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SUMMARY. Some resulis ing the asymp! theory of catimation ars p

when the limit distribution of tho log-likelihood ratios is mixed normal, More lpeoiﬂully. the
notion of a locally ssymptotically mixed nornal (LAMN) sequence of famities of distributions
is introduoed, and it is shown that whon a cortain kind of differentisbility in quadratio mean typo
rogularity condition is satisfied the given sequonce of families satisfies the LAMN condition, As
» consoquence of the LAMN condition, it is shown ﬂut the limit distribution of & regular so-
quonoe of etk can be oonditionally d dass lati Uting this
convolution result, some results concerning the asymptotio lower bound for risk funotions of
catimators are obtained. Qiven that the soquencs of families satisfies the LAMN oondition
quite general additional uaumphona aro sought undet which it is shown that the maximum
probability esti likelihood esti sad o cortain olsas of Bayes eatimators
are asymptotically optimal in & certain sonse. A result conoorning the posterior approximation
at the trus value of the parameteris also presonted.

1, INTRODUOTION

In ono of his fundamental papers LeCam (1960) introducod what is now
callod locolly asymptotically normol (LAN) families of distributions and
obtainod soveral hasio results regarding the asymptotic thoory of estimation
ond tosting. Roughly apoeaking, a sequence of families is said to satisfy tho
LAN condition if the corrosponding soquonco of appropriately normalised
log-likolihood ratios is locally approximated with probability tending to ono
by the sum of two oxprossions, tho first ono being a soquence of random lincar
functions of tho normalised paramotor and tho sccond one boing a non-random
quadratio form of tho normalisod parametor and the saquonco of random
vectors involvod in the lincar torm of tho approximation converges wenkly
to the normal distsibution with moan vector zoro and tho covarianco matrix
boing tho matrix involved in the quadratio form of tho approximation.

An important thing to observo regarding the LAN condition of LoCam
(1060} ia that a largo part of asymptotic theory depends only on the approxi-
mating form of tho log-likelihood ratios, and any soecific proporty such as
i.i.d. of any other partioular form of dopondenco is not muoch relovant.

In recont timos, thoro occur situations, o.g., in Galton-Watson branching
procosses and pure-birth procoss as has boon discunssod in e.g., Keiding (1075),
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Heydo and Foigin (1075), Basawa and Scott (1976), Hoydo (1078) and Dhat
(1978}, in which LAN condition is not satisfied, but it ean bo scon that a quite
similar and moro gonoral condition, which may Lo called locally asymplolically
mixed normal (LAMN) condition, is matisfied. Roughly sposking, & scquence
of familios may bo anid to satisfy tho LAMN condition if tho corresponding
sequence of approvriatoly normalised log-likelihood ratios is locally approxi.
matod with probability tending to ono by tho sum of two oxpressions, the
first ono Leing & soquonco of random linoar functions of tho normalised para.
moter and tho second ono boing a soquenco of random quadratic forms of
tho normalised paramoter, tho sequenco of random matricos involved in th
quanilratio forma being convergont weakly to an almost surely pusitivo definite
random matrix ond tho random voctors involved in the linear torms boing
converrront wonkly to an avpropriato mixed normal distribution.

In Sootion 2, a dotailed study of tho LAMN condition is carried out undor
a cortain kind of differontiability in quadratic mean typo regularity condition.
Most of ths results of this section wero originally obtainod for the iid. caso
by LeCam (1970). LAN-condition for tho dependont obsorvations has beon
studiod, among sovoral othors, by Roussas (1972, 1979) and for the indo-
pondont but not nocossarily idontically distributed case has beon studied by
Phillippou and Roussas (1973) and Ybragimov and Khasminskii (1975).

As a consoquonce of tho LAMN-condition, in Section 3 it i3 shown that
the limit distribution of any convorgent subsequonco of ostimators satisfying
cortain invariance restriction can be lly d posod as a 1
tion. Using this conditionnl convolution result, soma results concorning the
asymptotio lower bound for risk functions of ostimators aro obtained. This
rosult extonds and strongthons tho convoiution resuit obtained by Héjek
(1070) for tho LAN caso. Convolution rosult for the LAN caso was indepen-
dontly obtainod by Inagaki (1070 also undor some rustrictivo assumptions.
T.eCam (1972) has oxtended Héjok's convolution result to a much more genoral
situations than that of the LAN enso.

titi

In Soction 4, an oxp tial approximation rosult analogous to Thoorem
3.1 of LeCam (1960) is prosonted. This result is usod in Section 5 of the
prosont papor. Also it sorvos as a poworful tool in sorveral othor places,

#00 o.g. Joganathan (1980a).

Tho main purposo of Soction 6 is, undor suitablo global assumptions, to
200 what are tho minimum possiblo local rogularity conditions noeded undor
which tho sequencos of maximum likelihood ostimators, maximum probability
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cstimators and a cortain class of Bayes estimators ean bo approximated with
probability tending to one by tho random vectors involved in the lincar terms
of the LAMN condition. A result concerning the posterior approximation
at tho true value of tho paramoter is also prosonted, Our arguments depond
only on tho approximating form of tho log-likelihood ratios, and thoey do not
in any way dooend on any particular nature of the samplo spaco, For
oxamplo, givon that a svquenco of maximum probability estimators is consis-
tent ot & cortain rate, tho only adiditional condition we assume to show that
this soquenco satisfies tho above requirement is the LAMN condition.

In Secction 6, wo give ensily vorifiablo regularity conditions, in terms
of the first derivatives, implying the more gonerai difforentiability in quadratic
mean typo rogularity condition of Section 2.

In connection with tho presont paper it should bo mentionod hers that
Hoyde (1978) has obtained under somo specific assumptions, an important
rosult that maximum likelihood estimators provide tho best asymptotic
probability of concontration in symmotric intervals, Thie result is clarifiod
in Section 3 of tho prosent paper.

The firat vorsion of tho 1 t papor app lasat 1 roport in
Jonuary, 1879. Since thon or at about the samo neriod of timo soverat impor-
tant results have boen obtained. Regarding the further study of the LABMN
condition and tho asymptutic theory of ostimation, montion may be made
of Davios (1979), Jeganathan (1081, 1080, 198Ca, 1980b) and Swansen
(Ph.D. Thesis, Soptombor, 1080).

Tho rosults, obtained indepondently, of the first chapter of Swanson's
thosis is related to the rosults of Seotion 2 of the present paper.

Swanson's thesis further containg some important rosults concorning
tho asymptotic thoory of testing for tho LAMN case. For an earlior treatmont
of tosting problom for the gonoral caso, under somo specific assumptions, soo
Basawa and Scott (1977) and Feigin (1978).

Tho following notations aro used throughout. If P and Q are probability
measuros on & mansurablo spaco (42, A), then dP/dQ donotes tho Radon-
Nikodym dorivativo of tho @-continuous part of P with respect to @. If
Y is a random voctor its distribution will bo denoted by £(Y) or by L |P)
whon Y is a random vector dofined on (@, A, P). For a voctor h e 7%,
h’ donotes tho tranaposo of h and {h| denotes tho ouclidoan norm. For a
squaro matrix D, ||D]| donotos the norm dofined by tho squaro root of the
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sam of tho aquares of jta eloments.  ‘==' denotos tho convorges in dislribu.
tion and 5 denotes tho convergonea in probability,
YWo now intfoduco the procise dofinition of the LAMN condition.
Definition 1. For cach n 3 1, lot {3 0€ O} Lo o family of probability
measuros defined on (0, Fn), Whero O is an opon subset of 7%, k> 1.

Thon tho soquenco of familios {P;a; 0€0©), n> 1, sntisfies tho LAMN
condition at 0 = 0,60 if tho following two conditions aro satisfied.

(A.1). Thoro exists o sequence (IV4(0,)) of S,-measurable k-voctors
and o soquenco {Tp(0,)} of Fy-moasurable k xk symmotric matricos such that
Py n [Ta(0) is p&.)=1 for overy 2 > 1 and the differenco

=1
5540, An

log agzian (T O a0 =~ KT a0
dl)ao." L) 0 a\Y, 2 niY,

convorgos to zoro in P”o a-Drobability for ovory b € 72%, whoro {85} is & soquonco
)

of p.d. matricos,

(A.2). Thero exists an almost surcly (a.8.) p.d. random matrix T(6,)
such that

L(Va(05), Ta(0o) | P, o) = LV, T(%)

whore ¥V is a copy of the standard E-variato normal distribution indopondent
of (T(0,)).

Definition 2. Supposo that tho sequenco of familios {Py.n;0€6),
n > 1, satisfios tho LAMN condition at 6 =6,¢0. Thon tho sequenco
{Va} of estimators ig said to bo a soquoence of asymplolically cenlering sequence
(ACS) of estimators at 0 = 0, ¢ © if tho difforenco

8n(Vn—00)—T 3 1%(05)WWa(0,)

convorgos to zoro in P’o - Probability.

2. DIFFERENTIABILITY IN QUADRATIO MEAN TYPE REQULARITY
CONDITION AND TRE LAMN coNpiTioN
For n» 1, lot (X, X,. .... Xy) bo a saquonco of random voctors dofined
on a probability space (&2, &, Py) whero the k-dimonsional paramoter
8cO, an open subwot of A% Lot &, = o(X;, Xy ..., Xa) bo the o-field
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induced by tho random voctor (X,, X, ..., X5) and Py, Do tho restriction
of Py to Fy. Lot 8, Lo tho truo valuo of tho paramotor and wo assumo
that 6, ¢ @. Wo furthor assuno that, for j > 2, & regular conditional pro-
bability moasuro of Xj givon (X,, X,, ..., Xy_,) is absolutoly continuous
with rospoct to a o-finito monsuro py; with a corrosponding  donsity
HXg Xy, o, Xp0130), and tho probability measure of X, is absolutoly
continuous with respoct to a o-finito monasuro 4, with a corrosponding
donsity £i(X,; 0). For tho sako of simplicity wo sct

SXg| Xy s RyLy58) = f5(0), 5 > 2, 0nd f(X,;0) = f(B).
Lot
Loy, oy Xn30) = ,r'_il 50,
To simplify tho notation wo sot
L(X,, ..., Xa;0) = L,(6).
Wo shall call this tho likelihood function.
Lot

log La® _ & 1o, 1O
An(0) = log L.®8,) _Exlogfl(eo)

which is well defined with P'o." probability ono. Wo call this tho log-likeli-
hood functiun.

In this soction we assumo the following ot of assumptions.

(2.A.1): Thoro aro positivo definito matrices §4, » > 1, doponding
noithor on @ nor on tho obsorvations, and random voctors 81(0,), i» 1, such
that, for ovory h € ok,

£ BUSGnt00 W - NS0 ) >0

a3 n — 00, whoro wo sot

Ens(00, 1) = V/fsBo+83"R)— V/f(B,).
Define

EAO Vi) f5(0) 5 0
o) = )

0 othorwisa.
(2.A.2) 1 E[ny(8y)| Fy-4) = 0 for ovory j 5 L.
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{2.A.3):  Thero oxists a monsurablo function T(8,) mapping 47 to the
sot of & xk symmetric motrices such that

1’00(7‘(00) is pd) =1
and

n
81 X EDy@7jon] #1116 ~T0) |5 0.
{2.A4): TFor overy § > 0 and he ¥
n
,21 E{[ W83 58, | U W85 s(85) | > )] - 0

where I{C) donotes tho indicator function of the sot C.

(2.A.5): For every h ¢ 7%, thoro oxists o constant K > 0 such that
sup E E[|N6;19400|") < K.
Apl gl

Remarks (1) : Sco Soction 6 for a discussion of tho sbove assumptions
in torms of tho first dorivatives and for a method of finding out tho normalising
matrices §,, 2 > 1.

(2) Assumption (2.A.2) is imposod in ordor to invoke the central imit
tl for martingalos. It is iblo to rolax the sssumption (2.A.2)
slightly if ono uses tho contral limit theorems for nesr martingales, as consi-
dored by Hall {1977). It is also possiblo to deduce (2.A.2) from (2.A.1) in
somo snocial cavos; 500 0.8, LoCam (1970) and Roussas (1972 and 1079). We
woro not able to doduce (2.A.2) from {2.A.1) in tho gonoral caso.

(3) For each n » 1, tho quantity s E[740,)n,18,)] is called tho Fisher
=1

information matrix and tho quantity '2‘1 E3(0,)7;(85)| F1-1] is called the
1

conditional Fishor information matrix.
Following aro the main thooroms of this soction.

Thoorom 1: Suppose the assumptions (2.A.1)-(2.A.6) are satisfied. Then
the sequence {Pg i 060}, n > 1, satisfies the LAMN condition at 8 = 6,
with

n
Ta(®,) = 5;* ’El E(ny(8,7;(05)| 3] 851
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and
n
Wa(6o) = TsH8,)55" lzl 71(60)-

Theorom 2: Suppose the sequence {Po,n; 860Q), n > 1, satisfies the
LAMN-condition at 8 =0, Let {Va}, n > 1 be a sequence of estimalors
salisfying the ACS-condition al 6 = 8,. Then, for every he X8,

LT (0, 8a(Va=0,—851h)| P0.+5:'h, ,.) == L(T(8,), T8IV | Poa)-

The oroofs of tho above Theorem 1 will bo givon through a sories of
lommas; proofs are bascd on the ideas of LoCam (1970), Roussas (1972 and
1979} and Tbragimov and Khasminskii (1075). Ve start with the following
lomma, tho proof of which is ossentially containod in corollary (3.8) of McLoish
(1974) (s0e also Lemma (3.1) of Basawa and Scott, (1977).

Lomma 1: Suppose the assumptions (2.A.2)-(2.A.5) are satisfied. Then,
Jor every t ¢ 7X,

| 5 1eszme01— B BULsn001t15001 S0
Lomma 2: Suppose the assumptions (2,A.2)-(2.A.4) are salisfied. Then
(T80, TW,(8) == (T(9,), V),

where T',(8,) and W ,(0,), n > 1, are as defined in Theorem 1, and W is g copy
of N(0,X) independent of T(6.).

Proof: Since, for every ¢ > 0 and ¢ 7%,
B[ max [¢5:tm0)]*] < e
T
L
+’Zl E(| U871 010,)| I(] 8651 my(0,)| > ],
wo have, by (2.A.4),
‘ '5:100,)]3] - 0. -
E[max 1¢57m,091%] > R
Now Lemma I and (2.A.3) implios that, for ¢vory te R,
£ |essmy00 12 S T, - (22)
J=1

A2-3
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Hence by the corollary of Hall (1977) and tho remorks precoding the Theorom
2 of Aldous and Eagloson (1078), wo bave

:s;l’_i'l 4(0,) == TV (stably), - 23)
where TV is a oopy of N(0,I), indopendont of T(8,). In particular
@3 E’ 1i8,), T1B)) == (TH3(6,)TV, T(6,)).
In view of (2.4.3) we then have
(B0 £ 000, To(0) = (T*H0)W, T(0,).
This complotos tho proof by noting that
551 & mid) = T, 0,).

The following lemma moy be considered as an obvious gonoralisation
of Lomma § of LeCam (1974).

Lomma 3: Suppose the assumption (2.A.1) is satisfied. Then, lelting
2Z; for the indicator of the set {,(8,) = 0},

’i E{ Zfy(8o+55%h) dpg] - 0 e (24)
=1
and

l"r.l E(fZ;| W63°E,18,)] 2 dis] > 0 e (28)

as n— o for every h ¢ RE.

Proof: Fix h € #% Lot Z,;bo the indicator of the set {fy(6,) =19,
1'5;74(8,) < 0} and Z,y bo tho indicator of the sot {f3(0,) = 0, I'6;1E(8,) » 0}
80 that Zy = Z,y+Z,. We thon have

£ BUZAE 00, - W50 i)
> £ EUZufi00457m) dn

1. .
+1 ElE 12,3 | W83 €061 | *dts)
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By (2.A.1), tho left hand side of tho sbove oxprossion tonds to zero. Honce
we havo

n .
I U 2y WEDE0]* dpg) > . 126)
Now lot 8 < 0. Then

;21 B{J ZelEasO0, th)— WO, @2 dpy)
> ,éEu oy [0+ 57h) dps)

+5 BB 2yl 5001 d)
By (2.A.1), this implies that
’g‘.‘ EU Zag 10552 E48,) |2 dag] = . @D
Combining (2.6) and (2.7) we have
E stz nsn et g o
This provos (2.5). To prove (2.4) considor the inoquality

£ B[ 5 2418800 M- 11552 §400| 1]
3=1
<2 B B 280 1) WO 0P duy)

+%’§l E(f 2| W8 £000)|* du: . (28)

boro we have used tho inequality
|e2—d?| § (1+a)|c—d|2+d*e, 2> 0 and ¢,d¢ R. . 129)

The first term of tho right hand sido of (2.8) tonds to zero by (2.A.1) while the
socond term tonds to zoro by (2.5).. This complotes tho proof of tho lomma.
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To simplify the notation we sot, in what fullows,

HOTED_, ¢ o
Nnsl0p ) = "/ Tn00) A0 0

0 otherwiso.

Lommn 4: Suppose the assumptions (2.A.1) and (2.A.5), are satisfied,
Then

E 11800 m— 1550011y = 0 e (210
and

Ld 1

% E [ Inh (8 b= W57 i8] ] 0. w21

=

Proof: Using tho inoquality (2.9), we have

E B[ 1w, m— 1052 660011
<) 5 BF (B0 m)— W55 509 d)
1n .
o 5 EUINSIE@P d). a>o. . 212)

For each fixod a, tho first torm of tho right hand sido of (2.12) tonds to zero
as n =00 by (2.A.1). Now considor

E muniwss koarau) = £ BUNST mo0 1Y

+ £ BUIZ 1053 §00 gl

whoro Z; is tho indicator of the sot {f;(0;) = 0}. Honco wo s0o that the
socond term of tho right hand sidoe of 12.12) tonds to zoro by first lotting
7n—> 0 ond thon @ —» o0, by (2.A.6) and (2.5). Thus tho right hand sido of
(2.12) tends to zoro by first lotting 7 —» 00 ana then ¢ — c0. This proves
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(2.10), sinco convorgenco in tho firat moan implies the convorgonce in pro-
bability. Similarly {2.11) is provoed by considoring thoe inoquality

" 1 o 2
E B[ Int0n b Wzt ]

" 1., 2
<uta £ E{ [nun®0, =5 1851 17,(00)] }

1 2 ren
e E[|W871746,)]%), a> 0,
and by ncting that

£ 2 [t szt

> 1 T
T E 0, h)—— W51 E,0,) | d
- {ll.(e,)jseO)[E"’( o )= 5 W Epl n\] p,}_,o

83 n—» 0, o (213)
This completos the proof of the lomma,

Lemma 5: Under the assumplions of Theorem 1, we have
| % 30, lo—— B TE K |5 0
= )Y 0s ry 0 .

Proof : By assumption (2.A.3) and Lemma 1 we have

3 P
‘ Z W85y~ WTi0h |5 o.
3=1
Honco it i3 onough to show theu

LA LT B
I | e by 1N 001 |5 0

This follows from (2.11) by spplying Chobyshov's inoquality.
Lemma 6: Under the assumplions of Theorem 1, we have

P
maz | Mns(80, )| = 0 e (204)
and

Ld P
,2. 178580, h)|* = ©. e (215)
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Proof: Tor any € > 0, considor
P[max|na8,, h)| > €]
jan

< 2 Pllmau i) >

< EP[|7u0s m_% w8700 | > €2
jo1

+ 3P| ghsimen|> 2. (218
irl|s -

Now (2.13) implics that, by applyine Chobyshov’s inequality,

A

1,
Do = W& 0y | > 2] 50, L ey

It is easily soon that the sasumption (2.A.4) inplics

tp

L
Pl |z va me

>ef2 ] 50. . (228)

Combining (2.18), (2.17) and (2.18) we goo that (2.14) is proved. To prove
(2.15) consider

2 9080 I1[* € mOX|PgiBp, W) T 728, .
§=1 16 g1

Honce (2.15) follows by applying Lomma 5 and (2.14). This complotos the
proof of tho lomma.

Lomma 7: Under the assumplions of Theorem 1, we have
& , L 1., P
2 5 Pny(8y, M)—R 8;1,2‘. 7”(9“)+T W'T, 0,k 0.
g=1 -1

Proof : Considor
Elnng(85, 1) | F4]

= V)Bo+53'h)/(8,) dpry—1

= B0 Wy,
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By (2.10), (2.5) and Lomma 1, this implios that

23 Elas(00, 1) ar,_,]+% T en| 5o,
Honco, sinco E[7,(0,)] Fy_,] =0, j > 1, it is enough to show that
£ r~Erjl e 5o,
whore wo sot
¥y = 2[7.48. — w7000
Sineo this summands are martingalo difforonces, we have

E{ £ ry—50ry) 01}
= & BByl 0p

< i‘.l E[] Y511 - 0 88 n. > 0 by (2.13).
P

This complotes tho proof of the lomma by applying Chobyshov’s inoquality.

Proof of Theorem 1: In viow of (2.14) and Taylor's expansion we
have
An(0,+85h)

=2% Tog (147 ,3(8,, 1))
f=1
» (]

=2 2 1,48, h)— X 7340, k)
=1 7=1

a
+ & eyl o m)?
with probability tending to one, whore |a,y]| € 1. By (2.15) we thon have

An(ea+s.-m)—2’il AoslBor h)+,>"3l 70, )| 5 0.
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Furthor, Lomma 1 and (2.11) impiies that
- 1 P
’2 7%(0,, IA)—T BT, (8)h|— 0.
ol

Honco tho rosult follows by Lomma 2 and Lomma 7.

We shall now prove Thoorom 2; tho proof will bo given through
o sorios of lommas, YWe shall first give tho folluwing proposition which ostab-

lishos the contiguity of tho soquonces (Pe’ o} and (l"e‘l e h.ﬂ)' hert;

dotailed discussion of contiguity can bo found in LeCam (1960).

Proposition 1: Suppose the sequence {Py ;0 ¢ O}, n 31, satisfiea
the LAMN-condition at 0 = 8,. Then ihe sequences {PQ'”) and (P0.+8:‘h,n X
h & 72¢, are conliguous.

Proof: LAMN-ocondition at & = 6, implies that

AOo+57h) = KTV~ hT(0 A

for evory h ¢ 70, where IV is a copy of N(0, 1), independont of T(8,). We
have to show that

E[oxp(h’Tll!(Qa)W—% WTE, )] = 1.

Using the indepondonce of T'(0,) and ¥ it is casily soon that

ET[oxp(h'T”’(Oo)W—%h'T(Oo)h)] =,

where ET donotos the conditional expectation givon T(,). This proves the
proposition,

Lomma 8: Suppose (hat the sequence {Pe_.; 8¢ 0), npl, salisfies
LAMN-condition at 8 = 6,. Then, for every h ¢ R,

LT {80k, T30V (8)| Py )= LT6,), T-VHO)V+h| Py ).

o+83th,n
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Proof : For simplicity wo assumo that tho pnrameter apaco is of ono
dimonsion. Thon according to the statorment (6) of Theorom 2.1 of LoCam
(1960), wo have for evory u, o ¢ 72,

By 15.n XPGUTZ VA0V (0,) 42T (0]
- E[oxp (iu’I'""(On)lV-f-i'-T(eo)-)—hT”’(Bo)W-— ’;—'T(eo)) ]
= E[exp(iuT(@o)-i-iuh)E,’[ exp(iu(T-M(e,,)w—m

+n'1"/=(ea)W—'2'—‘T(On)) 1}

Using tho indopondonce of T(8;) and IV, it follows that
1
BT [ m:p(m(T—lnle,,)rv_h)+mm(a‘,)rv_L2 T(e,,))]

= Efoxp(iuT -0, W)).

Hence wo 800 that, for overy u,ve 7,

Ey_ 45, XPUERT 2OV, (80)+ivT (0))

— Bloxp(iu(T V%0,V +I)+ivT(0,))).
This givos the roquirod rosult,
Proof of Theorem 2: Sinco tho soquonce of estimators {Fpl, n > 1,
satisfios ACS condition at & = 6,, wo have
(8.{VamB0) =T V20V, 8] = 0.

Sinco tho soquonco (P,M} and (P,D“_,‘ J ke 7k, aro contiguous,
R

180(Va —085)—T512(0,)TW06,)] tonds to zoro in P,N‘_,L- probability also.

Honce by Lomma 9, wo have
STa(00), 8sVa—80)| Pay, 1, ) = LIT(O), TR0V +D| Py ).

‘This complotes tho proof of tho thoorom.
A2-4
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3. DEOOMPOSITION OF THE LIMIT DISTRIBUTION
Wo shall fifst prove a conditional docomposition result; the proof is

basod on Bickol's simplo short proof of MHajok’s convolution thoorom (S
Roussas, 1972 for & published vorsion of Bickol's proof).

It is important to noto that wo do not assumo tho oxistenco of the limit
distribution and thoroforo we prove our conditional convolution rosult for the
limit distribution, possibly substochastio, of sny convergont subsoquence.

Lot {¥,} Lo a eequonco of ostimators satisfying the invarianco rostriction
stated in tho thoorom givon bolow Lot {r} bo subsequenco and H,,o bo a
(sub-stochastic) measure such that

LITH(8,), 81V, —8,)| Py ) = Iy

Lot L, be the law of T(8,) and let 72t bo one-point compactificatitn of
7. Dofine
Hy (B xfod)) = £3,(B)—Hy B x7R¥)
and

ﬁ,o (BxA) = Hy (B x4)
for evory Borol sets BC 72°" and A 72. Thon Hg, is a probability

moasure defined on X7t indoced by Hy. Lot 2,-(.

5 bo a rogular

conditional probability measuro (on 7%) such that
Ty, () = [ 1)Ly (d2) L4, (1)

for evory Borel sot C G 72" x 7.

Theorem 3: Suppose that the sequence of families (Py 4;0¢0), np 1,
2alisfies the LAMN condition a5 8 = 0,60. Let -{V,} be a sequence of esti-
malors- such that the differénce

EU(T 18,), 8(Va—0,—851R)) | B, 4=

(L")

—E[f(Ta(8), 5a(V~8,))[ Py, , )

1]
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converges to zero for every he 72t and for every continuous functions f vanisking

outside compacts. Let the regular conditional probability measure ZT%, be as

above and let oLpyq, be the resiriction of .LTT(,“, to 70, Then there exisls (sub-

stochastic) kernel Kp g, such that

Lrigy = gy * N(O.T(05)) o,

The foltowing familiar version, in which tho oxistonco of tho limit distribu-
tion is assumod, is immodiato from tho above Thevrom 1,

Corollary 1: Suppose that the sequence of families {Pyq; 060}, n > 1
satisfies the LAMN-condition at © = 6,. Let {V,} be a scquence of estimators
such that, for every he 72,

L(T n(8), 6(V—08,—55h)| P

PR B

) == LTO), V(6,))

Jor some random k-vector ViB,). Let Ly 0 be a reqular conditional probability
measure of V(8,) given T(B,) Then there exists a stochastic kernel Km.,» such

that
Lrigy = Erigy * N0, T-18,). as.

Proof of Theorcm 3: For simplicity sssume that dim @ =1. Lot
flu,z, 2, y) = efu3—1)ei2v=1)fiziy, u,z,z,y € R.
Note that
fu,2,z,y) > 0 a8 |(z,y)| - co for overy u,ze R.
Honco, wo have, in viow of tbe invarianco restriction

{ ftu,2, TeBo), 8(V,—08,—5;'h)) dP,

-1,
ot8; Ay
T

= [ fiyz,t, v)l?,o(dt, dv) .. (3D
A1 a
for every u,z¢ R.

Now thore oxists a subsoquonce {m) C {r} and & (sub-stochastic) mossure
Qg, such that

LT 00}, Win(0), S Vin — 053] Py ) = Q.
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\Vithout loss uf gonorality assume that (m} = (r}. In viow of centiguity
we can furthor assume, withvut loss of generality, that

Plou:h,. & Py o for evory n > 1 and AeR.

Henco tho Lh.s. of (3.1) can be writton as

(ll"“:;‘_ [4

L Jw A T BT—b—h —gp S ap,

and it is not difficult to soo from tho LAMN condition and the corrosponding
contiguity condition, that thie convorgos &

J et —iery (o224 Joy, @dod) .. @2)
for every u,z, he R. That is, we have the equality
[ f(u, 2,8, ), (d2, dv)
) o
hl
= }{' f,2, 8, (o—R)oxp (mmw—?¢ ) Qy, (d1, du, dv) e (33)

for every u,z,heR.
Now define

Qg, (4 XB x(c0}) = Fy (A XB)—Qq (4 X B X7t
and
@y, (4 XB XC) = Qy (4 XBXO)
for evory Borcls subsots 4, B and C of R, whore Foo is the law of (T'(8,), TV).
Thon -Q-’a is o probability moasure on R?xR. Lot H”o bo aa dofined earlior.

Note that fl% and Fy, ato marginals of é,a. Now (3.3) can bo writton as
{ fle 2,8, 0)H, (dt,dv)
R? °

= §, St (o=R oxp (015 1) Gy, (o, 49
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for ovory u,z,he R. This implios that (cf. Loévo (1963, p. 189))

J oxp (iwt4-iuz)l, d(t, dv)
R? °

= { oxp_(iutiz(v—P)) oxp(hl“’w—%l)a,’(dl, dw, dv) .. (34)
R

for overy u,z,heR. Lot Z‘T‘,ﬂ bo tho rogular conditionsl probability
measuro a3 dofined oarlior and lot Ly, bo tho law of T'(0,). Thon (3.4) can

bo written as, for every u,z,h¢ R,

{ oxptiud)| [ oxp ()& (dv)].c,‘ (@
R R

. . By =
= foxp (xut)[ [ exp{iz(v—h) oxp(d&‘"w—2 t).é‘;(dw, dv)],c,, (d)) ... (3.5)
R R3 3
for somo rogular conditional prabability measure 2';.(,0)
Now, a simple continuity argumont. shows that (3.5) entails that

J exp (izv)zr(,a)(dv)
R

3 p—
- ’{!axp(iz(v—h)oxp(hT”’(ﬂo)w—h? T(0)) Z g (o, d)0s. .. (30)

forevory u,Ae R. Inwhat foliows assume that T'(0,) is fixod. It can bo shown
that tho r.h.e. of (3.6) is analyticin k. Honco, by roplacing & by ih, wo have

ﬁf oxp (izv)fz.(,“(dv)

T -
J oxp (izv-+2h) oxp(t'hT“’(Un)w-{—’;— T(Oo)).c,'-wn,(dw, dv)
RY
for ovory z, he R. Sotting k= —T-Y0,)z in this equality wo have

(dv)

’{ oxp (fZV)AfT(g‘»

I ;- rd
= exp(——2- -0, :’,) l{‘oxp [1:(|l-—T-m(()n]w\].c‘n%l(dw, dy)

for overy z. This proves tho resuit.
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By applying tho above conditional convolution rewlt wo obtoin the
following twu vropostions,

Proposition 2:  Assume that the sequence of families {P, ,,0 €0}, 7> 1,
satisfies ihe LAMN condition ai® =0, 0. Lec{V,} be a sequence of cstimators
satisfying the invariance condition of Theorem 3. Let | 72— R be a loss
Sunction of the form 1(0) =0, Uz) = (| z]|) and U|z]|) < U|y])if 2] < |y].
Then

Jiminf By U8.(V,—0)) > EQT-170)W)]
Proof: The proof is an oasy consoquonco of Thoorom 3.

Tho proof of the statomont (i) of the following Proposition 3 is immediate
from Corollary 1. Tho proof of tho statomont (ii) is also a consequonce of
Corollary 1 Its proof js ossontially containod in Roussas (1972}, pp 14)-147,,

Proposition 3 : Assume tha! the sequence of families {P,, ,; 00}, n > 1,
salisfies the LAMN condition at 0 = 0,6@ Let {V,} be a sequence of esti-
malors salisfying the invariance condilion of Corollary 1. Let 1 be a loss func-
tion as in Proposition 1  Then

(i) E((V(0,)] > E[(T-V*08,)W)),
and

i) for enery qe 7R and 41y > 0,

Pl < g'V0) <] S P[—4 < ¢TI0 < 1)
provided, for every qe7vx,
1
PIgVO) > 0] TEN >
and
) 1
Plg"V(6,) < O] T(0)] > 5~

Remark 1. Noto that tho uanel exampios (s00 0.g., LoCam, 1953)) show
that tho invariance rostriction cannot bo rolaxed in Thoorom 3 if ono tries to
establish tho condjtional convolution rosult for all points of tho paramotor
spaco. Howovor, it is poasiblo to obtaln tho conditional convolution rosult,

without tho invarianco rostriction, fcr almost all points of tho paramotor
9pace; tlus is done in Joganathan (1081).
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Remark 2. A rosult similar to tho roswit of Proposition 2 was oariior
obtainod by Hoydo (1078) Ly differont arg; ts undor some spocifi
tions and with spocial reforonco to maximum likehhood ostimators. Soo Also
DBasawa and Scott (1979).

Noto that in Proposition 2 we.have imposed tho invariance restriction
on tho scquonce {T,(6,),8,(V,—6,)}. It is enough to imposo thoe invarianco
fostriction on 8f,(V,—8,)}; for this and soveral othor results concerning tha
asymptotic proportios of risk functions, sco Joganathan {1980a).

4. AN EXPONERTIAL APPROXIMATION RESULT

In this soction wo establish an exponontial approximation result analogous
to Theorom 3.1 of LoCam (1960). This result wili bo used roveatedly in Soction
5 of tho prosent papor, Aleo it sorves as a. poworfal tool in soveral other
ploces; seo, 0.5, Joganathan (1980a) whoro it is usod to extend cortain basic

rosults of LoCam and Hajok concorning asymptotio propertios of risk func-
tions and a cortan kind of posterior avoroximations.”

Furtber, this rosult in: vsrticular imolios that the soquonce of rondom
voctors and matrices of the LADMN families forma a soquonce of locally asymo-
totically ‘sufficient statistics.

Proposition 4 :  Assume thal the sequence of families (P, n;80€0}, n > 10
salisfies the LAMN condition at 6 = 8,€©. Then (here exist

(i) an increasing sequence {kn} tending o infinily as n — o,
(ii) functions Cp:© X72* — R such that

aup |C, 08, h)—1] >0 as nH
thiga

for every a>> 0, such tnat tne measures Q,(04; n)| A, QulBo, 4) < Py defined
by
Lo l) — 6,0, 1) oxp [ WTHOIW30)—5 WT,000]
with
Wa(6o) = W B (| THOIW a8} | < ku)s
are probabilily measures and salisfy

"}.Jonu;lm Q.8 D)|— 0 a2 5 0

Jor every he Fok,



194 P. JEGANATHAN
Proof : Defino, for a > 0,
W3(00) = W, 0.)(| TAOWV.(0)| < &)
and
W(8,) = WI(| TV*6,)IV] < ).
There is a donso sot of values of a for which

LT .6,), W,‘.(eo)lPoa ,‘) == L(T(8,), Y7(8,)).

For any such a, wo havo

o |E [osp (h’T:,"(O.,)W:(eD)——;- W 00) |

—E [oxp(h'T‘“(Oo)W-‘(OD)—% IA‘T(Oo)h) ])—» 008 n— oo,

sinco the family of functions, defined on the spaco of k-vectors and & xk p.
matrices,

{tz. Dy oxp (n':——;- WDh) : [h] < a)

i3 uniformly bounded and oquicontinuous whonovor tho domain of z is bounded
Honco by a standard diagona! argumont one can choosoe an incroasing soquonce
{k,} tending to infinjty such that

s 1.,
Mfgxz.’ E [oxp (WT220)W3(00) -5 h'Ta@h) |

—E [exp (W0, 00, — WTE)R)] 1 ~0as no,

whora TV,(8,) = W:"(Bo), and, honce

sup | E[ oxp(WT0)Wi 00— 5 T .(001) ]

~E [ exp( W38, (0) h‘T(oo)h)]l—> o, .. (4D

a3 n— oo for ovory b> 0.
Wo now show that, for ovory b > 0,

li\:]lA,E'[oxp (h’T‘“(eo)W"‘(Oa)—-;—h’T(BD)h)]—1‘—»0 )
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83 n—00. Now noto thnt

Jon |2 [e.\'p (o -(o,)-% WTEM) ] -1 ,

<E| o | BT [oxp(h'T"’(O,)W"(O‘,)—% wTE ] -1 |]

and 1
oxp (l-"l""(e‘,)""'(60)—T WTEh)

& exp (h'T”’(ea)W—% WTE)h)+1
for evory n 3» 1 and k ¢ 2% and honco, using the indopondenco of TV and T'(8,),
sup ET [oxu(h'T“’(Oa)W"'(B,)—- ,;—h'T(Oo)h)] <2
i<h
for ovory b>> 0 and n» > 1. Honco (4.2) will follow if we show that, for cach
fixed T'(6,),

sup | EToxp|(hT0)V 0~ WTOH) |11 -0.
1A<? -

This is quito casy to sco. From (4.1) and (4.2) wo now have, for every 5> 0,
sup |E[oxp(h'T.’,"(Oo)W:(O,,)—% h’T,(Oo)h)] —1 50 .. (43)
(1304

as n—c0. Set
Calfy, h) = 1/E[oxp(h TYE0 V300~ 5 W Ta@I)]
From (4.8) it follows that

sup |Ca(@y, M}—1] -0 a8 > e (44)
h<b

for evory 5 > 0. To comploto the proof of tho statoments (i} and (ii) it remains
to show that

P —Qn(6p, )| >0 88 15 0

~1
AT X

fer ovory he7ek. Without loss of gonorality wo can assumo that

.Q“AL.:P%I,‘ for evory n > 1, he*. In viow of (44) and since

[TV3(80)~ TWa(85)| — 0 in P,a.n-probnbility, wo 500 that tho difforonco

Z, 0, (M) ~2p 4, th) .. (4.5)
te
A2-5
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convergos to zoro in P,o_n-probability for overy h e R¥, whore wo sot

dPoyts; A

Zn.ﬂo th) = _d-l’go,,—

and

dQ4(8o,
Z, g = %}T«n').

Furthor, in viow of contiguity,
lim Lim su, Z_o (h)dP, .
i (lz.,en(!m»-) o (M)dPgy

= .lir‘n.lilll_t'u:p p,wnmuzm,o th)| >a}=0. e (46)

Similarly we soo that, since tho soquonce {Q,(8,, ht)} and {P,_"} are contiguous,

lin lim &1 Z, o.(h)dP,
—e T—;‘:pinz;'%{m».} a2,

= lim lim sup Qu(6y, B)[| Z, 4 ()| > a) = 0. v (47)
a—pe Ao 0

Combining (4.5), (4.6) and (4.7) we soo that
I Zn_go(h)—Z;_,o(h) 1dPy =0

83 n— o for evory he 7%k, This complotos the proof of the statomonts (i)
and (ii).

6. ASYMPTOTIO BEHAVIOUR OF ESTIMATORS
In this soction, the soquenco {I¥;(6,)} of random vectors and tho soquonce
of probsbility measuros {Qn(6,, h)}, It € 72%, constructed in Proposition 4 of
Soction 4 will bo usod without any furthor montioning.

In view of tho Proposition 4, tho soquonco of o-fiolds gonorated by tbe
soquenco {T'n(0,), 84(Vn—0,)}, 7 > 1, whoro {F,} is any soquanco of estimstors
satisfying tho ACS-condition at 8 = 8,, is locally asymptotically sufficiont®
at 8 = 8, in tho sonso of LoCam (1960, p. 49). Furthormoro, tho bounds of
Propositions 2 and 3 of Soction 3 aro attained for any soquonco of ostimators
satisflying the ACS-condition at 8 =0,. Tho purposo of this soction is to

¢ In fact, it can bo shown that any soquonce of ACS ostimators togolhor with & scquence
of cetimatos of tho matricos of the LAMN condition eatinfios tho “global'' asymtotio sufli-
cionoy critoriu of LoCam (1980). Sco Daviss (1079) and Joganathan (1950b) for tho dotails.
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shew that maximum probability estimators, maximum likelihood cstimetors
and a cortain class of Bayos ostimators satis(y tho ACS-condition. Through-
out the following subsocticns (a) and (b) we assupio the set up of Section 2 and
that tho likelihood function LyX,,..., X,:0) is jointly monsurablo in
(X5 Xy oo X, 0).

(8) Mazimum probability estimators : A moximum probability estimator

D,(a) with rospoct to tho sot D, = {he 7ot : [h] < a}, > 0, is dofined as
that valuo of d for which the intogral

§ LiXy, .., X o3 0)0

ovor tho sot {d—8;1D,), is maximum.

Wo assumo that & moasurablo maximum probability estimator exists.
Dotailed discussion of maximum probability ostimators can bo found in Weiss
and Wolfowitz (1974).

Theorom 4 : Suppose that (i) the sequence {P, ,;0¢0} n > 1, salisfies
the LAMN-condition at 8 =8, and (ii) the sequence 8,(8,(a)—80,), a3 1, is

relalively compact. Then the sequence 8,(8,(a)—0,), n > 1, salisfies the ACS-
condition al 8 = 0.

Proof : First noto that
177,48)—IV2100)| = 0.

Honce it ie onough to show that, for overy § > 0,

P[|84(6,—8,)— T2 /%8, V38,)} > 6)— 0. e (B1)
Seloct a aufficiontly large such that, for a given € > 0,

n? P[|5,(8,—8,)| > z—a] < €/2
and

B P{ITRO0V0)] > a—a) <ef2

Honco {6.1) will follow if we show that for ovory given € > 0 and § > 0, thore
exists an 7, fuch that

P(4,) < €f2 foralln D n, e (8.2)
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whore wo sot
A. = {18.8,—0) — T3 @ Wi0,)] > 9,
[8,8,~0,)| < a—a,

| T3128,)TVa(6,)| < a—a).
Now, since

§[oxp Adtev85m -0

P, , <2,
Proposition 4 implies using dominated convorgonco thoorom, that

_apy Qa0 B}
I [’epr,(0°+s_lh)—ﬁ|dP,“.n dh =0 e 153)

for evory a > 0, where wo sot D, = {he 72t : |[h] € a}. Since
sup |C,,'8,.h)—1| — 0 for overy a > 0,
IM&a
(5.3) implies tbat
E[ 1 lexp A8 +85'h)—S,(h)| dh] > 0, - (54)

whoro wo sot
8.1 = oxp(W THO W00 — KT (0.h).
Now [5,(0,—6,)] < a—a implics that, sothng H, = {5,6,—6,—DJ),
I,C D,. Henco (54) implios that
f [ oxp|An8,+8;%h—Sah)|dhdP, 0. ... (58)
dn H, @

Similarly, settine Hy = {T73/2(0,)/W316%— Dy},
f [ | oxp AnB,48,h)—Ss(h)|dh dP, 0. e (56)
An Hy o

Now supposo that (5.2) is not truo. Thon for overy n, thoro oxists a §>0
such that

P(d4,) > b for some n D> n,.
It can bo oasily chocked whon tho event A, is truo, that

n+ [ Su(hYdh < f S,(h)dh, for some r.v, 7 > 0.
Hy Hy
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Sinco P(4,) > 8 > 0, this implios that
' 8. (h)dh dP,
7 +AI. J‘ w(h)dh dPy,

<,1{ 15, S.(h)dh dP,o'_. for somo %’ > 0.

In view of (5.5) and (5.0), this implics for all sufficiontly largo ,, that
7'+ | | |oxp AntBo+851)dh dP,
Ag Hy o

<[ [ oxpAn(B,+85th)dhdP, "
Ag Hy v

for somo # > n, and 7’ > 0. On the othor hand, tho dofinition of maximum
probability cstimator gives us

14 e An(8o+8; h)dh dP,
> | | oxpAg(8,+6;'hdh dP,
Ap H o

for evory n. Thus wo havo arrived at a contradiction. This completes the
proof.

(b) Bayes estimators, Throughout this section wo assume that we are
given a prior donsity =(0) such that #(6) is continuous, :‘ug 7(0) < oo and

7(8) > 0foralld ¢ @. Wedsfine a regular Bayos estimator ¢, = { (X, ..., X,)
ag an ostimator which mininisos

Bal@) = [ 1n(8, $Vfu(8] X, ..., Xn) dO . (87

for all sequonce (X, X, ...) whoro 7, :0 x0 — R, n > 1, are loss functions
and
_ _7®)L.(X,...., X,;8)d0
Sl Xy XD = oy % X1 0) O
is tho postorior donsity. Wo also assume a regulsr, moasurablo DBayes
oatimator exista.

In this soction we consider Bayes estimators with rospect to the loss
function 1,(0,¢) = |5,(0—¢)|%, a » 1. Importsnt works dealing with tho
ssymptotio bohaviour of Bayes ostimators are, among othors, LeCam (1853,
1958), Bickol and Yahav (1969), Ibragimov and Khasminskii (1972 and 1973),
Borwankar, Kallianpur and Prakesa Rao (1971), Lovit (1074) and Prakasa
Roo (1974); it may bo montionod horo that tho rosults of these papors and
tho presont papor are not entirely in tho Bayosian spirit sinco the rosults aro
obtained ab the truc value of tue parometer,
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Fcllowing a10 tho thooroms of this sub-scction.
Thoorem §: Suppose that (i) the sequence (P, ,; 060}, n 3> 1, satisfies
the LAMN-condition at 0 = 0, and (ii) for every ¢ > 0 and for some a» 0
lim lim sup P[ ., Vhle oxp A6+ 85 R)dN > 5] =0. .. (58
~—n Wi>e

e

Then for any sequence V,, n > 1, of estimators salisfying the ACS-condition
at 0 = 0, we have for every 0 € @’ < a.

£ (19| 2(Vat 87— oxp (— hT(O,I0) |an 5o,

where we sel

_ipy (V4852 h) exp AV 45710
ST = ImVo+57'h) ezp A(V, +67Th)dh

and
o ldat T
(P2

Thoorom 6 : Suppose that (i) the sequence {P, ,;0€0}, n > 1, satisfies
the LAMN-condition at 0 = 8, and (ii) for every ¢> 0 and some & p 1
lim lim sup P[ [ |h1oxpABut87 M) dh > | = 0.
~—Se e Al >e

Then the sequence t,, n » 1, of Bayes estimalors with respect to the loss functions
|8.(0—¢))8, n > ), satisfies the ACS-condition at 8 =6, and

Bt) 5 If|n]o oxp ( —% WTO)dh
where B (L,) 18 the posterior risk as defined in (6.7).

Remark : Thoorom 5 is known as tho Bornstoin-von Misos theorom.

Sinco tho proofs of thoso thoorems aro long, wo split tho proofs into
sovoral lommas. To simlpify tho novations wo sot

74080 = TV0,)8,.(V . —6,)
and

Ry(h) = oxp (IA’T’/’(G‘,\%,(O‘,)—% WTE),

whore {V,}, » > 1, is tho soq of osti 3 as idored in Thoorom 5.
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Lomma 10: For every e8> 0 and a > 0,

tim imsup P |8 R hY dh > s] =0
>a

o e (L}
Proof :  Considor
SIR|sH1R (h)dh = Q(a, 7,(0,), T(8,))

whoro Q(a, ...) is a continuous function. Sinco 7,(8,) and T(8,) aro bounded
in probability wo tce that, for any givon € > 0, thoro axists o constant 4 > 0,
such that

PlQ(a,7n, T(®,)) > A) € 1—¢
fot ovory n. Lot ay= Aje. Sinco
nI |h|8Ra(h)dh  a~F [| A| 3+ Ra(ht) dh,
>|e

we thon havo
P[ § |B|3Ra(h)dh € Afa t] >l—c
A>e
for evory @ » a, and all » > 1. This proves tho result

Lomroa 11 :  Suppose the assumptions of the Theorem 6 are salisfied. Then,
Jor every 0 2’ £ g,

1 1119 m(@y-+87'1) exp An(O-+85"h)— {8\ Ra(h) | dh 5 0.

Proof : (5.4) implios that, for overy a > 0,

b 1952 AnBu 85— 5o 5o . (59)

Sinco tho soquonco {Vs}, 7 > 1, satisfios the ACS-condition at & =6,
L T1074(0) — TAOITV300)| 5 0.

Honco it is not difficult to sco that, for every a > 0,

§ 1 Sa(m)—Rath)]dh S 0, oo (5.10)
|hiGe

Combining (5.9) and (5.10) wo got

L1 OXD An(8,+850)— Rl | Lo
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for overy @ > 0. Honco it follows that, sinco m(0) is continuous at § = 6,
{ [h]9] (8,485 h oxp AniBo+85'H)—m@)RaM)} S0 ... (s.11)
[LX ]
for ovory a’ > 0 and @ > 0. Now (5.8) implios that, sinco sup n(0) < eo,
Oce

for ovcry € > 0 ond 0 a’' < a,
lim lim sup P [ § |R]9'm(0,+5; ) oxp An(By+57'h) > t] =0,
. —-te A>e

. (5.12)
Similarly Lomma 10 implios that for overy € > 0 and a’ » 0,
lim lim sup P [ § |B]|o'n(8,)Ra(h) > i] =0. o (5.13)
—o A—pm >

The rosults follows from (5.11), (5.12) and (5.13).
Proof of Theorem 6: Lot
185+8:1h)— Vi = 87'g.
Then
1917 € o' || +car[8a{Vn—8,) |+
whore ¢g» = 1 or 24’1 according a3 a’ € 1 or @’ » 1, Using this inoquality
wo have

§1919 | £2(Pa+559)—Joxp (—+ 9'T0)| do

<o JIBS | £200+ 870~
1
X oxp( = (7 0= TR0 (7,(0,)— T*@)h )| i

+ear|8:(Va—0,)1*' |

S0, +87hy—J

X exp(—% (1u(00)—TVAO )Y (n,(8)— T | i,

whore

{84+ 55"h) oxD An(By-+557h)
[ 1(8+85 h)oxp An(By+ 5 h)dh’

Ja0,+851h) =
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Honco, sinco |8,(V,—0,}]|2’ is bounded in probability, it is enough to show that

finge

S0+ 8710)—T

X 0xp( = (10— T A0} (n, (00~ T38h )| ah 5 0

for ovory 0  a’ a. Lot
Y, =[] n(0,+57"h)exp A,8,+8;h) dh.

Now considor tho following inoquality

JIR19] [3086+83" I)—J
oxp (——; (71n(oa)—T”’(9.1)’!)'('].(%—T”Z(O‘.)h)| dh
< Y| |9 | m(0,4-851R) oxp A (8,483 ) —m(0)R ()| dh

+ | im0~ oxo( —5 ni@.@)| 111« Ry an

= I,+1,, say.
Setting @’ = 0 in Lomma 11, wo have

1.
Y,—m@,)J oxp( 7 ﬂ.(e..)n.(eo)) So.

Henco I,—P) 0, sinco the proof of tho Lomma 10 shows that [ |Ii|a'(R, h) dh
is bounded in probability. Similarly, by Lomma 11 and tho fact that Y3! is

P
bounded in probebility, I, — 0. This proves tho thoorom.

Proof of Theorem 6 : First noto that, sinco T(8,) > 0 with probability
one, for a givon € >> 0, thoro oxists a & > 0 such that P[A > §]) > 1—¢, whoro
A is tho smallest oigen volue of T'(8,). IIonco we sholl assumo without loss of
goncrality that A » § > 0 alwsys. Now dofine

glz) = |z}e
and, for a given a > 0,
(£l if [z]2 € a
fa(z) =
a it [z[a> a.
A2-6
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Thon soloct &, 80 large such that, for o given ¢ > 0,

J[g,‘(h)oxp(—% IA"I‘(B.,)h)tlh

» Jigh) l-xp(— -l,— Il”l'le‘,)h)dh— €2,
Aceording to Theorom 5, wo have, xotting

V'8 = BIT-VH0,)1,(8,) 46,
foth) | SUVEE )= ox p( -1 n"r(o,)h)] 5o

and smee g,'(.t) is bounded by a,,

[ o, )| 348700 —d n-xp(—é I|”l‘(0,,)h)!:lh L,
where wo sot 1, = 8,(1,— V5. Ienew, for any given g > t, tere exists an
g such that

PR N AN D 1= for all 2 D ny, v (3H)
whero

A% = {fgh) 5073487 0 < J Ty exv -' 1T, ) 4 ¢}

and

452 = { S, +u 33 870) 0

> Jj'y,'(h +u,) uxp( —‘_l, ’l'T(o.,"l)t"l—il'.’.}.

First wo shail prove that the sequenco {1} 1> 1, satisfies the ACS-condition
at § =49, ie, wo want to prove that, for uvery 8> 0, I({u,| > §] 0.
In viow of (5.14) it is enough to prove that tho event AL Y AL N (Jus]> €
is impossiblo for all n > n,. Now supposa that the event A% N 4PN
{lval > 8} i trio.  Using tho definition of Bayes estimators wo then have

on the sot AL, for overy n > n,,

L9, +u 482N < fyh4-w)2(Va4 850 dh
=B U)K BV
= [yl Ve+ 570 dh

< Jfgthyexp(~+ WTO)h te. . (519
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Now noto that g,’(h) is o non-constant function and eatisfies 9., (0)=0,
g‘.([h]) =g,.(h) and !7-.("1) < g..(h,) if || & |Iny]. Honce wo havo, for

fomo €> 0,
1
J [ ge\h+u,)exp (— T Il'T(O,,)h)l”l > J fg,\n
1.,
X oxp( —zh T(o‘,)n)an.l.zs

whonever |u,| > &> 0. Thus on the sot AN {|u,] > &), wo have for
every n D ng,

[0V > T g, ) oxp (5 WT @A) dh—e]2
> J[g,fh)exp ( -_; lA’T(O,,)h) dh—e/2+2¢

> J [ gh)exp (—% h'T\e,,)h) dh+e. v (5.26)
From (5.15) ond (5.16), we thus soo that tho ovent AW () AN N {|x.] > 8}

is impossiblo for overy n > n,. This proves that the sequenco {£.}, n > 1,
satisfies tho ACS-condition at 8 =6,

Now it follows from tho provious arguments, that
Jjg,n(h-}-u,) exp(—% h’T(Oalh) dh—ef2 § j'g,o (h+u)fmVa+551h) dn
< Jgth+u fUVR+87'h) dh
< J [gih)exp (——; h'T(B‘,)h}dh+s e (817)
with probability tondina to ono. Sinco u, :00, iv oasily follows that

Jf g,o(ln-l—u.) exp ( ——;— IA’T(Oo)Ia)dh—J: Jf y,“(h) oxp(—% h‘T(0¢)h) dh

S Jfgh)oxp (_%n'r(o‘,)n )ah—ep2. . (5.18)



200 P. JEOANATIIAN
Combining (5.17) and (5.18), wo sce that
Bt = [glutu)a(Vat83'h) dh

271 gm oxp( _% h‘T(eo)h) dh.

This proves tho thicorem.

(¢} Mazimum likelihood estimators. A moagurablo function 8, =
8,(X,, ..., X,) is called a maximum likelthood estimator if

Ly(Xy, s Xai8) > Lo(X,y, ..., X450)
for alt €0, whoro L,(X|, ..., X,; 0) is tho likelihood function as dofined in
(1.1). Wo assumo that & maximum likelihood estimator oxists.

Thoorom 7: Suppose that (i) the sequence {Py ,;0€04, n > 1, salisfia
the LAMN-condition at 0 = 0y, (i) for every ¢ >0, and a> 0, seiting
D ={hex:|h) a5,

lim lim sup P 8u ABy+87 ) —A (0,45, h €,

o e P | o [ A8 +87I,)— A8+ 850y | >

hy,hyeD} =0
and (i) the sequence {8,(0,—8,)), n > 1, is relatively compact. Then the
sequance {8,(0,—0,)), n > 1, satisfies the ACS-condition al 6 = 6.

First wo shall prove the following lemma.

Lomma 12: Suppose that the sequence {Py,,;0€0), n> 1, salisfies
the LAMN-condition at @ =8,. Then

sup 1AL 85— Q.| 50, &> 0,
n<a

where we set Q () = NWTY0,)IV,(0,)— —;— W'T@)h, if and only if for every
€>0,

lim limsup P sup | AN(0,4 567 ) —A (0 65h,)| > €,
e  Ae Ihh—hi< s

h,,n,ep_] =o. e (8.9)

Proof: Using tho fact that tho soquonco (I ,(6,), T(6,)} is boundoed
in probability, it is easily soon that for ovory € > 0 and &> 0,

tim fimoup P sup  1Qu)-Qu)| > & hy ke D] =0, L (320
e |h—h | <8
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Sot Y, () = AuB+6;2h)—Q, k). From (5.10) and (5.20) it follows that,
for & given ¢ > 0 and v > 0 thoro oxist & § > 0 and =, such that
P sup |Y,)—Y,0)| > €D RyeD]<n o 1521)
ha=hi< 3

for all n > n,. o thon partition tho sot D, into cubos of sidos of length §
(without loss of gonorality wo assumo that §- a is an integor). Thon totally
thore aro (8-'z)}* = m cubes. Now

sup| Y, (h)| € sup Y, {tp
NKa <m

+ sy Y (h)—Y k)
Thehi< J Tl il

whore /4 i3 & fixed point in tho i-th cube, § =1,2,...,m. Then

”
)
[sop 17,01 > €] < E Prv> o)
+P|  tup | Yuh)=Y.h)| > ¢/2, by ke Dol
[Ih.—h,lp< ,l 2 (k)| 12, by ]
Sineo tbe scquence {P, ,; 060}, n > 1, satisfics the LAMN-condition at
0= 0, it follows that, for overy fixed intoger m,
m
‘2‘ P Y, (t))] > €/2) > 0 as n > c0.
Honce, by (5.21) it follows that

r [I:I\:[:l Y ()| > e] —0as n—c0.

The othor part of tho proof follows easily by noting that
As01+871h) = Y ,(h)+Qu(h).
This complotes tho proof of tho lomma.

Proof of Theorem 7: Lot A bo tho smallest eigon valuo of T(8,).
Sinco T(8,) is positivo dofinito with probability ono, for a given ¢ > 0, thore
oxist 8 ¥ > 0 such that

PA> y] > 1—¢/2.
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Furthor, for a given ¢ > 0 and & > 0 thoro oxists an > 0 such that
Yim sup (P{|Ai,| > al+P(| TPOHW,(0))] > a—8)} < ¢f3,
A=

whero wo sot in. =5,(8,—86,). lonco it is cnough to show that, for overy
@> 0, 8> 0and €> 0, thoro oxists an n, such that

P, —T-1%0W ,(0,)] > 8,
lit] € @, | T-110)1V,06)) € a—=8,A> 7] < ¢f3
for overy n » n,. Equivalently, we shall prove that

P[ sup oxp A,i6,+5;'h)
heD,

< sup oxp A,(0,+5:h), |hf € &,
heE

| TR0V .(8,)| € a—a, 2> y] <¢f3 . (522
for every % > mg, whoro we set
E = (he%: |h—T-Y20,)IW,8,)| > §, heD,y.

Donose tho ovont inside the brackot of (5.22) by B,. Lot
4,= { sup [oxp A, @+ 57h)~exp 2,00 <1}, 7> 0. ... (52
|h€a

By Lomma 12, thero oxists an ny such that
P4} < ¢f3, for all n > n,

Whoro A2 donotcs tho complomont of tho sot 4,, » > 1. Now
P[B,) < P[B, () 4,)+P143).

Wo shall now show that P[B,()4,] =0 for all a> n,, which will prors
P(B,) K ¢f3 for all n > n,. Supposo that tho ovont 4, () B, is truo. Then,
by (5.23),
sup oxp A,(0,+58;'h) > sup oxp Q. (k)—7 e (820
NCa (hi&a )
and
sup oxp A,(0,+5;'h) € sup oxp Q,(h)47. o (399)
Aes Aes
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Also noto that (sinco whon the ovent 4, is truo,

| T-7%86)1.(0,)| < a—85)

2up exp Qu(h) = oxp (3 W0V, (0))] - (520)

and

y&t 1
8up oxp Q,(1) < exp [— Lty W.(e,)w_(o,,)]. . (527)
Since y > 0, thoro oxiets an %, such that

| R LT -
oxp g Wi0o00) =7, > oxp [ = L=+ Wa@)W.0)] 47,
. (5.28)

We thus soo0 from (5.24)-(5.20), that, whon n < 7, and tho evont 4,() B,
ia truo

sup oxp A,(0,+8:1) > eup exp A,(8,4585h)
IM&a Ael
for all # > n,. But this is o contradiction sinco on B, wo have
sup oxp A (6,+5;'h)  sup oxp A,(6,+5;h).
IAl&a [
Henco P{4,()) B,] =0 for a n» n,. This proves the rosult.

6. DISOUSSIONS ON THE ASSUMPTION (A.1) OF SEOTION 2

Tho argumonts of this soction are based on LeCam (1970) and Hijok
(1072).

Considor tho following sot of assumptions.

{6.A.0). The funotions fy{Xy| X, ..., Xg_1; 0) = f;18) : ® - R aro absolu-
tly continuous in 0 fer all (X,, ..., X3),§ > 1.

{8.A.7). For evory 8¢ 0 the 8 dorivativo f}(e) ={3/30)/,(6) exists for
My X... Xpy almost all (X,; ..., Xj), j > 1. Defino for overy 660 and j> 1

. f;kO)j‘"'(O) if the dorivative oxists ond f;(8) > 0
E(0) =

othorwiso.
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Supposo that wo havo scloctod tho soquenco {5,); ono way of solcction is g

define

5.5, = { S Eg jé,(¢)§}(¢):1/:,]} for somo fixed ¢ ¢ O.
]

-1
(6.A.8). Ter overy he 72X ond 6 ¢ O
E(J)1I'8,E10)| i) <0, 1 €5 & n <0
(6.A.9). Tor overy I ¢ 2% ond for overy 8¢ O
sup & B{ |08, E0+18,1]~E00) | diy) > 0.
1-1

agIgd
Droposition 5: Suppose the assumptions (6..6)-(0.A.9) are salisfied,
Then the assumption (2.\.1) i3 salisafied for every 6 ¢ O.

Proof: An application of the inoquality (2.6) and (6.A 8) shows that
(6.A.9) in particufar entails, for overy he 72 and Py, Xpy almoest sl
[ N X!).

b .
[ INBEO0+EM[ Ml <0 1 <j<n <

Honco aceerding to Lomme (A1) of TI4jok (1972, p. 189), for overy 666
ond heZ2¢ tho functions ¢— f{%6+415,M), 1 < j& n < o0 aro absolutoly
continuous in the interval (a,b) for Py.s_y Xty almost all (X,, ..., X;). Henco
wo ean write for Py,g_y Xty almost all (X, ..., Xy), for all ke 72¥ and 6¢ O

SO 41,8,0)— [0 11,8, h)
2 .
= % I8 E 0418 0y di
i
for ¢vory f, ond 1, such that a <1, <1, < b. Ilenco

LAl

J}2(0+8,1) —f;ﬂ(e)—% I'E4(6) l’ d/u]

1l a [ .

-3£ E{ ILJ s, [g,<e+:s,,h,—§,(e)] J:|’J,.,}
1 1 . .

< ;}_.lrz{g AU £1I8, (64004 (8,0 —E0)) # s}

1 . .
ST 02D, BT ANSIGI0 15, 0—E00) )

- 0Dby (6.A.9).
The proof is complete,
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Remark: Tn conneetion with tho abovo rosult it should be montioned
here that LoCanm (1974) has givon somo rosults, based on Lusin’s (N)-condition
(cf. Towitt and Stromborg (1005, p. 288)) instoad of absolute continuity,
which aro applicable to moro gonoral situations; LeCam’s argumonts are
rostrioted to tho i.id. onso but tho abovo discussion shows that his arguments
aro applicablo to tho gonoral casoe also.
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