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SUMMARY. It is ghown thot whon tho observations aro dopendont, includiag tho vitua-

tions where tho timit distributions of extimators are mixod normal, and when llw purnmol(‘rnpnm
is of multidimonaional, the mormonts of any ordor of Likelihood

probability catimators end a cortain clana of Bayos esti go to Lho pondi
moments of o multivariato mixed normal distribution. As a by-product ol' lho given mump
lions it is also ehown that tho ecq of properly lisod Likelihood

s & sequonco of random in tho p epace, gea weokly o 8 mixod Gaua-

sian shift process.

1. INTRODUCTION

In on important paper Ibragimov and Khasminskii (1972 and 1973)
(honceforth this paper will Lo roferred to in short by I.K.) considered tho
asymptotic behaviour of maximum likelihood ostimators (MLE) and a certain
class of Bayes estimators when the observations aro i,i.d. and whon tho para-
meter spaco is a subsct of tho real lino. Among other things, they proved
that the moments of any order of the above mentioned estimators converge
to the corresponding momonts of a normal distribution. Their investigations
aro based on o general method which amounts to treat tho likelihood function
a3 a random function of tho parameter; wo would liko to mention hero that
this genoral method of investigating MLE was first developed in Rubin (1961),
and then later utilised in Prakasa Reo (1068) whero the weak convergence
results for random functions wero further omployed for tho first timo for
investigating MLE in non-regular cases. A similar mothod of investigating
MLE was also developed by LeCam (1970). This approach offered some
fresh insights into the probloms and as a rosult I.K. wero ablo to prove power-
ful results under quito genoral assumptions. 1lowever, so far o3 tho practical
purposes aro considered, the situation considered by LK. was not quite
general in tho scnso that tho parameter spaco was assumed to bo a subset
of tho real line. Though tho methods of analysis of LK. wero simple, some
of tho argumonts depend in a very crucial manner on tho dimension of tho
paramotor space. For oxamplo, they invoke Kolmogorov's sufficient condi-
tion for tho continuity of a random process to get somo estimates of tho
continuity modulus of tho realisations of the likelihood funetion (sco Prokhorov,
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1956, p. 180). Ifowever, it docs not scom to be possible to extend this idea
to moro than ono dimension. In fact LeCam (1970) mentions that somo
of the arguments about continuity of samplo paths for random processes do
not extend to moro than one-dimonsion. At tho samo timo thero is no reason
to supposo that tho results on tho convergenco of moments of statistical
estimators would depend on tho dimensionality restriction of the parametor
spaco. This suggests that one can obtain tho samo typo of estimates of the
continuity modulus Ly somo other methods whose arguments would not
depend on the dimension of the paramoter space. It is also important to
know how far tho results on tho convergenco of moments can bo oxtended
to the situation where the obscrvations aro not nceessarily i.id. Thus our
aim in this paper is to prove that tho moments of any order of MLE,
maximum probability estimators (MPE) and a certain class of Bayes esti-
mators converge to the corresponding moments of a mixed normal distribution
when the observations are not necessarily i.i.d., including tho situntions where
the limit distributions are mixed normal (sco, e.g. Jeganathan, 1979), and
the parameter space is a subset of RE, & > 1; as a by product wo also present
a weak convergenco result for the likelihood ratio random processes.

Majority of the ideas of this paper aro cither inspired by or adapted
from LK. though we have substantially simplified tho proofs. Also wo have
avoided using weak convergonco results for random processes, which LK.
uso freely in their paper. o would like to point out that tho weak con-
vergence results for tho likelihood ratio process havo beon extended by
Inagaki and Ogata (1976 and 1977) to the situations whero tho parameter
spaco is of multidimension and tho observations are from a strictly stationary
Markov process, with a number of interesting applications. When the para-
metor space is a subsot of the roal Jino, the results of LK. on tho convergenco
of moments have been oxtended to the independont not ily idontically
distributed caso by Ibragimov and Khasminskii (1975) and to a certain clnss
of Markov chains by Levit (1974).

In Scction 2 wo introduco tho Assumption (A.1)~(A.11). (A.10) of this
soction is very direet. Tho reason is that wo aro not ablo to impose satis-
factory conditions on tho densitics implying this assumption in the general
caso, Howover, it is possiblo to verify this asswmption diroctly in somo
probloms (for oxamplo, for a cortain class of mixed Gaussian processes). In
tho situations whero tho obsorvations have a certain ‘mild’ form of dopendenco
it is possiblo to imposo conditions on the donsities implying this assumption.
Theso things aro dono in Section 5. In section 3 wo obtain somo preliminary
resulis on the behaviour of tho likelihood function which aro used in Soction 4
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whero tho results on tho convergence of moments of MLE, MPE and a certain
class of Baycs estimators aro obtained. In Scction 3 wo also show, ag a by-
product of our assumptions, that the likclihood functions belong to a certain
completo separablo metric spaco for all sufliciently large samplo sizo with
probability ono and the corresponding scquence of induced probability
measures on this motrio spaco convergo weakly to tho probability measuro
induced by a mixed Gaussian shift process.

A refree has drawn our attention to a treatment of tho multidimensional
caso in a new book by Ibragimov and Khaiminskii : “Asymptotic Estimation
Theory", Moscow, 1979, (in Russian)”, Unfortunately wo were not ablo to
comparo our results with thoso of this book which was not availablo to us
evon at tho time of the final rovision.

2. ASSUMPTIONS

Let (X,, X5 ... X,), 22 1, bo a sequenco of random vectors defined
on a probability space (&o, A, Pp) whero the k-dimensional parameter
0¢0, an open subset of RY, k> 1. Let 4, =0(X}, ..., X,) bo the o-field
induced by the random vector (X, ..., X,) and P, , bo the restriction of
P, to A, Lot 0,€0 bo tho ‘true’ value of the parameter. Weo further
assume that, for j > 2, a regular conditional probability measuro of X given
(X}, ..y Xj-y) i8 absolutely continuous with respeet to a o-finito moasuro
py with a corresponding density fy(Xy|X), ..., Xj_;; 0), and tho probability
measure of X, is absolutely continuous with respect to a o-finito measuro
; with a correeponding density f\(X; 0). For tho sake of simplicity wo sot
JAX1 Xy ey X33 0) = [£0), 5 > 2, and f(X,:0) = £,0).

In what follows, unless otherwiso specificd, all tho probability concepts
and oxpectations aro with respect to Poo.

(Al): For all (X,,..., X;) and for overy j > 1 tho functions 0 — £(0),
j > 1, sre absolutely continuous in 0.

(A.2): For s, X...Xy almost all (X, ..., X;) and for every j > I, the
functions 0 — log f;(0) aro differentiablo in 0.

Remark : Note that implicit in (A.2) is tho assumption that, for
Py X X gty olmost all (X, ..., Xy) and for overy j > 1, log f,(0) is finito for
all 0.

Sot

(8/00) Yog fy(7)  if the derivativo oxists,
200) = {

otherwiso.
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Supposo that wo have sclected a suitable soq {8.) of normalising
matrices such that [15,]] = 0; ono way of solection is to sot

. ] . -1
5, = £ Bnioms)]

for somo fixed ¢ 6 ©, whoro E, denotes tho expoctation with respect to Py;
in the i.i.d. caso ono may sot 8,8, = n-1J, I i3 tho unit matrix. TFurther wosct

£(0) = 10)}(0).
(A.3): For overy he R¥

E[[IX8.£00)*dps) < 0,1 < j K n < co.
(A.4): For evory he RY, for somo ¢ < 0 and b> 1

sup B E{[ |W8,1E(00+8,B—E,(00)]| i) > 0.
aGlE&d j=1

(A.6): E[ni0,)| 4;-] = 0 for overy j > 1.
(A.6): For every €> 0 and he RF
E’ E[| K800 | (1 K'8,7,(00}) > €] .

(A.7): Thore exists an a.s. positive definite random matrix T(0,) such
that the differenco

3 !E [1(00) 'l;(”o) | A8, —T(0,)
convorges to zoro in probability.

(A8): ap IE E(8,7(007008,1 1 € K for somo K > 0.
LH ’-l
A9): E 8. 2 [a0s+8,0)—1y00 Cor
(A9) {“If'\:q+l 18, 2 DiOot-8, )=t o)]'} <
for some constants C > 0 and p > 0 and for all sufficiently large n.

(A.10) : To any positivo N thero exists an n, and a constant Cy dopond-
ing only on N such that for evory n > n,

P{ U000 > i } < o
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Remark : Seo Soction 3 for a di ion of this dition (A.10).

The next assumption will bo used only in proving tho results for MPE
and Bayes estimators.

(A.11) ¢ Thero exists an ¢ > 0 such that for all 0 <¢ < &, and for all
sufficiontly largo n

E{sup |4 £ owtai-no) < ce

where C is somo constant.

3. STUDY OF 1HE LIKELIIOOD FUNCTION
Throughout what follows wo set

240 = 1L U0+ 8MI00
Theorem 1: Suppose the assumptions (1-8) are salisfied. Then for every
h ¢ RE, the difference
Z (W) —explB T 0) W o(06)—} K'T(0o)h)
converges lo zero in probability and
LIV o(06), T(05)) == £1Z, T(0,))
where Wo(0) = T-0) [ 8, £ 940 |
a1
and Z is a copy of the standard k-variate normal distribution independent of
T(0,).
Proof: Tho proof followa from Theorem 1 and Proposition 1 of
Jeganathan (1079).
Tho next lemma gives an ostimato of tho continui dulus of the
processes B — log Z,(h), » > 1.
Lomma 1: Suppose the assumplions (A.2), (A.6), (A.8) and (A.0) are
salisfied. Then for some constant 0 > 0

P sup |log Z,(hy, O —log Z,(hy, 09| > &by, by Ba | < Caran
1h=hi<d

where the se By = (he RY ; a < | |  a+1} and p is the posilive consiant occuring
in the condilion (A.9).
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Proof :  Considor, for sty XtgX ... X 1, almost all (X, X,, ..., X,)

Tog Z,h)—log Zy(h) = (hy=hd, £ 1400)

= (=8 £ 200+ ha=h'S, E (007 ~(00)

whero 12—t < 18—
Now,
Pl me ks, £ n0) > a5
<4E (14, £ 7018050 | - ()
g1
whero ¢iga=| & Em oo}
=1

It can bo casily scon, using tho fact that

E[nf0,)] Ag)=0foralij> 1

and E{p. & 00010013, } = I (wnit matris)
for all n, that

E [Irﬁ.ﬁ‘.l N ] =E. - @

Henco from (1), (2) and (A.8) wo sco that for somo constant € > 0
P wp  ta—hyo, £ 0] > dnz] <0 @)
Vhe—h | €d =1

for all sufficiently largo n. Noxt by (A.9) wo have

P ha— By 8a 3 00 —90]| > dV32; by, hy6 B,
{200, 10a=hys, £ 0(0)-n0011 > 725 by hyo B}

< 2dV1Co» e ()
for somo constants € > 0 and p > 0. Honco tho result follows from (3)
and (4).

Tho results of the noxt theorem will bo instrumental in tho noxt seetion
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Theorem 2: Suppose that the assumplions of Lemma 1 and (A.10) ars
satisfied.  Then lo any positive N there exist an ny and a constant Cy depending
only on N such that jor n > n,

> 1
! l.f."?- 20> 53] < Culada > 2 )
> 1 ¢

and Pl me 20> 5] 00N> L@

Proof : By vittue of the inequality

& 1
Pl zm>2 5 e ]

<ir| sup  Z(h)> n/(n+1-)~]
k-0 a1k & || & a+k4l

relation (5) is a consequence of (6), whose derivation we shall now consider,
We purtition the sct {h:a & |k| < a+1} into cubes of sides of length as¥,
Then totally we will havo @Y munber of cubos. Denote the i-th cube and
its center by Dy and /; respectively. Then for a > 2,

P [ sup Z(h)y > 1fa¥ ] < P[ sup sup Z,(h) > l[nN]
ag 1Al <ab ¢ hep;

< P[ sup Z,() > l[a’t"“‘"]
1

+P [ sun sup [ Z0—Z40] > Vs |
t hp;

Now using tho fact that, for every z>0 and y> 0, z <832 and
llog z—log y| € 8'* implies |z—y| < & whonever 8¥*  log 2, we have,
for a2,

r [ sup sup | Z,(W)—Z, ()] > ]/auv]
€ kb,
<P [snp Z,(1) > 1]2a8N7 ]
i

+Pl sup sup |log Z (h)—log Z, (k)| > l[a""”].
hll)‘

A2-8
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Further, fora » 2,

P [ sup Z,() > 1/2287 | < P[sup Zt) > 1aetwon
[ i

QN
QTE P [2,0)> e | < Cula¥ (b (AJO).
1=}
Hence using Lomrma 1 wo have, for a > 2,
I’[ sup  ZgR) > 1/a~] & 2Cx[a¥+Cyjat¥ -5 & Cyfa¥
0 [Al S add
whenever N > 2p/3 (for some C > 0).

Honco tho result follows sinco if (6) holds for somo X, then it will hold
for N € N,

Using tho forogoing results wo now prosont a result concerning the wesk
convergence of the log-likelihood ratio process to & mixod Gaussian shift
process, It may, howover, bo noted that this rosult is not used anywhers
in the reat of the papor.

Let C, be tho spaco of functions which are continuous on E¥ the one
point compactification of R¥, and for which llm f(.t) = 0 ondowed with
(5]

the usual ‘wniform metric. Suppose that Q ={h:0,+8hc0) =

for all sufficiently largo n. Then thoe above theorom in particular xmphes
that k= Z (k) € C, a.. for all sufficiontly Jargo n. \Whon Q, # R¥ for all
sufficiently large » wo make the following modifiention.

Lot U, = { z:1dz, ) > %} and I, = { z:1dix, Q) > H%l where

Q¢ donotes the complemont of €, und d(z, A) means the distance
botwoon z and the sct A4 in the usual sense. Then U, is closed and
U, C V2C ., whero A° donotes the interior of the sot A, Let f, : R —[0,1]
be a continuous function such that

(1 ifzel,
&)=
0 ifze(lYe
(Such functiona always exist). Thon define
{f_(h)Z,(h) ifheQ,
0

otherwiso,

Z.(h) =
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It is easy to soo from tho construction that tho function Z, r R¥ — [0, co) is
continucus. Also noto that

~ < Zh ifhen,
Z,(h) {
=0 otherwiso,

Henco theorem 2 holds for the soquonco {Z(h)}, and honco 2, C, a.s. for
all sufficiently largo n.  Further noto that, since |13,/ — 0 a3 n — o, for every
5> 0, thoro oxists on nyb), possibly doponding on 5, such that
A:lh]l <R C U, for all n > nyb). Honce

wp | Z(h)—-2Z,(h)] D0 foralib> 0.
M€ 2

Thus it follows from Lemma 1 that tho soquence of processes Z,(A) is uni-
formly oquicontinuous in probability, under the assumptions of Theorem 2.
In other words, for overy ¢ > 0

lim  limsup P [ sup  [ZA)—Z, (k)] > € hy, by Eﬁt] —0.
a0 "o hy=hi< 8

Wo thua have tho following thoorom by invoking appropriate thoorems
in Prakasa Rao (1975) or Straf (1972).

Thoorem 3: Suppose the Assumplions (A.1)-{A.10) are salisfied. Then
the distribution in Cy generated by the process Z (k) converge as n—»co lo the
distribution gencrated by the process

Rh) = exp(BTVN0,)Z—§ (O

vhere Z is a copy of the standurd normal distribution N(0, 1) sndependent of
T(0). In particular, if f is a continuons functional on Cq, then for all z ¢ R.

lim PU[Z,(M)] < =} = P{fARA)]} < ).
n—o

4. CONVEROENCE OF MOMENTS

(a) Mazimum ‘likelihood eslimalors. A Borel measurable function
8, =0.X,) is called & maximum likelihood cstimator if

L{X,; 8> L{X,; 0

for all #¢ @, where L (X,; 0) = ?I 110).
-1
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Thoorem 4; Suppose the assumplions (A.1)-(A.10) are salisfied. Then
Jor any > 0
lim  E[]18;0,—00)| ™} = E[| T-"%0,)Z| ™),
A
7 is a copy of the slandard k-variute wormal distribution independent of T(H).

Before giving the proof of this theorem wo first prove tho following

Lemma 2t Suppose the assumplions of Theorem 2 arc sulisfied. Then
Jor any given N > 0 there exisls an ny and a constant Cy-depending only on ¥
such that
P1&M8.—0)] > ©] € Cwfe¥

Jor all w > ng and for all snfliciently larye z> 0.
Proof: Consider, for x> 0,
Pl560,-0)| > 1< P [ sup 2,0 < sup z0]
A 11>
< P| sup Z,(h sup Z,(h); s Z.th N
[ 20 < sun Zins sy 2,00 < e |
+P [ sup Z.(h)> 1/zN¥ ]
1A>s
Now noto that sup Z,(h) » Z,(0) = 1. lenco for all z such that z-¥ <1
A
we have by Theorem 2
P[18;\0,—0)| > 1€ P [ [sAl'\[; Z.(h) > l/;N] < CyfzV.
1lenco the proof of tho lemma is eomplete.

Proof of Theorem 4: Lemma 2 in particular ontails that tho sequence
{871(8,,—0,)) is relatively compuet.  Menco in view of Lemma 1 and Theorem 7
‘of Jeganathan (1979) it follows first that

L8100 —00)) == N(O, T-1(0).

Sccondly, it is onsily seen from Lemma 2 that the soquence (1| 6;'(9.—{)0” mit
m > 0, iz uniformly bounded for all sufliciontly largo » and heneo the sequenco
{18:%8,~0,) ™) is uniformly integrable. Now tho woof-can .bo casily
concluded from theso two facts,
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(L) Mazimum probability estimators. Let B ={te R%: |t  a.a> 0).

A maximum probability estimator with respect to B (to bo donoted by 0,(a))
is one which maximises with respect to d,

JL(X,:009
tho integral Loing over tho set {d—3,B).

Theorom 5t Suppose the ussumptions (A.1)-(A:11) are satisfied. Then
Jor any m> 0

lin E{]85'(3,—00)| ™} = E[| T-(0)Z|m).
A= -
Before giving tho proof of this thoorem wo shall first present someo preli-
minary lemmas.
Lemma 3: Suppose the ussumplions (A1) (A.2) and (A1) are sutisfied.
Then there are positive conslants C und €4 such that for all 0 < €' € ¢,

Pl Zgude< et ] <0,
[l <
where k 18 the dimension of O,

Proof : Beeanso of the assumed continuity thero oxists an u* which
may depend on the obscrvations |[u®] € €, such that

I’[ inf Zu)=Zu)| =1L
lul €e
enco

P § Zdeg e ] < P2 <)

hut €¢

= P(llog Z,(u")| > llog (DI}

< P{ wp [log 2,00] > Nlog (4] ]
lul&e

In view of tho condition (A.11) tho last torm of tho above expression can bo
shown to bo less than or equal to Ce? by following the arguments similar to
the proof of Lemma 1. Henco tho proof of the lemma is comploto.

Lemma 4: Suppose thal the assumplions of Throrem 2 are salisfied.
Then for any given N > 0 and @ > 0 there exists un ng and @ constant Cy depend-
ing only on N such that for all n > 1,

P g Ikez, > M—N] < Cyd¥ My 1,
> M
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Proof : Tt is cnough to prove the result for ¥ > N, for some Ny o
aince if it is truo for N, then it will be true for N € N, Consider for 3f 3 |

P [m L A2 A > 113 ]<r [” |J>Mlh|-z,(h)d/.>1/m«u]

< P[ [ Aoz > l/()[+l-)”*°“] {for ¥ > 2)
[LYPY E

=0

1192, (8)dh > 1R +av2 |

¥ P[ i
=0 Mk A S MyE+1

<Eir| f 2,0 > 131 +1y1]
-0 LMAEQIAI < M4E+]

< T CuJ(3I4k)¥+144 (by Theorem 2) (for ¥ > (26—k—1)
=0

for all n » n, whore ng und Cy aro as in Thoorem 2 and d = dim ©, This
completes the proof of tho lemma.

Lemma 5: Suppose the assumptions of Theorem 2 are salisfied. Then
there exist an ny and a constant Cy depending only on N such that for all n 3 n,

P18'8,—00)| > 2] < Cnfz¥, 6> 0
for all sufficiently large z > 0.
Proof : Considor setting Dy = {he R* : |k] < a},
H|8:'(0,(0)~00)| > )

Pl s f ZWh> swp [ ZhdA]
Jul u=Dg lu) <z u-Dg

up
>z

P
[ sl 20> f z,(h)dh]

P Z (hylh 3
[ oy 2N > £ 2,0

2 (hydh —a)NE:
W){‘_a) (h)dh < 1/(z—a)NE
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§ 2Rk > ?i‘L"]
o NI

r Z (k) Hz—a)Vk
2 [ L 200> Vet |
oNts

+p| £ 2t < 2]
=IL+Iy+1y  say. (k= dim 0).
Assumo in  what follows that z> max(2a,2). Then we have

- 2NE/t
x—a)¥r < o <W1\nd so I, =0.

By Lomma 4 I, € On(2¥[2¥) (for somo Cy > 0)
and by Lemma 3 I, € 2N [xN,
Hence P{[8:40.(a)—6))] > 2]  Cu(1425 /ey (for some Cy > 0).

This completes the proof of the lemma,

Proof of Theorem b: Lemma 5 in pacticular implios that tho sequence
(8:%(0,4a)—0,)) is relntively compact. Hence in view of Theorem 1 of the
present chapter and Theorom 4 of Jeganathan (1982)® it follows that

L£(8;1(D,{a)—0)) == X(0, T-(1))).

Now proceeding as in the proof of Theorem 4 the proof of tho theorem is
completed.

(c) Bapes estimators. Assume that we aro given a prior density n(0)
such that #(0) > 0 for all €O, n(M) is continuous and for every ¢ O
there exist ;> 0 and p > 0 such that

n(0,48,h) < e|h|?
for all |A| > k. Wo alse nssume in what follows that the assumptions
(A.1)~{A.11) aro satisfied,

Define a rogular Bayes estimator £, =/(X,) a3 an cstimator which
minimises B,(¢) = [ 1,0, ¢$)fu(0] X, )0 for all scquences (X, X, ...) where
1.(0, ) i3 a loss function defined on OxO and /(0| X,) is the posterior
denaity, We shall assumo that a measurable regular Bayes estimator ¢,

* Publishod n this iwus, pp. 173-212.
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exists and we consider tho Bayes estimatory with respect to the loas functiony
j&;X0—¢)|% a » 1. We shall suppose for brevity that m(f) == | xince the
passage to the gencral case causes no diflicultivs,

Theorom 6: Suppuse thal the Assumptions (A.1)-(AN1) are salisfied.
Further assume that

(A.12) the largest eigen value of T-\(,) has finite moments of all orders,
Then for erery m > 0

lim L8740, =00 | ™) = E[| T-40)Z|m).
n— o

Befora giving the prool of this theorem we present sume prrljmimu-y
lommas.

Lemma 6. Jd a3l Se

Z(hy | det T(0)|

Doth) T YZR T T @ exp[— 3| TVHANh—h3)[¥)

where b = 8;10,—0,). Suppose thal the assumplions of Theorem G are
satisfied.  Then for any N > U there exists un n, and @ constant Cy depending
only on N ench that for all n > ng

g 1B D dh > MN] < Cal-N, M > 1,
M>M
Proof

I‘[ sup 2, (N(Z,(hydh > 1/2M~\'] < Pi. i Z k> A[-:.\"z]
1> M > M

+P{ [ Z (hydh < 2M-N2)
L Cxdl-Y
by Theorem 2 and Lemma 3_ for all sufficiently large n. Hence from the
arguments of Lemma 4 it follows that for all sufficiently large »

l’{” .I»u | k|2 Z (h)dh| Z (hydh > l/um} < CnJMN (for some ('y > 0).

Denoto the eigen values of 2'(0g) by A, < ... < Ag. Now |hi] € M2 and
LAy M implies that

det 209 V2

@mrE " ]

Rl oxp— L2 ANk — k%)) 2 ik
o V] oxpl= LY TV 30N h— 17| 2l
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K|deb T@)
(2m)En (=R > M2

{h—hi |4 oxp(~3| TY30o)(h—) | 1k
(for some K > 0)

KOy oo A AT S
= (ZnfEa lhlgﬂlli(ﬁ“)a Toxp( i%‘_l"l‘i)’"‘

{amiy

(I‘ e A )Ill KN E k
< e ((ER) 0 en (g e

whero A¢'s aro the components of the vector A. In what follows we assume
without loss of generality that a is an integor. Now using tho fact that

(Ay oo A

It (b oxp (=2 E,\m)dh @
WIH(H) 0'\1"( 7 I Ak dh<

for every >0 i=1 2 .., L, wo sco that the above integral is bounded by
[} ajsaw
(K24¥ [B[4¥) ( P l//\‘) ! (for eome K > 0)
=1

& KN |MiN-an-N & 2N |3

for somo K > 0 and for all N > 2, sinco 1/A, < . Thereforo for overy
N>0

p[let TGN |h|=cxp(—§|TV’(0°)(h—h:)|')dh>IIEJIN]
M

(2,,)1—/:— >
< PlJky]| > M[2)+P[YA, < M) & CyMN  (for somo Cy)

for all sufficiently Jargo n, by Theorem 4 and the given assumption (A.12).
Lomma 7: Leta> 1. S

Dby = b8, 01208 LT oxp (o
where Fba+an = ﬁlm.mh) / J li_'llfﬂm,h)dln

Suppose the aseumplions of Theorem G are salisfied. Then for any qven N-> 0,
there exist an n, and constant C{ and CiP depending only on N such that for
adlnd nyand M > 1

P g |MeI D ah> cg;w—w] < CQM-N,
151 > M

42-9
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Proof : Let g, = h+h;.

Then |h| € dalga|®+da]h3)®

whero dg = 20 Using this incquality wo have

[ IMeDh)|dh<ds 1g1°D,(9)|dg
> ar lg—hs]> M

tdallyle | Do(9)]dg,
lg—hs> M

>

whero D {g) is as defined in Lemma 6. Consider

Pl lgleIDdalds > 20K
lg=tni>

<[ §1gleIDa)dg> 290K K] < M| HPUR| > My
lg=131> 1

<P 1 loloIDJg)ldy > 25MK |4 D1y > Mj2)
191> Mj2

 CRI-¥ (for somo CP > 0) ]

by the previous lemma G and Theorem 4. Similarly it can be shown that,
for some C{' > 0 and C§P > 0,

P [ s g [ D(W)|dh > cgw-ﬂ] <oPM-¥ L @)
lg~h3| > o

Henco tho result follows from (7) and (8).

Lemma 8: Supposc that the assumptions of Theorem 6 are salisfied.
Then for ecery N > 0, there exist an n, and a constant Cy depending only on N
anch that

P64t~ 00 > M) < Cud-¥

Jorallnz Oand M > 1.

Proof : Sinee {, is a Bayes cstimator with respect to the loss function
|8:0—¢)|%, a > 1, we have potting u, = 83'(t,-0,),
SV ofoB ot 8,000 > [ 4, | oBat 810N >

1lence, sinco |A] & 3[4 and |u,| > M implies that |h+u,| > |k +M]2

h 8, +5.1)db
|h|<‘5\1;4| alo 0t SN
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PU8 =001 > M)

S P{IMLOAOMIE > (]S04 8,000}
1A < e

S P{IIMI0u 8000k > f  \h|ofl,+8,0)dh
IR < M4

K M 1
K S Ot

(for soruo K > 0)
< I’{ {1k AB S > K f f:(0n+6nh)zlh} v (9)
1] >N 1A < MK
Now noto that

Lot 70,4
(2")111

[ 1048k =1 = { oxpl—1 KT(0)hIdA.

Henco by the arguments of the proof of tho lemma 6 and by tho provious
lomma 7, for any given N > 0, thero oxist constants C and CP and an n,
depending only on N such that for all 7 > n,

Pl IRSLA 8> OPU-N | < O
1AL > MH4

and

. (et TGy — W T(Oh)dh
p {‘m £MIA S8 b (2m)Fi1 Ihlé[.ul* el

> Cpar-n | < oY

Honeo it is casily scon that the last term of tho abovo inoquality (9) is loss
than or equal to 2C 31~ for all n 3> n,, that is,

P8, > M) < 269 M- e (10)
for all n > n,. Now

P{| 870, —00)| > 3]

< PiI&t—0] > M[2)

+P(|548.—00)| > 3[2)

< NHOPINLWY-VE(| 8170, — 00| ¥)
by (10). By Theorom 4, the proof of tho lomma is completo,
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Proof of Theorem 6@ First noto that tho lomma 4 implics that for overy
ep0andap 1

lim limsup P[M[ |h|ﬂZ_(h)dI|>e]=0.
I>a

—e A ®

Henco by Theorom 1 of tho prosont chapter and Theorem 6 of Jeganathan
(1979) it follows that

L (85 (b~ 0) y == N(0, T-}(0a))-

Now proceeding as in the proof of Theorem 4, tho proof of tho theorom is
completed.

5. D1SCUSSIONS ON THE ASSUMPTION (A.10) AND SOME EXAMPLES
Consider a claes of mixed Gaussian procosses having the following form

Z,(h) = exp(BU (0)—} KT (6% . (1)

whore, for every » > 1, U, is & random E-vector and T ,{0,) is & p.d. random
kxk matrix. We further assume that tho momonts of any order of the
largest eigen valuo of tho matrices T7(0,) are uniformly bounded for all large
a. Let A, bo the smallest eigon value of T.(0,). In order to verify (A.10)
it is enough to show that for every N > 0 thero exists an ny and G doponding
only on N such that

PIZYR) > |B|-¥; At < |B|)< Oy B}~

since we havo assumed that for overy m > 0, sup E(A;™) < oo for somo ny
n3ny

Now
PIZR) > |B]=¥; A3 < {R{]

< [RIMEIRS! < |AD 2w
< IBIYEQEG < [B1)2,(h[2)0xp(—~(A4/8) | |1}

< AIPEIOF <V R))Z(h[2)RpAS2H | B %)

{for somo Ky >0)
< |R[R| ¥ KNE[Z,(h/2)}
< Knlh|=¥ (sinco E[Z,(h/2)] = 1).

Thus we sce that tho' ption (A.10) ia satisfiod in this oaso,
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In somo cascs it is possiblo to vorify that
’3’ o f L™ 081 —S M0 dps > C1 B[ e (12)
=t Njs
for somo C > 0 and for all sufliciontly largo n, whero X; = (Xy, X, ..., X)).
Then putting
ay= ‘l',nf JU (008 1)~ f105) g,
Ajay

B2 <t a-ag
Noto that |a,] < 1, since
0 s J O SIHONIY < 1.
Hence

Bz < oxp [~ S o] < exyl—Clh

for all sufficiontly largo n, whon (12) holds.
A situation where (12) can bo casily verified, with 88, = n-11, ia the
following example.

Ezample : Let X,, X,, ..., bo a scquenco of Markov chain for which tho
state spaco consist of the numbers 0 and 1; the transition matrix is

X,
xo

0  (l=p)+mp (1-mp
1 (I-m(—p) m+(1-mp

and the initial distribution of f(1, 2, 7) = 1—f(0, p, #) = p whoro
(B ) €0 = (0, 1)X(0, 1).

We finally point out that the assumptions (A.1}{A.11) can bo considerably
simplified when the observations are i.i.d,
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