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ORDER STATISTICS FOR NONIDENTICALLY
DISTRIBUTED VARIABLES AND
PERMANENTS

By F. B. BAPAT and M. 1. BEG*
Indian Statistical Instztule

SUMMARY, Theory of permanents provides an affective tool in dealing with order aha-
fistics vorreaponding to random vavigbles which are independent but possibly nonddentically
distributed.  Thig ie illastrated by giving a ohameterisntion of symroetrio rendom veriables in
topms of urder stolistios and by goneralizing aomo kmown rmeeurrenco rmeletions. Tt is ghown that
the distribution funclion of one or mere order statistios can ho represonted in tarma of permanents
and thit fact combined with the Alexandroff mecuality i® used to demonstrats the log-concavity
of certpin sequenees. The caso of order etabistics correepomding to independent exponential
random varighles is considered and ihe m.g.f, and momonta of an order statistic and thoso of the
range are derived oxplicitly.

1. INTRODUCTION

Let X,, ..., X, be independent random variables with distribution functions
P, .., F, respectively and let ¥; £ ¥, < ... & ¥, denote the corresponding
ovder statiséies, In the therory of order statisbics it is usually assumed thaé
X, ..., X, are identically distributed. However in many practicel situations
it is necessary to allow for nonidentical F,, ..., Fp. This is the oase, for
example, if there iz a possibility of one or more outliers being presemt. Also
in some instances ¥,, ..., F, may be belioved to be of the same functionsl
form but with different values of the paramoters involved.

In this paper we consider the case where Fy, ..., F, are not necessarily
identical. The paper is organized as follows. In Section 2, we give rome
elementary facts concerning permapents. It is pointed out that the theory
of permanents provides sn effective techuigque to handle the case of order
statistica from nonidentical parents. This is ilustrated by the repults in
the next three sectiona.

In Section 3, a characterization of symmetric distribntions is obtained.
In SBection 4 we show that the distribution function of a subsst of ¥, ..., ¥,
cen be expressed in ferms of permanents. This is used to show that the
sequences P(¥, < y) and P(¥r > ¢), r =1, 2, ..., n aro log-concave for any
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real . In Seetion 5 we generalize cerfain recurrence relations to the oase
of nonidentically distributed variables. In Section 6 we consider the oase
of independent nonidentical exponential random varisbles. The mpf.
of the order statistic ¥, and that of the range ¥, ¥, are derived explicitly,

2. PERMANENTS

Let 8, denote the set of permutations of 1,2, ...,n. If 4 is an axx
mairiz, the permanent of A, denoted by per A, is defined as :

PBIA= 2 ﬁ Bigti)

o28, i=1

The permanent clearly remains unchanged if the rows or columns of the
matrix are permuted. Furthermore the permenent admits a Laplace ex-
pansion slong any row or column of the matrix, Thus if' we denote by A(3, j)
the matrix obtained by deleting row ¢ and column 4 of the 2 X » matrix 4, then

per A = 5 agg per Afi. ), i=12,...,n
-

H
and per 4 = E gy per A, 5), j=1,2, ..., %
feal.

For a detailed account of permanents see Mine (1979) and the marvey
papers of Minc (1983, 1987).

If @, &a, ... are column vectors, then

(e, Gy ...]
R

ho
will denote the masrix obtained by taling ¢, copies of a@,, 4, copies of a, and

HO OD.

Let X,, ..., X, be independent random variables with absolutely conti-
nuous distribution funetions Fy, ..., F, snd densities f,, ..., f, respectively,
Then Vaughan and Venables {1972) have shown that the density of the order
sbatistic ¥, or the joint density of a subset of ¥, ..., ¥, is conveniently
expreased in terms of a permanent. For exampls, the density of ¥, is given by

A Fin 1-Fi(y)

1 . ‘ .
Qr[!ﬂ = r—1) [{'ﬂr—“i"] ] per . o - y ORI L ":1}

—fulyry Foly) 1—F
et ey —

1 r—1 i
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Tt will be seen in Seotion 4 that the distribution funection of one or more
order statistics can also be given in terms of permanents.

It must be remarked that the representation {1} and the anzlogous for-
mula for joini densities have not been sufficiently exploited in the literature.
One reason for this is perhaps the fact that the permanent does not lend itself
to manipulation az easily as the determinant. However, there have besn
gome significant advances in the theory of permanents in the last few years
and we believe that it must be thought of as an essential tool in the theory of
otder gtatistics. In the next three sections we illustrate by means of examples
that the theory of permanents facilitates generalizations of results known for
the case of identically distributed variables as well as produces some new
inequalities.

3. SYMMETRIC RANDOM VARIABLES

A random variable X with distribution fonction F is said to be symmetrie
about 8 real number g if

Fla+a)+Flu—z) = 1, for all .

In this section we consider the case g = 0 for convenience, It iz well
Inewn {David, 1981, p. 24) that if X, ..., X, are Lid. continuous random
variables which are symmetric about zero, then for any +,1 € r < n, — ¥
and ¥, _,., are identically distributed. In the next result this fact is genera-
lized and a partial converse is given.

Theorern 3.1: Let X,,..., X, be independent random variables with
ebsolutely continuous distribution functions F, ..., F, and densities f, ..., [,
respectively. Suppose X is symmetric shout zero, i = 2, ..., n. Let r be fixed,
Tgran Then —¥, and Yy oy are idenfically disiributed of X, 15 also
symmeiric about zeva. Conwersely, if 0 < Fylz) << Y forall 2, i = 1, ..., n and
if — ¥, and ¥y, are identically distributed, then X, is symmelric about zero,

Proof : By (1), the density of —7T, iz given by
i | Al—) Pi—) 1—Fy{—g) |
g[ﬂ)=*— ) ! per . : :

{r—1)! (n—r

j_m{:y{m ANR {a}
| So(—9)} Fol—2) 1—F (—y)_|
[Ny Wiyt Iy N

r—1 0—t

AT-11
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real . In Section 5 we generalize cerbain recurremce relations to the case
of nonidentically distributed variables. In Section 6 we consider the case
of independent nonidentical exponential random variables, The mgf.
of the order statistic ¥, and that of the range ¥,— ¥, are derived explicitly.

2. PeBusnONTS

Let 8, denote the set of permutations of 1,2, ...,2. If 4 is an nxa
matrix, the permanent of 4, denoted by per A, is defined as :

per A= Z ﬁ Cigti)

The permanent clearly remeains unochanged if the rows or columnz of the
matriz are permuted. Furthermore the permanent adwmits a Laplace ex-
pansion along any row or column of the matrix. Thus if we denote by A(, j)
the matrix obtained by deleting row ¢ and column § of the » <% matrix 4, then

por A = 3 agper AG.5), i=1,2,...,n
F=l

end per A = I ayper AG,§), i=12..,%
=1

For a detailed account of permanents see Minc (1979) and the survey
papere of Mine (10883, 1987).

If &, ... are column vectors, then

{1, ag ...]
byt S

h
will denote the matrix obtained by taking i, copies of e, i, copies of g, and
g0 on.

Tet X,,..., X, be independent random variables with absolutely conti-
nuous distribution functions ¥, ..., F, and densities f,, ..., f, respectively.
Then Vaughan and Venables (1972) have shown that the densgity of the order
statistic ¥, or the joint density of a subset of ¥, ..., ¥, in conveniently
expreased in terms of & permanent. For example, the density of ¥, is given by

Ay Fiyl—Fiy) T

yf(y} = =1 !l{ﬂ__r} f per : : : s —CQTYIO0 L., (1]

-—fﬂ{y} F n(yj 1—F n@f)—-
oyt et e
1 r—1 RN—7r
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I+ will be seen in Section 4 that the distribution funetion of ome or more
order stattstics cen also be given in terms of permanents.

It must: be remarked that the representation (1) and the analogoua for-
mula for joint densities have not been gufficiently exploited in the literature.
One reason for this is perhaps the fact that the permanent does not lend itself
to manipulation as easily as the determinant. However, there have been
gome significant advances in the theory of permenents in the last few yeara
and we believe that it muost be thought of a3 an essential tool in the theory of
order atatistics, In the next three sections we Hlustrate by means of examples
that the theory of permanents facilitates generalizations of results known for

the case of identically distributed variubles ss well as produces some new
inegualities.

3. BYMMBTRIO RAKDOM YABIABLES

A random variable X with diztribution function F is said to be symmetrie
shout & real number g if

Fludx)+ Fip—x) = 1, for all 2.

In this section we consider the case u = O for convenience, It is well
known (David, 1981, p. 24) that if X, ..., X_ are iid. eontinmows random
variables which are symmetric about zero, then for any r,1 € 7 € n, — ¥y
and Y, ,., ore identically distributed. In the next result this fact is genera-
lized snd & pariial converse is given.

Theorem 3.1: L& X, ..., X, be independent random vmicbles with
ahsolutely condfnuoue dislribution functions F\, ..., F, and densilies fi, ..., f.
respectively. Suppose Xy is symmetric about zevo, i = 2, ..., n. Let r be flxed,
1grgn Then —Y, and Y p_pyy are identically distributed if X, iz olso
symmetric oboul zero. Caonversely, if 0 < Fylz) <<V for all @, 4= 1, ...,n and
if — Y, and ¥y_r,, ave identically distributed, then X, is symmetric about zero.

Proof : By (1), the density of — ¥, iz given by

1 A=) Fo(—p) 1—Fo{—y) |
=TT P : :

, —OLYCD .. {2)
_fn{"y] Fn{""y} I_Fﬂ{"‘y}.—ﬁ

r—1 Hop

Ar-11
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Simila-l'ly fhe dﬂnﬂity of rﬂ_,_r_]_l in

fﬂ?) F 1(3"} 1--F. 1{5"}
H

kiy) = per TRSY<® - )
{A=r) L (r—1) | fn[y) Fﬂ{y) 1— Fu(yJ
1 :::-J r-—l

Firat suppose that X, is also aymmetric about zere. Then Fyz) =
1—Fy(—z) for all &, i =1, ...,n. Hence fi(x) = f{—=x) for almost all z,
i=1,..,n It follows from (2), (3) that g{y) = A(y) for almost all y, sines
the permanent remains nnchanged if the columns of the matrix are permuted.

To prove the converse, suppose that 0 < Fy{w) << 1 for all o, i =1, ..., n
and that —¥, and ¥,_,,, are indenticslly distributed. Then gig) = Afy)
for all y and from (2), (3), for all ¢,

fl—4) Fi(—y) 1—F(—y) fiy) Fuly) 1—Fily)
: =P&r : e [i:'l
f‘h{_y} Fﬂ-{_y) I"Fn{_y} fu(y} Fﬂ(ﬁf) 1— u{y)

1 =1 - P \qlr.‘ n—s r—1

Expand the permanenvs on both sides of (4) in terms of the first row and
use the fact that fi{—a)=fi(») forallw, ¢§=2,...,n and that Fy(—=) =
1—Fyz) for all %, i =2,...,n. Then wo get

[ fi [~ —Hlk+Alr— 1) {Fo{— ) — 1+ Fy)

Fyla—r) {1 —F(—y)— =0, ... (8

where 2, £,y, are respectively, the permanents of the matrices obtained by
deleting row 1 and column 1 : row 1 and column 2 ; and row 1 and column
741 of the matrix sppearing on the left hand side of {b).

Fix a real number y and suppose it satisfies Blr—1) == y(n—¢). Then

from (&),
i~y A} =0

Since 0 < Fy(z) << 1 for all Té=1,..,m o is novzero and henst
H(—¥) = fil»)-

If f(r—1) 5= y(n—r), then replace y by —y in (5) and add the resulting
aquation to (5} to get

Fy{—g)~1+Fyfy) = 0.
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We have therefore shown that for each real y, either fi(—y) = fily) or
Fi+Fy—y) = 1. A simple ealoulus argument shows that then for all y,
P )+ F,(—u) =1 and hence X, is symmetric about zero.

An argument similar fo that used in Theorem 3.1 and the permanent
representation of joint densities of order statisties {Vaughan and Venablea,
1972} may be used to show that if X, ..., X, are independent continmous
random veriables symmetric about zero, then for any 1 < §; < ... < Je & ™
the joint density of — ¥ s — ¥, is the same as that of Y g, e, I",_.,IH‘

ODbaervations of this type have been used in the identical veriables case to
reduce the computational effort in caleulating eovariances, For example,
we have

E{ Yr:' = —"E[Yﬂ—ﬂﬂ nes (E)

cov{ ¥y, ¥,) = cov( P‘!I_E+1! Yﬂ--f-]—],] e (7)

The relations {6), (7) have been used for tabulation in the ease of identi-
eally distributed X,...., X,. (See David, 1981, p. 86).

4. LOG-CONCAVITY

Tt is possible fo represent the distribution funetion of ¥, or the joint
digtribution function of & subset of ¥,, ..., ¥, in terms of permanents. Al-
though this fact has not been explicitly stated in the literature, the basic
idea is the same as the one nsed by Vanghan and Venables {1872), Wae atate
the representation. in the next two results.

Theorem 4.1 : Let X, ..., X, be independent random variables with dis-
tribudion fuhctions F,, ..., F, vespectively, Then the distribution function of
Yl < r g n, 18 given by

Fyy) 1—Fiy)
" 1 *
PY,Lih=2X mlper : o<y <o ... (8)

{=r
_F'ﬂ-{y} I_F-n[y} __I
i a-

Proof : A simple argument shows (David, 1981, p, 22) that

P(Y, <y) = 5 Plexaotly ¢ variables from X, ..., X, are < y)
§=r

) i 1
= XZIF I J1-—-F s
dmr Ty fl o) H+1[ 191}
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where the summation 7 extends over all permutations 75, ..., 5, of 1, ... n
for which j, << .., << j and ji 4 << ... < j,. The result now follows by the
definition of the permanent.

The next result can be proved by a similar argument.

Theorem 4.2 : Let X, ..., X, be independent random wvariablés with
distribution function F, ..., F, vrespectively and lef 1 £ & < ... < ip € n.
Then for y, < ... & ys,

P<F;1 Q ‘9'1: Buny Yi.i Q yk]

i Fuyy Foly)—Fly) - 1—Falye)

ﬁlﬂ@l} Falya)—Falyr)) ... 1—Fulyr) .,
| - ! T ——

1 Je .f-l:q.q
At e T3 i Gt ik =

It may be remarked that if the condition 3 < ... & y¢ i8 noli imposed
in Theorem 4.2 then some of the inequalities in ¥, < g, ..., ¥, < ypmsy
be redundant and the probability can be eveluated affer making the necessary
reduction.

Definition : A gequence of normepgative numbers «;, oy, ... is said to be
log-coneave if &% 2> oy g o =2,8,.... A finite SOQUENCe &y, ..., ty Will
be seid to be log-conecave if ,, ..., z,, 0, ... is log-concave.

Log-concave sequences arise frequently in statistios and in combinatorics,
It is easy to see that a log-concave sequenve must be unimodal (ses, for example,
Comtet, 1974, p. 270).

In the next result we state some properties of log-conceve sequemces
that will be used. The first property is well-known but a proof is included
for completeness,

Jemma 4.3 : Let a), oy, ... be log-coneave. Then the following stalemends
are frue -
8) For 1<jk apoy > gy tyy;
{b) Let & be a positive integer and et
J+k .
ﬁ.fﬂ p3 &4, J=1:E:--"
f=f

Phen B, By -.. s log-coneave.
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{c) For any positive infeger n, the following sequences ure log-concove.
Byy Byt Cgr o Gy o 0y,
Gy Bpd-0y 1y vaey Ept 1o 04
Proof : {a) First suppose that a;>=0 for all 3. Since 2, ay,...i8 logooteavas,

& X1

— : = 2: 3: e
ey a4
e Oy o ]
Therefore — = > .. » =t
2 IE & &E o

and the result follows. The case of nonmnegative o, &, ... is then settied by
a continuity argument,

(b} Wo will show thet #2 > #, f, and sinee ay ,, 2y, ... 18 alao log-coneave
it will follow that % > Bi_y fi,1. # = 2,3, ... We have

k1 2 & k+a
ﬁg_ﬂ1ﬁ3=( Eﬂi) —( E‘xi](zﬂ
fual2 -1 o
= plotg+ ... o)ty (Xt . T pgy)
— aylotgt+ ... Oy etk o{ctg T+ ... -otp) . (9}
By (a), cyoy2ay0p,,i=2,.. b+1 and o0 2 0., =3, ..,
k-+-1. Using this in (9) we get 82 3 8, f..
{¢) Tor this part we may nssume «; =0, ¢ >> n. ‘Then the sequonoce

0,..,0,a,..,2,
st

(n—1) times

is clearly log-concave and by applying (b) to thie ssquence (with &= ») ws
ses that

AR A SR A

is log-concave. The log-coneavity of the second sequence now follows aince
%y, ..vp 8y 18 log-coneave,

We now state an important ineqmaliby for permements due to A. D.
Alexandroff who proved it in 1838 in a maqre general setting. TFhe inequality
was usesd around 1980 by Egorychev to prove the famous van der Waerden
sénjecturd for permanents (seo Mins, 1988).
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Theorem 4.4 : Let 4 be a nonnepative nxn malrix and let ay denote the
jtheolumn of A, § = 1,2,...,n. Then

{per A)? = pero,, oy, gy, ..., Oy} per (g Og: Bay - Byy)

Theorem 4.4 was used by Bapat (1988) to prove the log-concavity of
esrtain sequences asanciated with order statistics. Hers we obfain yet another
result along similar lines using permanent representation of the distribution

function.

Theorem 4.5: Le X, ..., X, be independent rondom variables with
distribution functions F,, ..., F, respectively. Then for any veal y, the sequences
PiYrs Lyhor=1,..,nand P(Y, > gl r =1, ..., » are log-concave.

FProof 1 Defins

1 Fﬂ?f} I—Fyy) 1
Xy = i 1 ]. y T
Tt | gy 1mmd
— e

i
By Theorem 4.4,

I:F1{? 1—F\(y} :I } [Fﬂy} l—Fl[y}jI

per = per :

F i) 1—-F %) Fuily) 1—F, (y)
—— —— —_—

i fi-d =1 n—1+1
[ Fily) 1-Fily) ]
per |
F m{y} 1—F ﬂ-[y]
!\ —
i+l i1

Also, {i ! (m—9) 11, § = 1, ..., n is eaally verified to be log-concave and
hence it follows that e, ..., «, iz log-concave. Now the result iz obtained by
(e) of Theorem 4.3 and the representation (8).

5. BROUVERENOE RELATIONS
Beveral recurrence relations involving order stafistics are in the literature.
A poeod number of these have been documented as exercises in David (1981}
In this section we illustrate how pormanents can be used to genseralize some
of the known recurrence relations,

The following notation will be used throughout this section. Let
X;. ... X, be independent random varisbles with distribution functions
Fy, .o, Fyrempectively. Let Y, denate the r-th order staistio corresponding 1o
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b PP iy For 1 &4 % n let ¥ denote the p-th order statistie corres-
poinding to X, ..., Xy 5. X5y, ..., Xy Leb y be & real number. For con-
venience we will write ¥; for Fy{y) and F will denote the coluran wvestor
(Fy ... F)'s  Also, 1 will denote the column vector of all ones. As in Section
2, Af¢,4) will denote the matrix obiained by delsting row i and column j of
A. We will denote by A(j..), the matrix obtained by deleting row j of 4.

The next resutt generalizes a recurrence relation obtained by David and
Hhu (1978} who consider the set up in which the variables X, ..., X__, are
identically distributed and only X, is supposed &e¢ have a posgibly different

distribution.

1 _
Theorem 5.1 :{a) P(¥, < y) = T ey [J_ﬁ'; leP{Ym & ¥

f=r

b PE <= ("] zm[F 1-F|4 EPi<y

R—r
Proof : {a) By Theorem £.1,
2 1 *
A= 8 gl o] 8, 18
1 A 1
= e e e ——— 1Ay —
Wt P fﬂ;j] .2 @i P [{'_rl A
n—-F n—i

1
= AT P E,—* 1—F]+P{Yf+1 <%

(b) TUsring the relation
n #— 1 n-—1
(§)= (i—1)+( i )
and the first step in {a) we ged

B\ PTpCy) =3 {(ﬂ—l)"'( )}P“’ Lf_, L—ﬁ]

f=r

i =i
—1
= C-t—lJ per [L.-.fT_I s .|+t-rz-h1 (a-— }pﬁr EJJ;F]
¢ u-r + o—F
-1 ,n—1
+!§r i J per | B }_:f'_f]
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Using the Laplace oxpansion for psrmaments the sum of the last fwo
torms in the above expreasion is seen o be

k. »
ELS)E roe] 2 22}

-1-:’?': (“: ] £ (1—Fy per[ F, I—F]f:. )
i ﬂ—i

n ﬂ,—- .
- £ (™ )E{F,-r-l Fjyper| F, ‘1_:_'][;,-,.}

fiul

1
- [n—1 E —— F, 1-F iy
(» ”,‘3 2 ity P [“T”ZI_T' |¢3.)

nla
=% 2An<y

and the proof is complete.

We now obtain a8 recurrence relation for densities of order statistics.
With the rame notation as before, suppose X; is & contitous random variable
with density £, ¢=1,3,...,5. Let gf(g)) denote the density of Y,(¥9).
Then wo have the following,

Theorem 6.2: (n—r) ge(p)+rgraly) =:E GY), —0 <y < w.

Progf :  Fix & real number y and for convenience, let f denote the solumn
vector (filp). ... L)Y

By (1), we havs

1
") = T 2= U, I 1]
L r=1 n-r

i
— per [#, F,1--F, l]—per[f,
(r—1) 1 {n—r)! { 'L[...{_-L..,_:L..‘,._-L.,l \[_';_.-i];_ri]}

ﬂ—f‘—l 1

[T ]

1 #
=T — L per| f, F, l—F'J(j,} A R -
P r]!{ Lo Pﬂ[fl ,‘,.T;]I‘}

(19)

1
Bince gryly) = par[ 5 ¥, 1-F
7l {n—r—1) 1 ’

r Rarml
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1 :
and #) = iy ar—Ty T B [qui 3_:_1";]{.?:-1"

1 ral R=r=1

the result follows by multiplying squation (10} by n—r and by meking a
simple resrrangement of the terms.

In thy statement of Theorem 4.2 multiply both sides by 4%, k=1, 2, ...
and integrate with respect to y. Then we obtain a recurrence relation
for moments which generalizes & known result for identically distributed
X, ..., Xa(David, 1981, p. 46),

8. NONIDENTIQAL EXPONENTIAL VARIABLER

In this saction we consider the situation where X,, ..., X, are independent
random variables and X; has the exponential distribution with parameter
Ay > 0 ie,, X; has the density

flm)=Ae 250, i=1,...u

and the distribution funetion

Fig)=1—e g0, i=1,..,n

As before, et T, « ... & ¥, denote the corresponding order statisties,
We firaf derive the joint m.g.f. of ¥, ..., ¥,. Then we obfain a formuls for
the m.g.f. of ¥, 1 & #  #, which is best suited to derive the moments of ¥,.
we also obtain the m.g.f. of the range ¥, — ¥,. Results obtained in this sectien
are & significant improvement over earlier work by Gross, Hunt and Qdeh
(1986) where the case of only one Ay being different from the remaining is
mainly considered.

In the remainder of this section the range of a summetion and a produet
iz from 1, ..., n unless specified otherwise.

Lemme 6.1: Let X;~ exponential (Ag), s=1,..,n be independent.

Then the m.g.f. of Yy, ..., ¥, eaists in a sufficiently emall neighbourhood of
the origin and is given by

1
P oikiy t“ = .A. E T — e
# } (f 0 a23, Aatmy—bz) QormF A=t 1ty ). . [BA-ZR) a1

Proof : The joint density of ¥, ..., ¥, is given by

-3,
.ﬁyi* tau1 'yu) = ’;L;n ':'r{‘:"‘ﬂ'l"l'B e y &< < e < ¥

A l=12
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Henes

Hly coor ) = Bl T = (@ Ay) | j &N 5 e,
PSS oo g,

o

— A E J..] § lUewTg,

#E5p 0 Vo5 ¥x—
The resnlt follows after » routine integration.

It is possible to obtain the m.gf. of ¥, by setting & = 0, s £ r in (11,
However, we now obtain another formula for the m.g.f, of ¥, which can readity
be used to calculate moments. The following notation will be used. Tet
N={l,..n} If §C N then 8 will denote the complement of § in ¥
while |J| will denote the cardinality of 8. If 8 C X, defins

AS) = = A

fe8

Theorem 6.2 : Fet X;- exponential (A}, i=1,....n be independent

and let v be flved, 1 C v < 0. Then the myg.f. of ¥, ds given, for sufficiently
emall ¢, by

_ 3  1ven kE—1 A{8)
v = B ) o AR - {13

Proof :  'The result will be proved by induction on. n. The resuls is trivial
if # = 1. Bupposs the result is true for n—1. If = 1, then snce ¥, ia
Exponential (EA), (12) cleorly holds, 8o suppose r = 1. Tet S denote the
sofi of permutations of the elements of N/ = {1, ..., j—1, j41, -y 13

The m.g.f. of ¥, is obtained, by setting & = 0 for all § = # fu (11}, as

r(f) = = :
AR R W - e e s S =1 - i)

By induction hypothesis, we can write

gzr[g]=_{?ﬂﬂ._§__i,_, = (_1}k~n+r—1(k“1) y _MS)

—w

2A— g @A) pemrpa n—v! geng A(S)—¢
¥ 18 =k
=Ea % etz ML 1
=1 Femerid . r—ri ¥ cm. AE) AAMS) -t Za, ¢

1SI=% . U-a]
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. 3 ]
Congider S ( N. If | 8] = & < n, the eoefficient of A%iﬂ {13) s

well as in {12) is seen to be
k—1
- ]iE—ntr-1
(=1 (?!-—f')
Now we show that the coefficient of (ZAy—&)! is alzo identical in (13)
and (12},
The coelficient of (ZA;—t)~* in {13} iz
n—L

b—1
3 {—ufc—nw( I B A8
F=fi=-r41 n—r 18=F

= (A1) ”2_1 {(—1)k-n4r (kml) ('ﬂ"'—‘])

F=pn-r+l n—ef Y h—1
B e U
= 1 T T
. . |
= (BA) (=11 ﬁ_r) (14)

where the last stop follows by an application of the Binomial theorem. The
coefficient of (ZA;—#)-* in (12} is also given by (14) and the proof is complete,
From (12), we obtain by differentiation,

1

7 k1
{ f] .il'f-=il—r+1{ ] (ﬂ_f)lslul ‘1[ } { )
n E—1y 2
Bl = ¥ (—1jk-=+ri e
(F) i'=m——r+1( y fﬂ—r) i.;is.;,- A(8)e (%)

From (16), (16) we can get an expression for the varisnce of ¥,. In the
special case when 4, ..., A, are all equel, a different formula for the variance
of ¥, has been obtained by Gross, Hunt and Odsh (19886},

If X¢~ exzponential (1), i =1, ..., % are independent then it is well
kndwn (Pavid 1981, p. 49) that

_ & 1
HY)y= X F v {17}

Note that if A, =1, i =1, ..., n, then A(8) = ¥ for sny & C N amd
sines there are ( ;:} subsets of N of cardinality %,

1 : 1
mﬁzm E(:)F
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This pan be subgtibuted in (15) to get another expression for B(¥,). Equat.
ing the expression obtained to (17) we get the following binemial identity-

f k—1 1 L 1
l:—n.E—H-i{#l}b_H%I (en.—rJ ( : )-k_: ﬁe-,fﬁ:l 3 s E18)

The oase ¥ = n of the identity (18) has been mentioned by Feller {1968,
p- 65), but we have not been ahle to locatc the general case in the literature.

Theorem 6.8 : ILet X;~ exponential (A1), i=1, ...,n be independeni
and lef r be fixed, 1 << r & n.  Then the m.g.f. of Yo— ¥ i5 given by

R ey (B MBS
=g 2 ()2 Sy o (9

Proof : 'The mgf. of ¥r—Y, is obtained by setting & = 1, § = —1,
h=0,t1, rin {11) a8

1
'g&'{t} = lﬂ}‘ﬂ F’EE][ d'[nl(ad{ﬂ'l"I";'-a ln-l'.l] (Aﬂm + T+ J‘-a n _t [Elt)

A g1
ET;}-IFAI ”

where, by {11), A4} i5 the m.g.f. of the (r—1)-th order statistic for the random
veriables X, ..., X, X0, .00 X

By Theorsm 6.2,

1_5%3_ w1 o5 —xtry {¥1 A(S)
ve) ¥ El ™ Af g E—-r+ (=L (ﬂ- f).sazw A{8)—t
e |§1=E

I na k—1 y
= T s (D E S
Theat completes the proof of the thsorem.
Setting + = n in Theorem 6.3 we obtain the m.g.f. of the range ¥,—¥,
from {19) as
1 A(S)A(S")

() = A E{ 1)k =

18] =& A(S}'—T - {2']']

The raw moments of the range can sasily be obtained from (20) by differ-
entintion. Thus we have

1 A(ﬂ’
K- =, I, z (-1 s AB)
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