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Fractional factorial plans represented by orthogonal arrays of strength two are known to be universaily optimal under a
madel that includes the mean and all main effects, when all other factonal effects are assnmed to be absent. However, if the
number of factors in the experiment is smaller than the number of columns of a saturated or, tight orthogonal array and
the experimenter is intecested in estimating certain 2-factor interactions as well, one can possibly entertzin these 2-fuctor
interactions in the model apurt from the moecun and all main clfects. The problem then is to allocate factors to the columns
of the orthogonal array, so Ihat the user-specified 2-factor interactions, in addition o the mean and the main effects, ace
optmsully eslimable. This problem is investigated in this paper with reference to the orthogonal array OA(2%,2° — 1,2, 25,
which exists for cvery integer n>2. A method for the allocation of factors to factor representations is proposed that

ensures Lhe optimal esboation of the mean, ali main etfects and specified 2-facwor interactions. The method is illustrated by
considering in detail the cases 2= 3, 4.

Keywords: Fructionn foctonal experiments, Univarsal oplimality; Main effects; 2-factor inieractions

1. lotroduction

Two-lcvel fractional factorial plans are used extensively in manry diverse fields, notably in industrial
experimentation and quality control work. Such fractional factorial plans when represented by orthogonal
arrays have strong optimality properties. For instance, a fractional lactorial plam represented by an
orthogonal arruy of strength two is universally optimal in the sense of Kiefer {1975) and Sinha and Mukerjee
(1982} for estimating the mcan and all main cffcets when all interactions are assumed to be absent. Recall that
a symmetric orthogonal array, denoted by DA(N, i, m, g), with & rows {runs), a columns (factors), m symbois
(levels) and strength 2 < g<n) is an N x » matrix, with m =2 distinct symbals in each column such that in
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any & = g submatrix, cach possible combination of the symbols appears equally often as a row. For
comprehensive accounts on orthogonal arrays and their applications in the context of fractional factorials, see
Hedayat et al. (1999} and Dey and Mukerjee (199%a).

For an integer n2 2, an orthogonal array O&(2°, 2 — 1,2, 2) of strength two exists and can be constructed
in the following manner: for 1 €i<n, lat x; be a 2° % 1 vector with entries 0 and 1, such that the rows of the
2% % » matrix formed by & columns x, ..., X, aze the all possible combinations of 2 2" faciorial. Next, formn
2% — 1 columns & x; + kaxs + - - + &px,, where each & is ¢ither 0 or 1, not all &;'s are simultaneously zero and
the slements in the sums are reduced module 2. Note that these 28 — 1 colurans also includs the (inidal)
columns x,,...,%,. These 2" — | columns form an orthogenal array DA(2", 2" — 1,2, 2). It follows then that
po two columns in the set F =lkx) + &+ H kavn . & =0,1, {ky,... hed# (0, ..., 00} are identical.
We can represent the eolumns of the orthogonal array as (1,2,12,3,13,23,123.4,,. ., 123, ..., &), where the
representation 7 stands for the column x;, 157 <4, the representation if stands for the colwmn x; + x; (med 2),
i,j=1,...,mi#j, and so on. Such an array represents a 2*-run fractional factorial plan for & 2-level experiment
involving 2" — 1 faclors. This plan is saturated and is universally optimal for estimating the mean and all main
effects in the abscnce of 2-factor and higher order intecactions. In view of this, fractional factorial plans represenicd
by orthogonal arrays of strength lwo have traditionally been used for estimating main effects alone.

Restricting attention to the orthogonal array QA(2", 2° — 1, 2,2}, as described abave, suppose the number of
factors in the expariment is & (< 2° — 1), and, (urthermore, the experimenter is interasted in estimating some 2-
factor interactions as well. Can one then emtertain thesc 2-factor interactions in the model, along with the
mean and the main effects of the & Factars involved? This leads to the problem of ullocating the & factors 1o the
above “factor representations™, sa that the usar-speclhad 2-factor interactions, in addition to the mean and the
muin effects, are optimally estimable. This problem iz investigated in this paper. A mcthod for the allocation
of fuctors to factor representations is proposed that ensures the optimal estimation of the mean, all mam
effects and specified 2-factur interactions. However, there are a few pecasions where the proposed methed is
unable to snggest an allocation ensuring optimal estimation. The method is iliustrated by considering in detail
the cases k= 1, 4.

The prablem of estimating main effects and specilicd 2-factor interactions via a fractional facterial plan has
besn studied earlier ¢.g., by Hedayae and Pesotan (1992, 1997}, Wu and Chen (1992), Dey and Mukerjes
{199%h) and Day and Suen (2002). However, the problem addressed in chis communication is glightly diffevent
from the ones considered hitherto in the literature.

For obtaining the optimal plans in this paper, we make use of a result of Dey and Mukerjes (1999b). For
complctencss, we state the result below in a form that is needed for this paper.

Theorem 1. Let & ba the class of afl N-run fractional factorial plans for an arbitrary factovial experiment
intalving k factors, Fy, ..., Fe, such that each rm:mber -:Jf 2 allows the estimabifity of the inean, the main effects
Fi,....Fy and the t 2-factor interactions Fy Fj,, ..., Fi F; where 1 i, #j, sk forallu=1,...,t Apland ¢ D
is uriversaliy optimal over & if alf levol combinations of the following sets of factors appear equally often in d.

u) {(Fu,Fpl, [Su<osk;
{b‘) [f"m*‘l‘.l FJ,;‘* 1€#ik, | B -
(©) (Fi,F;, Fi, Fi b, 1€nugy,

where a factar v counted only once if it is repeated in (b) or (c).
2. A method for allocation of Factors

Throughous, we consider a fractional Factarial plan represented by the orthogonal array QA(2",2" — 1,2,2),
as describad in the previous section. Clearly, the addition of any twa distinct columns of this array, each of
which is 2 member of 5, gives rise to a different column balanging to 5. To begin with, we have the following
resnlc,

Lemma 1. Let x;, xp,, Xy, be any three distinct cohanns of the orthegonal array OA(Z", 2" — 1,2,2), n=3, such
that x, + xy, + xy #Ut (mad 7). Then, the colusns x;, x;., x;, form an orthogonal array of strength tires.
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Froof. Let fiw,v.w), w,0,w =0, 1, dencte the frequency of the ordered triplet (i, £, w) under the columns
Xi,, Xy, X;,. Then, since xj,x;, %, are three digtinet columns of the orthogonal array QA(2", 2", 2, 3y of
strength two, we have

f{o?urﬂ]-l_fm!u! ]-} =f{“!‘]'lﬂ}+f{n! ]!l}=f{ll{}!n}+ft]:ﬂﬁl} =f{11 11.']-}+f(]* It]} = 2&—1,

F@0,00+£(1,0,00 = (0,0, 1) + £1,0, 13 = £(0, LB+ £(1,1,0) = £, 1, 1} 41,1, 1) = 274,
and

JO0,0) +10, 1,00 = £0,0, 1) + /10, 1, I =7(1, 0,00+ §(1, 1,00 = f1,0, 1+ f(1, L, 1} =277,
These yield

J(©0,1) = £(1,0,0) = £(0, 1,00 =f11, 1. 1}
and

f{ﬁ, 0,0} =f{]-:lﬂs ” =f(0: 1, ]:' =f”. L0}

Since x; +x; #xy, (mod2) and x, + x5, = 1, € & for some x;, #x,,. and since x;, and x;, form un orthogonal
ammay of strenpth two, we have

FO,0,03+ (1, 1,00 = £0,0,1) + /1, L, 1) =£(0, 1,03+ £C1,0,0) = 710, L, 1} 4+ (3,0, 1) = 22,
1t follows then that £z, o, w) = 2°~° for all w, 2, w =0, 1, completing the proof. [

For convenience, we henceforth represent ihe columns of the crthogonal array QA2 2° — 1.2, 2) by an -
tuple (ky, Kz, - . . k), where for 1<ign, o = 0or I and ¢k, ko, . k)3 00,0,. .., 00, Thas, the representation
1 iz now equivalently denored by (106G .. 0), 124 iz equivalent o {11010 .. .0}, etc. We shall denote by 02, the
collection of all such 2° — 1 non-null binary vectors. It is not hard to see that \he columns 1375 k;x;} arc
completely characterized by their respective binary reproscntations, (k. ks, . . ., k). i.e., by the elements of 2.
Clearly, the result of Lemma | holds when x;, is replaced by iis binary representation. Henceferth, unless
otherwise mentioned, we work with the m-tuples, (5} 1<i€2° — 1, cach belooging to 22, where 5=
(et bz, .. Ka) and i = 300 k27

MNow, suppose the number of factor: invelved in the experiment is & (<27 — 1), bat the experimenter can
afford to make 2¥ runs. Additionally, the experimenter is interested in estimating certain 2-factor interactions,
along with the mean and the & main effects. The model pastulated is one that includes the mean, & main effects
and the specified 2-tactor interaciions. It is assumed that all interactions, not included in the model are absent.
How should ones assign the factors to the galuting of the orthogonat artay so that the mean, all main affects
and the specified 2-Factor interactions are optimally estimable?

To begin with, suppose the experiment involves &< 27 — 1 [actors and it is desired to estimate the mean, the
% main effects and only ene 2-factor interaction. Let the representation of the specified 2-factor interaction be
2,2, where g,. 2, € @ and let 1, =z, + ., (mod2). Then from Lemma 1. all oiplets of columms of the
orthogonal array represented by (%, 2:,.%)), & € 2\[2z). fonn an orthogonal array of strength three. Using
Theoret 1 then, the design invelving the colomns of the orthogonal arruy mepresented by 2, 255, .-, 2, . such that
for | Sw=k, g;, %5, i universally optimal jor cstmating the meun, the &£ main effects and the interaction z; 2.

MNext, suppose the sxperiment itvolves &< 2" — 2 factors and ong is interested in cslimating the mcan, the
main effects of the k factors and iwo 2-factor intcractions. There are only two pessible types of interactions
that need to be considered, namelya) z;, 2, and £;, 2. (B) 2,3, and 2, £,,.

Case a: The factorial effects involved here are the intcractions of the iype z; z;, and z,z;,. in addition to the
mean and main effects of & facters. Here, 7, 2., 2y, 804 g, are all distinct. Then, all triplets of columes of the
orthogonal array represented by {zi,24,%), & € £\lg:} form an orthogonal array of strenpth three.
Similarly, all tripigts of columns of the orthogona! array represented by {z;,, Tias T 3 z;, € irfz;), where
Iy = &, + 2, (mod 2), form an orthogonal array of strength three. Furthermore, arguing as in the prool of
Lemmz 1, it can be shown that the columns of the orthogonal array tepresented by |3, 27, 25, 2, ) Torm an
orthogonal array of strength four, as long as z, + 25, + 3y, + 24, #0 (mod 2}, ie., as long as z,#z;. Now,
invoking Theorem 1, we see that the desipn involvibg cotumne eepresented by £, 2. %, 5,0 - -+ Zip» Stch that
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none of these equal either 2, or £, (#2,), is universally optimal for estimating the mean, the & main effects and
the interactions £, g, and Z,Iy,.

Case b; In this case, we consider interactions of the type z;, 2, and 2,,Z;, apart from the mean and main
effccts of k factors, including =z, 7., 24. 35k<2" — 3. The vectors g;,, 5., 2, ate distinct. Then, all triplets of
columns of the orthogonal array represented by [;,, Zr., Z; . & & 2Y[Z;), form an orthogonal array of strength
theee. Similarly, if 2, = z; + 7, (mod 2, then all triplets of columns of the orthogenal array represented by
{2, 2he 2;)y %y € 8\|2,), form an orthogonal array of strength three. From Theorer 1, the design involving
colornng represented by 2, T, &, - -, %, Such that none of these equal either xp o £, is nnivergally optimal
for estimating the mean, the & main effects and the interactions 2, 2, and gz =z;,.

Finally, consider a general setup where there are & factors and one is interested in estitnating the k& main
effects and ! interactions, 58y %,%,..... 5,2, 1=51<2" —k For 122, any two of these ¢ interactions may or
may not have a common factor, Le., i could be equal to iy or, j,,, for #m.

Far ls2<4, Iel ¢, + 5, = o, (mod 2). Then, {or 1</, ihe triplets of ¢olumns of the orthogonal array
represented by [zy,2;,, Lby 2 #Zu & € %, form an orthogonal array of strength three. Furthermore, consider
four distingt vectors i, g, iy G | u, f<r Then, the columna of the orthogonal array represented by these
veetors form an orthogonal array of strenpth four, as long as g, + 3, + 2 + g, #0 (mod 2), i, 7, #3,.

Then from Theorern 1, the design involving & columns of the orthogonal array represented by 2, 2,.. .. Zr. &,
in addition to other members of £ , such that none of these equal the distinet vectors gy, of, 2w, ..., O Zy,. IS
universally optimal for estimating the mean, the k main effects and the ¢ interactions g, g;, ..., 4.2;,.

We illustrate these ideas by considering the 3- and 16-run plans in detail in the next two sections.

3. Eighi-run plans

For n=73, one ges the amay OA(3,7,2,2). The representations of the columns of this armay are
2 = |001), 2z = {010), £3 = {011), 2, = {100), 25 = (101), 2z = {110}, 73 = {111}. These repreeentations are pguiva-
el to Uk ropresentations 3,2, 23,1, 13,12, 123, Suppose there are k=6 factors involved and one is mterested in
estimating the 2-factor interaction z; 7, in addition to the mean and the & main effects. Let 2; + 3y = 7., {(mod2),
Then, the design with &k factors repeesented by g,z and an additional & — 2 members of Mz, 2. 2,1], &
universally optimal. To claborate further, let there be k = & factors, denoted by A, A,. .., F and, suppose one i
interested in estimacing the mean, the 6 main effects and an interaction 48 (without loss of pemeraliog). Then we
can assign factars 4, A, ..., F to the eodlumns 1,2, 3,13, 23,123, to arrive at the desired optimal design. An optimal
desian under 2 mode] that inclodes the mezan, the intzraction AF and main effects of fawer than 6 fackors can be
obtainzd by deleting an appropriate nuomber of columns of the design with 6 factors,

Wext, let there be k = 4 (or, & = §) factors, denoted by A, B, C, I (o1, 4. B, . .., E, respectively) and, suppose
one is interested in estimating the mean, the 4 (or, 5} main effects and two interactions, say AR and £D.
Suppose the factors 4, B, C, I have distinet representations 2;, 2., 5y . %, tespectively. Forthermore, let z, +
L, =2, (mod2) and g + 7, = g, (mod2}). Then, 3; + 1. + 5, =0 {mod2) and g, + £, + 2 =0 (mod 2).
Thiz implies 1hat the remaining one factor representation z, muet be equal to zero, which is imposnible. It
follows then that with only 8 runs, it is impossible to estimate the interactions A8 and CD (i, a pair of
interactions with no commeon factor) simultaneausly.

‘This fact can also be observed by first constructing all possible distinct sets of triplets (2, &, 2, | £uch that
% + Ty + I = 0 {mod 2). These triplets indicate the column representations of twa factors whose intstaction
is present and the column which is not to be considered as a factor. The sets of triplets are

oz oz,

3 13
(1 23 123},
2 3 23},
2 13 123},
3 12 123),
12 13 23).
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Treating the column representations as the 7 treatment symbols and the sets as blocks one gets a balanced
incomplste biock (BIB) design with 7 treatments and 7 blocks each of size 3. From a well-known property of g
symmekric BIB design, any two blocks has a2 comman treatimeni. Thos, we cannot have 6 distinct symbols
appeating in 2 pair of blocks, This ieads us to the earlicr observed fact that it is impossible to estimate
simultanecusly a pair of interactions with no cammon factor via the considerad 3-run plan.

Next, we laok at two or more 2-factor interactions such that any tewo interactions have § (2 lor in COMMGO.
Consides two interactions of the type AR and AC. Then we can assign factors A, B.. .. E to the columns
1,2,3,23 123 to arrive at the desired optimal design. An optimal design with 4 factors can be obtained by
defeting either of the columns 23 or 123. When f =3 interactions are of interest, the possible types of
imetactions are (i) AB, ACand AD, or (it) AB, AC and BC. For each of these, we van assign factors 4, 8, ¢, D
to the columns 1, 2,3, 323 keading to the desired optimal design.

4. Sixteen-rin plans

Congider the orthogonal atray QA(L6, 15, 2,2) as a special case of the array QAR 2 - 1,2, 2y withn = 4.
The representations of the columns of this areay are 7y = {0001}, 22 = (0010}, 23 = (D011), 25 = (0100), 25 =
(01}, 2z = (0L, z7 = (Q110), 2 = (1O00Y 7o = (1HH L zyo = (1010, 211 = {101 1Y, 272 = (1400), 72 = (1101),
214 = (1310), 715 = (1111). These representations are equivalent to the representations 4.3 34, 2, 24 23 234,
1, 14,13,134, 12,124,133, 1234, Suppose there are k= 14 factors involved and ope is interested in estimating
the 2-factor interaction £, %;, n addition to the mean and the &k main effects. Let £, + 2, = z,, (mod 2. Then,
the design with & factors represenied by z.z), and an additional & — 2 members of @~ {5,.5 .5.,) is
universully optimul. To eluborute further, fet there be & = 14 factors, denoted by 4, B,..., N and, suppose one
is interested in estimating the mean, the 14 main effects and an interaction 4# (without loss of generality).
Then we can assign lactors A, 5, ... A to the columns such that 4 and B are assigned to 1 and 2, while the
ather factors are assigned to the remaining columns excepr column 12, Thie gives ns the desired optimal
degign. An optimal design with fewer than 14 factoers can be obtuined by deleting an appropriate number of
colusns of the design with 14 factors.

Mext, let there be X< 13 factors, denoted by 4, B,..., M and, suppose one is interested in estimating the
mean, the & main effects und two interactons, say AR and D Suppose the factars 4, B, C, D have distinct
representations g,, L., I, T, Tespectively. Furthermote, it & + 7, = z;, {mod 2y and z, + 7, = z;, (mod 23
Then, 2, +2;, + %;, =0 (mod 2) asd 2, + 7, + 7, = O (mod 2). Thiz implies that we nead to identify distinct
values of I, 2o, 25, Zi S 2, Which zatisiy the above two equations.

As m the case of B-run plaps, we now constiset, for 4 = 4, all possible distinct sets of triplets [z, 2.2, 1
such that &, + 2, + z;, = 0. These tripiets indicate the colomn representations of two factors whose interaction
is present and the column which & not to be considered as a factor. These sots of triplets are

U2 12, {3 4 33, (13 24 1234}, {14 123 234), €23 IM 134},
13 13, {2 W 124}, (4 23 234}, {12 3 12M), {24 123 13},
11 4 14, {2 134 1234}, (3 12 123}, {13 124 234}, (23 24 M),
(1 23 123}, (2 4 24}, (3 124 1234}, {12 134 234), {13 14 3,
(U024 14}, {2 3 23), (3 14 13], [4 123 1234), {12 13 23),
(1 34 134}, 12 13 123}, (3 24 23}, {d 12 12} {14 33 123d).
{1 134 123d], {2 3 23} 4 13 134}, (12 14 24} {34 123 124).

As before, if we treat the column representations as the 15 treatment symbols, the above sets of triplets form
a BIB design with 13 treatments and 35 blocks each of size 3. The above design is in fact a resolvebie BIB
design with 5 blocks in each row [omming a complels replicalion. (Recull that o BB desigo with o treatments, &
blocks and replication nuinber  is said to be resolvable if the & blocks can be partitioned into r sets of #r = &/
htocks such that each set coninins every treatment exactly once.}

We can asgign factoes A, B,..., M 10 the columne such that 4, 5, C and D are assigned 10 1, 2, Jand 4,
regpectively, The other factors ate assigned to the remaining colurans except columns L2 arxd 34, This gives s



A. Dag et gl [ Sratistics & Profability Latvers 75 (2006} 1570577 1575

the desired optimal desipn. An aptimal desipn with fewer than 13 factors can be obiained by deleting an
gppropriate number of columns of the design with 13 factors.

Under the above setup, in case the two interactions are, say A8 and AC, then let &, + g4, = z, (mmod 2} and
o + 3w =g, (mad2) Then, z; + 2, + 2, =0 (mod 2y and & + 7, + &, = 0 (mod 2). This implies that we
need to idendfy distinet values of z,, 5. 2,24, 5 Which satisfies the above two equations. We can 1scgign
Tactors A, B, ..., M to the columns such that A, B and C are assigned ta 1, I and 3, respectively. The other
factors are azsigned to Lhe remaining columnne sxcepr columng 12 and 13. This pives ng the degired optimal
design. An optimal design with fewer than 13 faclors can be obtained by deleting an appropriate number of
cohamns of the design with 13 lactors,

When ¢ == 3, without loss of generality, thers ars four possible types of interactions: {it AB, CD, EF, (i) A8,
AC, DE; (iii) AR, 4C, A% (iv) AR, AC, BC, Far each of these cases, we can assign suitable columns wo the
factors, leading to the desired optimal design. The given resolvable BIB desipn is helpiul is obtaining solutions
to the equation sets that arise in each of the four cases. Suppose the factars 4, B, O, D, E, F have distinct
[epresentations £, o, 7. T S 2 TESPEctively.

Case 1: Interactions 48, CD, EF, Let 2 4+ 2., = 5, {mod 2}, 2, + 20, = &, (mod 2}, 2, + 2, = £ (mod 2.
Then, we have

A =0(mod2), g+, 42, =00modd), Itz +2zy=0(modl)

Now we nesd to identify distint values of 2.2, 8. Ziy. Zis Tigs iy Zigs &, Which satisfy the above three
squations. The answer lieg in the 7 sets of the regolvablz BIB design. Consideriog any one set, say the first set,

L2 12, {3 4 34, (13 24 1234}, {14 123 234}, (23 124 13},

and after selecting any thres blocks, [or each block, assigning the two interacting factors to any two (of che
three) clements of (he block, we get our desired allocation. In each of the three blocks, the element oot
assigned o any (actor would be the column in the original orthogonal array, which is nor to be allocaied to
any factor. The non-interacting & — 6 actors are assigned the remuining columns. Thus, frem the above set of
5 blocks, we can asgign (for cxample) the & factors to the columns such that 4, &, C, D, £ and Fare azsigned to
1,2.3,4,13 and 24, respectively. The other factors are assigned to the remaining colimns excepr colwmns
12,34 and 1234, This gives us the desired optimal design.

Case ii: Interactions 4B, AC,DE. Lot g + 3 = £, (mod 2}, 7, + 7, = 7, {mod D), 2, + 5, = 55 (mod 2).
Then,

&+ o+ o, =0(mod2), 2, +% +2. =0(mod2), = 43+ =9 (mod2).

Now we need o ideotily distinet values of .z, 2h, 2 3iss Sh0 Zh, & Which satisfy the above three
equations. The answer Lies in any two of the 7 sets of the resolvable BIB design. We can assign the & factors to
the calumns such that A, B, C, D and E are assigned to 1,2, 3,14 and 123, respectively. The other factors are
assigned to the remaining columns excepf coluinns 12, 13 and 234, This gives us the desired optimal design.

Case iii: Intcraclions A8, AC, 4D, Let 5, + 15 = 7, {(mod2), &y, + 2, = %, (mod 2, 7, + 7, = & {mod 2),
Then 3t [ollows that

I+ st =0(mod2), % +z,+z=0(medl), % +&+% =0(med2)
We need to identily distinet values of 2, , o, Tiss Zies Ztse Zisr T Which satisfy the above three equations This time,
the answer liss in any three of the 7 scis of the resolvable BIB design. We can assign the k factors to the
columns such that A. B, C and D are nssigned to 1, 2,3 and 4, respectvely. The other factors are assigned to the
remaining columns exceps columns 12, 13 and 14. This gives us the desired optimal design.

Case iv: Interactions A8, AC, BC. Let z;, + 2, = &, (mod2), ;, +1; = 5, (mod 2), &, + 5, = & {mod 2).
It follows that

L 42 o, =0(mod?), £ +%, 3, =00mod2), 2+ 25 3, =0 (modd)

Now we need to identify distinct vatues of Z;,, Zi. Zi,. 2. i, & Which satisfy the above thret ruations:
Again, uting the resolvable B1B design, we ses thal an allocation is w assign the & factors to the coluines-sach
that 4, § and € are assigned to 1,2 and 3, cespectively. The other factors are sstigned to the remalnng
colpmns exceps columns 12,13 and 23. This gives us the desired optimal design.
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On lines similar to the case of 1 = 3, we are able to solve for possible situations for £ == 4, For illustration, we

Z;mifder a few cases. In what follows, we represent any assigameny of a facror say, A 10 a eolumn, say I,
{4,1).

Cise it Interactions 48, CD, EF, GH, The assignments are: {4, 1),{B, 2),{C, 3), (D, 4), (&, 13).(F, 24),(G, 14)
and (&,123}, The colurans that are not to be assipned apny factors are 12, 34, 123 and 234, The other factors
ate assipned to the remaining celumns.

Case iz Interactions 48, CD, EF, EG. The assignments are: iA,1),{B,2}{C, 3).{5,4),{ &, 13),(F,24) and
(&, 124). The columns thal are not to be assigned any factors are 12,34, 1234 and 20, The other factors are
assigned to the remuining columns.

Caye iii: Interactions 4B, CB, CE, CF. The assipnments are: (4, 1), (8, 2), (C,3), (D,4),(E, 124) and {F, 1d).
The columns that are not o be assigned any factors are 12, 34, 123 and 134, The other factors are assigned to
the remaining colurnms.

Case 1v: Inteructions A&, OO, CE, DE. The assignments are: (A4, 1), (B,2),(C, 3} (D,d) and (E, 1234). The
tolumns that are not to be assigned any factors are 12,34, 124 and 123. The other factors are assigned to the
remaining eolumns,

Case v: Inteructions AR, AC AD,AE. The assignments are: (4,1),{8,2),(C,3,(2,4) and (E,23). The
colomos that are not to be assigned any factors are 12,13, 14 and 123. The other factors are assigned o the
remaining colemns,

Case vi: Interactions A5, BC, CI), P A, The assignments are: (4, 1), {8, 2),{C, 3} and (D, 4}. The columns that
ar¢ oot to be assigned any factors are 12,23, M and 14, The other factors are assigned to the remaining
cohimas.

For # = 4, we come across some ¢ases where mconsistent equations arise which do not allow ang to salve for
possible solutions. Again, for illustration, we consider & Few caey,

Cose 1@ Toteractions A8, CD EF, GH, IJ. The sssipnments are: (A, 1),{8, 2),.(C, 30{D, 4),{E, 13), (F,24),
(o, 1), (A 120, {7, 23} and (J, 124}, The columns that are not to be assigned ony factors are 12,34, 1234, 334
and 134,

Cave 1i; Imteractions AB,CD EF,GH,GT. Let ¢, + g, = 7., (mod ), z;, +2;, =z, (mod ), ;, + i, =
% (mod ), 5, + 2 = i, {mod2), 5, + 5, = 7, (moed2). Then it foilows that

oy 4T+, =0{mod2), gz, 5 42, =0(mod2), z,+z, 4+, =0(mod),

T+ I+ In, =0 (mad 2), z; 4+ + 2, =90 (mod 2}

Now we nucd to identily distinet values of z;, Zq. 2i,. Zi s Ziss Tgs Sivs Tige Zivs Thige Zigy » Tirps Signe Ty Which satisly
the above five equations. However, note thai the above equations imply that z;, + g, = . This is impossible.
Henee, there exigts no allocations of the columnps to the factors which would enable one to have such an
interaction set in the model.

Case iif: Interactions A8, CD,EF, EG, EH. Lel z;, + 2, = 2, (mod2), 5, + i, = %, (mod 2), 2, + 2, =
%, (mod 2}, 7, + 2 = &, (mod 2), 2, + %, = £7,, {mod 2). Then it follows that

I+t =0med2) zi+5H+H,=0mod2), z;,+z, +&, =0{mod),

i T2+ G, =0 (mod 2), 2, + 2y + 5y, =0 {mod2).

Now we nead to identify distinct values of g, 2, 25, Zis Zivs Tigs Eirs Sigs Sys Liigs Zip » Sigs 84y Which satisly the
above five equations. Howcver, note that the above equations imply that g, + 27, = 0. This is also impossible.
Hence, here too there exists no allocations of the columns to the factors which would enable ose 10 have such
an interactien set in the model.

Case iv: Interactions A8, C0, CE, CF, CG. The assignments are: {A,2), (& 3),(C, 1} {D,4),(E, 24),{F, M)
and {7, 234). The columns that arc not to b assigned any factors are 23, 14,124, 1M and 1234, Tha other & — 7
factors are assigned to the remuining cofumns.

The above ideas can, in principle, be extended to arrays with larger number of rows {runs), theugh the affort
involved in larger arrays is obviously more, In general, an easy way ta check the non-existence of an ailocation
of the factors to the columns (eading to yatversally optimal designs) is to add (mod 2) all the equations that
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arise and then use the fact that j=f'z,} = (.. Non-existence is implied in case this leads to ane g, or sum of two
#;'3 being equal to zero.
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