @ (dz) = | ¢ G (d2)

for all real ¢ (of. Loéve, 1963, p. 208). Hence G = 6.

Thus {f(z)Gh(dx) converges for all fe Cu(R) and we L—N. Hence,
sinoe for each f, | f(z) G (dz) is an -mble function, one can ohoose o kernel
@ : RX(2L—N)— R such that

[ f(z) Gr (d2) - | fiz) &' (d2)
for all we :0—N and fe O.(R). Now define a kernel G : Rx > Rby
Oz, w) = Flz,w) if z¢R and we L—N

=G@z,w) fzeRond welN

where 1, is & fixed point in «&’~N. This completes the proof of the lemma.
Lemma 2: Suppose that G and G°* he two kernels such that
J U w) G (dz, w) = [ B(t, 2) O° (d=. w) a.s.

for all real t. Then there ezisls a P-null set N such that

[ 4, ) @ (dz, w) = [ J(t, z) G° (dz, w)
and

| ei2 G (dz, w) = [ eltx & (dz, w)
for all veal | and we L—N.

Proof: The argument is implicit in the proof of Lemms 1. Reatating
the supposition, there are P-null sets N, possibly depending on {, such that,
for all resl 1,

J it 0) G (dz. ) = [ {1, w) 6° (dz, w)

for all we L—N,. Lot D be the set of all rational points of R, and let
N= LAJDN,. Then for every fixed w ¢ L— N, we have
t

J $it. 2) Gldz, w) = [ 8, z) G (dz, w)

for all ¢ D. Since D is dense in R and since both sides of this equality are
oontinuous in ¢ for every fixed w & &, it followa that this equality holds for
every resl ¢ whenever we ’—N. This proves the first statement, and
the second statement follows from the firat ome, (cf. Lodve, 1963, p. 203).
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Lemmea 3: Slalement (i) of Theorem 2, i.e., under the condition (A.3")
the conditions (A.8) and (A.7) are equivalent.

Proof : Suppose that (A.8) is satisfied. Then (A.6) is satisfied and so

according to Lemma 1, there is a subsequence {m}(C {n}, a P-null set N,
and & kernel @ such that

T4l 2) G, (dz, w) > [ $(t, 2) O (dz, w) = ¥ (¢, w)

for all real £ and w e L’—N. Hence the limit in (A.6) can be taken as y(s, w)
ie.,

Vol ) -5 Y, w)

for ell real &. Now, again in view of Lemma 1, for every subsequence, there
oxists a further subsequence {r}, & P-null set N and a kernel G° such that

VL6, w) > [ (¢, w) G (dz, w)

and
eltz elsx .
| WI—’ G, (dz, w) > | T—I-_z’ G* (dz, w)

for 8ll real ¢ and we £2—N. Hence in view of Lemma 2, when (A.6) holds,
there is a P-null set N’ such that

§ €'tz G (dz, w) = | "= G (dz, w)

for all real ¢ and we L—N'. Hence

elts A etz
_I'H_—I,G,(dz,w)—bj' T2 G (dz, w)

for every real 2. Since the limit is independent of the subseq {r} it follows
that (A.7) holds.

That (A.7) entails (A.8) follows from Remark 1.

The purpose of the next few ateps is to reduce the problems to much
simpler cases in order to overcome certain technical difficultios.

Suppose that the dition (A.4) is satisfied

, Le.,

b= - EX; % 0.
P, (X35 Ang) >0

482
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Then, satting Xay = |Xul /\ L (& /\ b= min(a, b)),
.= : mi= 0
b= o, EE ] >

and
b= E[wp BMI A 0.

(The purposs of the quantities b, and b, will become clear after fow steps).
One oan now choose an increasing sequence 0 < @, Tco such that a, <k,
and such that

ab, =0, abi—>0 and ab, 2o e (D)

Note that the oondition (A.1) entails that

T (UAp,) = U AL ) = A

and
.ﬂ"," C ﬂm (Fpgy’
Henoe the proof of the following lemma is fairly clear and so an easy proof
is o nitted.
Lemma 4 : For any A-mble veclor g there ezists a sequence {g,) of veclors
adopled to (A, } such that g, .

Now suppose that T, 2T, In view of this lemma we can then choose

o non-neg . (1) adapted to {.,qn.,"} auch that 7, 3 7. Now
let, with 8 a positive constant,

f,..a,,ﬂ = xn-,,-o- KT o opm

by 1y = Xy Totoyn,

Then, gince T, is U, , -mble, B(¢,| A, ,_,) = 0 forall @, < j < k,. Further
when (A.4) holds, (A.3) is satisfled if and only if

k
=2 B3| Au) DT +e =T <1,
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?'E(X:,I./f..;_.) <ab, 30 by (1). (2

Remark 3: The purpose of introducing the constant 8 > 0 is to deal
with the situation where the rv 7' may take the value zero with positive pro-
pability. In particular it will follow that when 7 > 0 a.s.. the introduction
of 8 i3 v, and it is gh to ider the casc where T =1 as.
sinee the above T =1 ux when & = 0. The general case can also be
reduced to the case T = | a.s.. since it is casy to show that the given sequence
of triangular arrays of martingale differences cun be ‘equivnlently” written
as the sum of two triangular arrays of murtingale differences such that the
sums of first arrays converges to zero in probability and the sums of the
conditional variances of the second urrays convergex in probability to an
as. positive r.v. This Intter reduction will not be considered here since in the
prexent paper it does not scem to simplify the arguments furthor.

Ay
\We now show that whenever (A.4) holds, £ .\',,,—“Hl. It is enough
\

Ja .
to show that {S]X 511 AV S 0. Sinee
1
2, . 1,
(T Xy ANNVSE Xyl A\ l)=‘|2 X5
1 1
Ty
we shall show that ¥ Xj, 3 0. Firat observe that
)

B[ B0y An g < af sup BVNGIAw )]0
1 Licjch

by (1). and so it is enough to show that

E Xiy— B EXY Ay DO
1 1
Now consider

e -y Ao
= £ EIX:— EXy) An s

<aE| sup B'(X:’;I-ﬂ...y-n)]—"’
1<ji<an

by (1), and hence, tho desired conslusion follows.
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Now let @ be a kernel such that
Vall) 5 [ 9t 2) G (d2) = Y()
for all real . We now want to show that
.ll
v = Zl E(e"_y| A, 121) 5> [ Q[T +8P7, 2) G (dz)

for all real ¢, First observe that, since 7', is A p.a, “mble,

B [ty 223 Foy(de) = Y3(t) 8.
2,41

where ¢, = ¢(T,+6)/2. Without loss of generality we assume that this
equality holds for all real ¢ and w ¢ &. In view of Lemma 1, it is enough to
prove our statement for a subsequence {m} C {n} such that

Yalt) = ¥t

for all real ¢ and w ¢ L—N, where N is o P-null set. It can be easily shown
that, for each fixed w ¢ L— N, the above convergence is uniform on compacts.
One can further assume, in view (2),

am
Z‘ E(Xﬁd | Am. 1) >0

and
T7,-»T

for all we Z—N. Fix we L—N. Then the difference
*m X s ot °m .
sup [Yal)— T E(e™—1| An 1| € % T EXbyAm, 1) 0.
<2 @+l 1
Hence
m
T [P, 2) 22 By (dz) — Y(t)
LI}
uniformly on compacts. Hence
Em
% \ I $(tm, 2) 22Fm; (d2) = Y(U/(T+8)V%)
)

for all real ¢{. Since this is true for all w e 22—N, the required statement
follows,
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We collact together the foregoing results as
Lemma b: Le @,/ < k,) be a sequence increasing lo infinily sych that
(1) holds. Then

(i) b X0
)

(i

T B(XY| A sa) S0,
1

and
(iii) if G ¢a a kernel such that

V) D [t 2) 6 (dz)
for all real ¢, then

B B =1 A, 1) S [ ST+, 2) 6 (da)
agi1
for all real ¢t

Remark 4 : Note that we have assumed 7', 5 T and presented the fore-
going arg; ts for the seq {n}, but they hold for any subsequence
{m) C {n} such that Ty 5 T. This romark also applies to Lemms 6 below.

We still need a further reduction, that is. one can assume without loss
of generality, since 7'° € 1 a.., that

]
S B | Ay L forella, <j< k,anda=1,2 ..
7+

Since the arguments leading to this reduction, originally due to Lévy, are
contained in several other papers mentioned earlier (see e.g., Brown and
Eagleson (1971)), they are omitted.

We now provo the following lemma; in the proof of this lemma our method
of handling the joint characteristic functions is similer to Brown and
Eagleson (1971).

Lemma 6: Suppose that the condilion (A.4) is salisfied. Then for any
A-mble k-veclor g, the difference
gl i, -
B {oxp |iwpitS,t 2 E(1—e" " | Ay sy )] | —Eleap g

ka
converges lo zero for every w6 R* and L ¢ R, where S, = X £,
ayt1
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Proof : In view of Lemma 4, there existe a sequence {g,} adapted to
(,An',‘} such that g, 2 g. Honoe, since the integrands in the above expecta-
tions are uniformly bounded, it is enough to show that the difference

Lot e, L,
E {oxp [wg, +itSit £ B(1—¢ | A, 1) |- Bloxp (ip.)
converges to zero. This difference can be re-written as

'Il m-~ ”
EE{ow [(ug, it T £yt T (1—ebn] A, s )]
meag+t o 41 a1

[exP (iténm)—oxp E(e™om—1 | Arnm_,))}

+E {exp (in'g,) [exp(ﬂfn.hﬂ-}-E(eM""“—l | A, )—1]}.

Uking the given condition it is easy to see that the second term of this snm
converges to zero, a8 n — c0. We rewrite the first term a8

‘lﬂ
I Elham fam)

where

(L

fam = [exp (#£nm)—exp E(e -1 ﬂ""“] ] 4

and Aym i8 A m_,-mble and is bounded in absolute value by some constant
independent of both n and m, since

r by
Aol € L5 BE Anmy < AR
2 ln§l

Therefore

[ £,
°n2ﬂ E(’lmlfmn) I £ -"Z“E“hmﬂ |E(,/mn|./(n.ll-‘)|]

<CZ o] Anay)l] for somo O >0
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Now note that
W Wenm
E(fas| Anmy) = Ele ""—1| Aum )+ 1—6xp Ee " —1| A mq).

Hence by usual elementary inequalities it follows that

Elfaml Anns)| < 5 | Bha] A1,
and 8o

k, . £a
Z Elbonfom)| < OB [ o0, Bl A £ Bet) M)
< OE[sup E(¢%| Anm-1)) - 0

by (A.4) since sup E(£5)| A, 5-y) < Z B A, 14) < 1. This completes the
proof of the lemma.

The following lemma will be arucial in the next section ; since the argu-
ments of the proof of this lemma are standard, the proof is omitted. (see
o.g.. Billingaley, 1968, pp. 45 and 46).

Lemma 7: Suppose that X, Y, Z are r.vs on a probability space such tha!
Y and Z are integrable and

E(eh=Y) = E(e"*7)
for all real ¢. Then
B(Y|X) = E(Z| X) as.

3. THE FINAL ABGUMENTS O¥ THE PROOF3

Proof of Theorem 1: In view of Lemma 1, only the statement (ii) has
to be proved. In view of the statement (i) and Lemms 5 (statement (iii))
and Remark 4 for every subsequence there exists a further subsequence
{m) C {n} and a kernel G such that for every real ¢

V) 3[4, 2) G da,w) = Y0, (¢ = G(T+EY

. S
[ Recall that y2(f) = -fuz(‘ ™1} A,, )]
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ka )

Further note that the sequence 8, = X £, is relatively compact, since
ag+1

ks
E(S;)¥= X E(£,) < 1. Hence for every _A-mble g and real ¢ and for every
ant]

subsequence of {m} there exists a further subsequence {r} C {m} such that
the sequence random vectors (g, S;, ¥'(())}, converges in distribution to
(9, S, y*(!)) where S is some r.v. Hence passing to the limit it followa from

Lemma 6 that
E[elllp+l'vlb'(”+lfs—*'U)] = E(G‘“""“’w'(“]

for every real 4 and v. In view of Lemma 7, this implies that

Eets-2"0 (g, y°@)] = 1 5.

E(elng-n'lS) = E(e“‘"“*"“)

and hence

for every real u. Since the r.h.s. of this equality depends only on the sub-
{m} and is independent of further subseq {r} of {m}, it follows

9

that

""'”“‘-) — E(etuo+v"t))

Ele

for every real u and ¢.

To draw the conclusion from this we first present some arguments similar
to Aldous and Eagleson (1978, p. 327). Observe that for each fixed w, ev*®
i8 & ch.f. and, for each fixed real ¢, e¥* is an _A-mble function. Hence one
can construct a stochastic kernol Q(w, B), B¢ &, on the one-dimensional
Borel space (R, 8). Then define the probability measure

P* = (Q(w, dz) P (dw)

on the product (’XR, AX&). Let therv. Y on (XX R, AX .G, P*) be
such that Y(w, z) = z for all we Land z ¢ R. Then observe that

[ e¥ Q(w, dz) = e¥*®
for all real ¢ and w ¢ L, and

E(etuotiy) = Eetuy+¥ei)
for all real u and ¢ and A#-mble g and honce

LWL
@ Sa)— (0, )
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for all A-mble g. Also note that, since T' is A-mble
| e¥'Q(w, dz) = e¥0

for all real ¢ and ¢ 2, where (T'+48)!1F = Y’. Furbher note that
In—(T+8)18, 50 (Lemma 5).

Hence

o£
@ Sm)> (@ ¥)
for all A-mble g, and 8o it follows that

(g +it3)
e m

E( )= E[eluv+ll}"] = E[elunwn]

for all real 2 and ¢. This completes tha proof of the theorem.

Proof of Theorem 2: It follows from Remark 1 (of Section 1) that, when
(A.6) holds,

vt 0) S (4, 2) 6 (d, 1)

for all real . Now using the statement (iii) of Lemms 5 and repeating the
arguments of the proof of Theorem 1 for the ssquence {n}, the proof of the
theorem follows.

Proof of Theorem 3 : In view of Theorem 1, for every subsequence there
exists a further subsequence {m} and a kernel G* auch that

etz

14z

eltz

T Ontdmw) 3

f

G*(dz, w)

for ell reel ¢, and that the ssquence {S,} converges stably in distribution to
the MIDD with G Therefore, when it is given that {iS,} converges stably
to the MIDD with G, it follows that

B(ewo+v'h) = Blpworva

for all % and ¢ and for all _¥-mble vectors g, where
¥t) = [ ¢t 2) 6" (dx, w)
Yty = [¢(-z) G (dz, ).

and

A3-3
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In view of Lemma 7 and since both y'(t) and y¥(t) are _4-mble for all reai .
we then have
¥ = y(t) aas.,
and henoe, by Lemma 2, there js a P-null set & such that
etz G° (dz, w) = [ &2 G (dz, w)

for all real ¢ and we L—N. Therefore we have

Gmldz, )55 | G (dz, w)

I l+a:’ l+z:'

for all real ¢ and hence, since the limit is independent of the sub
{m} C {n}. it follows thst

q

eltz

{ l—»—G(dz w) S5 | e

G (dx, w)

for all real £. The proof is complete.

Proof of the corollary : The proof is an easy consequence of Theorems 2
and 3 but it can also be obtained directly from Lemma 6. For the sake .of
illustration we prove only the necessity part. It is clear that without loss
of generality we ocan take the given sequence of triangular arTays to be
{(fatr An) @, <j < k},n > 1. In view of the condition (A.5), for every ¢
and for every subsequence there exists & further subsequence {r} such that
{¥.(0)} converges in probability to some r.v. Y(t). That the sequence {S,}
converges stably in distribution to the distribution whose characteristic func-

tion is given by E’( oxp (—ﬂ T)) entails in partioular that the sequence

{(¥(1), T, 8;)} converges in dmﬁnbunon to (Y(t). T, T'2) where Z is a copy
of the standard normal distrib dependent of (y(¢), T), (cf. Aldous and
Eagleson (1678)). Taking limits in Lemma 6 for this subsequence {r}, with
g = (¥19), T), we have the identity

E[tmwmuwmr’"é—wnl = Eleiuvwrsior]

for every real u and v. Hence by Lemma 7, wq have

E’[e“rmz P, () = st a.s.
-84
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Since Z is the standard normal distribution independent of (7. y(t)), this
gives the identity

e 2T =¥t agp,

ie. ¥el) S -g T, and so, since the limit is independent of the sub

¥ —5 1. Sincs the sequence () s uniformly bounded we then

have E(y (1)) — —-‘—2' E(T). This is true for every real 2. Now arguing

along the lines similar to the case of independent summands (see, e.g., Feller,
1968, p. 495), we have for every & > 0

by
.2“ ElE3I(1€ag] > )] > 0.

Hence the proof.
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