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SUMMARY. A rate of B in the i i prineiplo for random sums is

obtained using the rvsults on the rate of convergenco for the invariance principle due to
Hoyde (1080) and Borovkov (1973).

1. InTRODUCTION

Let {X,} bo a sequence of ii.d. randam variables (r.v.) with EX; =0
’

and van(X,) <co. Let Sy = X X; Erdos and Kac (194G) considered the
=1

problem of finding the limit distributions of the three functions of S, ..., 8,

viz. max Sp, max ]Sy} and the number of positive sums among
16ESn 1<ken

(8), ..t 8,). These results were later gencralized by Donsker (1951), Prohorov
(1956) and to somo dependent cases by Billingsley (1956). Their technique is
now known as “The invariance principle”.

One of the important probloms in probability theory is to obtain the
rato of convergenco in limit thcorems. Rosenkrantz (1967), Ileydo (1969)
and Borovkov (1973) investigated the problem of rate of convergence in the
invariance principle proved by Donsker (1951).

Another problom of interest is the limit distributions of functions of
sums of rand ber of random variables. Let {N,} be a sequonce of

positive integer valued r.v.s. such that %‘ converges in probability to s

positive r.v. N. The problem of obtaining the limit distributions of fi
of randomly selected partial sums such as SH-, max 8, has beon considered
161X,

by Renyi (1960), Blum e al. (1063), Mugyorodi (1862), Billingsley (1062, 196S),
Prokasa Rao (1069), Srechari (1008a) and others. Billingsley (1068) and
Srechari (1068h) independently extended the invariance principlo of Billingsley
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(1056) to random sum case. Further, the rate of convergence in the limit
distribution of 8, has been studiod for independent r.v.s. by Sreehari (1975)

and for dependent r.v.s. by Prakasa Rao (1974, 1975). Landers and Rogge
(1976) have recontly obtained an exact rate of g in the rand
central limit theorem and it has boon extendod by Ahmad and Basu (1679)
and Ahmad (1979). The purpose of this paper is to extend the results of
Reeonkrantz, Heyde and Borovkov to the random sum case in the light of
the work of Ahmad (1979).

2. ASSUMPTIONS AND ENOWN RESULTS
Let {X,} bo a sequence of iid. r.v.s. with EX, = 0 and var(X,) = 1.

Let s_="z':lx,. Let {¥N} bo & sequence of non-negative integer valued

r.v.e. such that

I%‘—»Ninpmbnbllity 88 % —> 0

where N is a positive r.v. We N to be independent of the r.v.e. X,.
Consider CT0, 1] the space of continuous functions on [0, 1] with uniform
topology. For v ¢ [0, o), let p(v) = Sjoy+(v—[v])X|p)4y, Where [v] denotes the
greatest integer less than or equal to v. Define on C[0, 1] tho random processes
20 = p (nt)n~18, LES X H
7} =p(N,) Ny, 0L,
and

A = p({aN]) (=N, 0L

Let 17(t) be the standard Wiener process on [0,1). Jat & be a real valued
functional defined on C[0,1] and lot yY(z) = PIF(IW()) € 2] and
Vaz) = P[Hp.()) € z]. Suppose & is uniformly continuous and there
exists a constant L > 0 such that

1¥+R)—¥a)] < LK.

Let 0 < B) X,|¥* < oo for some &, 0 C @ < 2. Then Rosonkrantz (1067)
proved that thero exists a constant A, > 0 such that

A, = syplw.(x)—wr)l < 4yn**(log n)'? w )

Al-19
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where 4 = af2(x+3). Hoyde (1969) extended the result of Rosenkrants
(1067) under the assumption 0 < E} X, |** < co for some @ > 0. He proved
that thoro exists a constant 4, > 0 such that

A= B:Ipl Va2)—P(2)] < 4,n-*(log n)* v (9

where x4 = min(2a, a+2)/4{a+3) and A = (2+2)/2(x+3). Borovkov (1973)
proved that, if 0 < E|X,[** < oo for some 0 < & 1 then thers existaa
constant 44> 0 such that

A= oup |, -V(a)| < 43n )

where g = af2{a+3).

We noed the following two results in the sequel.

Theorem ! : (Gikhman and Shorokhod, 1974, p.70) : Let {X,} be i.id
.05 and 8, = )l. Xy, Sy=0. If

PSS ] K)> 1-a>0 fork=0,1,...,n,

P(iS)>Y) _ s
P(l:l.a:-IS.|>2t)< — <=

Theorem 2 : (Petrov, 1975, p. 261) :  Lef {X,} bei.id. r.vs. with EX, = Q
varX,=1and S,= £ X;. If
o1

Blesp {| X, #m+0)] < c0 for some 0 < < 1/6
then

P8, > za\)

1—0@) 1 us now,

uniformly in z in the inlerval 0 < z  n'jp(n) where p(n)~» 0 as n—» O

Hore ® is the standard normal distribution function.
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We make the following assumptions in the sequel on the ssquence {¥,}
and N and the functional 5.

(A1) P (N < —ﬂ—;——) = e,) where 4, = n-Yloglog n)¢, 4> 0 and
€, =n"

(A2) P (

[‘nlgv_'] -1 ‘ > 8) = 0(c,) for 8, = e3

(A3) & is a uniformly continuous functional on €10, 1].

(A4) Let Yfz) = P(SH(IV()) < z). Then there exists L > 0 such that
| ¥z+B)~y(z)| € L|A| for all z and &.

(A6) Efexp (| Xy|®/-")} < co for some 0 <p < 1/4.

In view of (A5), all the moments of X, exist. Henco

O(n-*) for0<pg 18
{ O(n~*(log n)1) for 18 < <1/4 e (4)

from the resulis of Heyds (1969) and Borovkov (1973). In the following
¢, ¢y, 6y, ... are sll nonvegative constants.

3. Mam BEsvLT
The aim of this paper is to prove the following theorem.
Thoeorem 3: Under the assumptions (Al) Lo (AS),
Ofn~*(log log n)?*]
Joro<pg 18
O[n~*(log n)*(log log n)™)
for 18 <p <14

up | P(& (900 € 2)—PHV() € 2)| =

At first, wo provo a couple of lommas, Let
G.(2) = P(&FHq.)) € 2)
and

H(z) = P(STh,() < 2}
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TIomma i Under assumptions (A1), (A2), (A4) and (AD),
aup |Gy2) =M lre,)| = Of,).

Proof : Let B, = [| S1.()~Fh ()| > ¢,) and B2 denote the comple.
ment of By.
Then
0.(=) € P[&{g.() < =z, Bi]+P(B,)
< PFAkLY) € 2+-€,)+-P(B,).
Similarly
Gu(z) > Pl&#h()) € 2—8]—P(B,).

The lemma follows if we show that P(B,) = O(¢,). Thore oxists ¢ > 0 such
that

P(B) < Plligal)=hof)l > ce.]
=P [ sup  19.0)=Du0F > ot ]
[ T2 31

N,
[W]‘l| < a,.] +0(e.)

1
<P[ omp l9h—hi0| >0t N>~
= "“-’*‘,ﬁ,._”[n 399 12.00=h0)] > otu [AN] =k | N~k | <,

=0+, B /o.P[ S50 BN ) —pltinN )| >ee 0, (nN)=t]
INa—kl < k8

=0e)+ £ P i)~ pltk : =K
e+, 2 Lot ‘H.Ip(b) B < ce M, (nN] = )]

=0le+, >zm_1=[ . .2.“'2“ | P~} ] < cekirs] PnN] = )

. ®
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Consider
1)~ p{lk: iy—
Joup PP <2 sup  |p()—pR)]
lj—kl < k3a l<jk<1+8a
=2 1) —p(tk
x<m<m‘ - <p‘ | ) —p{k) |
<k <l+a.
<2 1) —pltk
1<meit, (=100 < 1 % mERL(1+12) |oh=2B)]
k<< H14d)
(m—1)3a <t <My
50 that
4 au 1) —pltk)| > ce J'®
lu 11, | 2)—p(th)] ]
e | ) P
sup t)—p{tk) | >e €,
meal (m-x)u.<u<muu+s) 2 -ph) >0 }
(m=1)3a < t < M3y
E<f<ki+3,)
(1%) .
T P aup | P)— PHOn— 18, )im—1JE8,)] > 2]
mel Lm—1)E3s < G <mEd(1+2a)

/2]
< = P[ sup
mm) b(m—1)k3s < < mkdas(1434)
Note that central limit theorem holds for {X,}. Using Theorem 1 we get
that the last term is less than or equal to
[1/2] 1
me (2R PUS it ysng
T\t

| Sr~Stim-naeg | > c,:.k"‘].

| > e k)
cf el 1ol
< —‘;_—”- z P(|s[_“=m .1' > 6ye k1), o (8)
Write u, = [mkéi4+k8,) and z, = cye ku;V%. Note that u,—»co.
Cheosing y = I‘(—2'“_6—), we obtain that y < 1/6 since 0 <x < 1/4 and
-2 = O(n*(log n)") for some 7> 0 where p = p[ —r+= ]—y < 0. Henco

1:., — 0 88 n— . Furthermore E[exp{|X,|*/®"#V}] < o0 by (A5). Thero-
fore, applying Theorem 2, we got that

(]S, 1> zul?] < 2(1-0(z,))
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for n large, m < 1/8, and k > 1/A,. Thus, from (G), we have

P[ e 1p)—ph] <) < (o) 0=

-2 i€ ks,

[
= e (1=

—le? .
Sinco z, ~ ¢l and 1-O(x,) ~ z7'e " 83 n— o, it follows that the lat

term is O(¢,). Thus, from (5), we have

PB,) < 0(5.)+!>§9 Ole,)P([nN} = k) = O(¢,)

completing the proof of Lemma 1.
Under the assumplions (A1) to (A5),

Lomma 2:
00 ifo<pg1ys

PPl PR, 1) < 2)= PEIFO)S 2)] = 1
0x(~log 6,) if g <p <

Proof: Note that

H (z)—(z)
2”0 P(3(h,() € 7, [nN] = k=P(nN] = }, S(¥() < 2)
> tl

+ I PERL) < 7 [0N] = B)—P([nN} =k, FOF()) < 2)
k<10,

80 that
[ 1 oz)~ (@) < | k>2lld P([nN] = )(P(FH(p)) € )= ()}

I PN =1k

E< 1)

+2
o TN = BIPS @) < z)— )|

< =
k> 1]

+2P (N g ,%:)
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Assumption (A5) implics that E}X,|® < oo for > 0. Hence assumptions
{A3) and (A4) prove (4) which in turn gives tho relation

I P(aN)= kAt 40(,) for0 < g < 18
k> 16,

sup| H (z)—~y(2) | <
F I P(rN) = HAk*{log iy +0le.) for § < p <}
LE> /6.

for some A > 0. Therefore,
¢z for 0<pg 18

sup| IT{z)—y(7)| <
= cy02(—log 0,)%* for § <p<}.

This completes the proof of Lemma 2.

Combining Lemmas 1 and 2 and using (A4), we complete the proof of
Theorem 3.

Remarks: Tt may be notod that sinco tho estimato (3) is valid if
onp replaces A, by the Levy-Prohorov distance between the measures
asgociated with p, and IV (vide Borovkov (1973)), a similar extension should
bo possible in Theorem 3. After the original submission of our paper we
havo como to know of better ostimates than (3) for Ap duo to Sahanenko.
This; too, is likely to extend to tho presont case. We shall return to
these quostions later. An excellent review of tho literature up to 1078 is
given in Borovkov (1978).

Acknowledgement. The authors thank Professors A. A. Borovkov and
J. K. Ghosh for bringing the above results to their attention.
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