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DIVERSITY : ITS MEASUREMENT, DECOMPOSITION,
APPORTIONMENT AND ANALYSIS*

By C. RADIHAKRISHNA RAO
Indian Statistical Institute and University of Pillsburgh

SUMMARY. Two genoral mothods of obtaining measures of diversity within a popula-
tion ars discussod. Ono is basad on an intrinsio notion of dissimilarity betweon individuals and
the other makes use of the concopts of entropy. Somo examples aro given of the ducomponition
of divorsity within a population in wrml of given or conceptual factors,  Mothods for apportion-
mont of divorsity in 8 hi hi lassified set of populati are i d. Tho eoncopt of
snnlysis of diversity s a gonoralization of analysis of varianco is doveloped for populations
clawsificd by combinstiona of differont lovols of chosen factors.

1. INTRODUCTION

There is an extensive literature on measures of diversity within popula-
tions and analyses based on them. They havo been used in a wido variety
of studics in anthropology {(Rao, 1948; Mahalanobis, Majumdar and Rao, 1949;
Majumdar and Rao, 1958; Rao, 1971a, 1971b, 1977), in genctics (Cavalli-
Sfroza, 1969; Karlin e al., 1979; Morton and Lalovel, 1973; Nei, 1978;
Sanghvi, 1953; Senghvi and Balakrishnan, 1972), in cconomics (Gini, 1912;
Sen, 1973), in sociology (Agresti and Agresti, 1978; Rao, 198la) and in
biology (Sokal and Sncath, 1963; Piclou, 1975; Patil and Taille, 1979).
A complete bibliography of papers on measures of diversity and their
applications is compiled by Dennis ef al. (1979).

A diversity moasure can bo used to decomposo the total diversity within
a population as duo to o number of factors. Thus wo might ask as to how
much of the diversity between individuals of a population is duo to sizo and
how much duo to shape. Wo rofor to such problems as decomposition of
diversity or DEDIV for short.

If we have a mixture of several populations, it would be of interest to
know how much of the diversity in a composito population is due to diversity
within populations and how much due to between populations. Wo refor to
this problem as apportionment of diversity or APDIV for short.

In analysis of variance we partition the variability in & given sct of
quantitative data into & number of additive components, cach of which is
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used to test a certain null hypothesis or to estimato a component of variance.
Of particular practical intercst is the analysis of data classified by the levels
of a number of factors, whero the total variability is partitioned as due to
main effects and interactions of the factors and their significance tested.
The corresponding analysis whon the data are categorical (qualitative) in
nature is not straight forward, although a variety of techniques are availablo
(see Bishop, Feinberg and Holland, 1975 and Haberman, 1874). Further,
even in the case of quantitative data, the usual analysis of varianco technique
is not applicablo when measures of variability other than the sum of the
aquared deviations from the mcan are considered. e introduce a genersl
measure of diversity (variability) applicable to both quantitative and qualita-
tive data and extend the concept of analysis of varianco (ANOVA) to the
more general analysis of diversity (ANODIV).

Wo note that such an approach to the analysis of one-way classified
categorical data (equivalent to two-dimensional contingency table), called
CATANOVA, was doveloped by Light and Margolin (1971) using the Gini-
Simpson index of diversity for a multinomial population. Further contribu-
tions in this direction have been made recently by Anderson and Landis (1980).
The present paper provides a gencral framework for extending the analysis
of the above authors using a general diversity measure to more complex
aituations where tho data are classified by lovels of two or moro factors, and
the main effects and interactions of these factors have to be examined,

The present study is largely motivated by problems posed by research
workers in applied ficlds concerning the measurcment of diversity of indivi-
duals in & population and apportionment of diversity as between and within
populations (sce Lewontin, 1972 and Nei, 1973 for problems in genctics;
Sen, 1973 in economics; and Agresti and Agresti, 1978 in sociology). It is
hoped that ANODIV (analysis of diversity) as outlined in the presont paper
will be of uso in carrying out o widor analysis of data in moro complox
situations.

2. MEASURES OF DIVERSITY
2.1 Poslulates and notati We ider & measurable space (2, &)
and a convex set & of probability measures defined on it. A function I(:)
mapping # into the real line is said to bo a measuro of diversity if it satisfics
the following conditions :
Cy: H(P) D o¥ Pe® and H(P) = oiff P is degonorate.
C, : Il is a concave function on X,




DIVERSITY ! ITS MEASUREMENT AND ANALYSIS 3

We shall refer to JI(P) as the diversity within a population 7 characterized
by tho probability measure P.

Tho condition C, is a natural ono since & moasuro of diversity should
bo nonnegative and taeke the valuo zero whon all the individuals of a popula-
tion are identical, i.e., when the associated probability measure is concontrated
at & particular point of &. The condition C, is motivated by the considera-
tion that the diversity in a mixture of populations should not be smaller
than tho averago of tho divorsities within individual populations.

2.2 General theory. Wo start first by choosing & nonnegative symmetric
function d(X;, X,) which is a measure of differenco between two individuals
with X = X, and X = X, without any reference to the probability distribu-
tions of X; and X,. The choico of d(X,, X,) naturally dopends on the nature
of tho practical problem under investigation. Ve define tho DIV (diversity)
of g a8

(P = U, = [ d(X,, X3) Py (dX,) P, (X)) . (22.0)

i.e., as tho averago differenco between two randomly chosen individuals from
m. Supposo that ono individual is drawn from m and another from
Then the averago difference is

Iy = [ d(Xy, X;) P @X,) Py (dXy). . (222)

W expeet Iy to bo larger than the averago of I7; and Iy, in which caso the
DIS (dissimilarity) between m; and my may bo defined by what may be termed
a9 tho Jonsen differonco

Dy = Hy—(Il+11j)

=2[m (P%P’) —{H(PO~3IIPY . . (223)

The expression (2.2.3) will be non-negative for eny & and j iff d(X}, X,) is
choson such that the function If defined on # as in (2.2.1) is concave. This
can bo easily vorified by considering Py 6 # whero

Py=APy+(1—A)P;, 0<A<]

end computing
Iy = f d(X,, Xy) Py (dX,) PyfdXy)
= AL (1= ) Ly+-2A (1—A) Hyy.
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Then
Hy— (M +(1=2) Hy)

= 2M1=A)Hyy— U —} ;) = 22 (1—A) Dy,
Tho coneavity of If ensures that Dy 3 0 and vice-vorss,

2.3 Some examples. (1) Let X ¢ R™, a rcal veetor spaco of m dimensior
furnished with an inner product (z, y) = 2’Ay, where A is a positive definit
matrix. Define

AN, X)) = (X=X, X=Xy,

Let X~ (u(, S)) in m (i.e., X i3 distributed with mean vector g; and disporsior
matrix X;). Then

= 21tr A%,
Hyy = tr AZj4tr AZ)4-8 Ady

where tr stends for the traco of a matrix and &; = u—gpy. Applying the
formula (2.2.3)

Dy = 5 Ady. e (23.0)

IfS;=Zforalliand 4 = Z71, (23.1) b the Mahalanobis D* bet
m and m.

(2) Let X = (zy, ..., Zm) where z; can take only a finite number of values,
For instanee, 2y may stand for tho type of gene allele at o given locus i on a
chromosomo. In such a case an appropriate measure of difference between
two vectors X, and X, is

X, Xg) = m~Z6, o (23.2)

whero &, = 1 if tho r-th compononts of X, and X, agres and zoro otherwiso,
Let 2, tako Xy differont values with probabilities

Pirp j= 1., ke

in population m. Dofine

. L

i =Ee) = 'E‘ i,
whon X;, X, are independently drawn from » and

b
3§ = Ed) = = pu, py,
"l
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when X, is drawn from m; and X, from n;. Then

= E (1~j) = mt—Jay

n
Hy= =% (1=5§) = m(1—J,y) v (233)

Dy == Hyy—W(I4+H))
= wf}{Ju+Jy)~Jy)

=3 "z_" .::‘: (Pur,— i ) . (234)

The oxpression (2.3.4) without the factor m has been called by Nei (1078)
as “a minimum estimate of the net codon difference per locus” and used by
him and his colleagues (sce the list of references in Nei, 1978) as a measure
of genctic distance in phylogenetic studies.

Nole 1: When m = 1, wo have a singlo multinomial and the exp
for Iy in (2.3.3) reduces to the Gini-Simpson index

13
1— £ - (23.5)

=1

where p,, ..., p, are the cell probabilities. [This measure was introduccd by
Gini, 1012 and by Simpson, 1049 in biological work). The proporties of
(2.3.5) have beon studied by various authors (Bhargava and Doyle, 1974;
Bhargava and Uppuluri, 1075; Agresti and Agresti, 1978).

Note 2: It is scon that }H; as defined in (2.3.3) depends only on the
marginal distributions of 2, + = 1, ..., m and is additive with respect to the
charactors examined. Theso propertics ariso from the way the difference
function (2.3.2) is defined. The DIS (2.3.4) is specially useful in evolutionary
studies as suggested by Noi (1078).

Note 3: \Wo may considor tho joint distribution of (zy, ..., zm) 88 &
combined multinomial with & =k, X ...Xkm classes and apply tho formula
(2.2.1) to moasuro divorsity. In such a case the difference botweon two
individuals takes the value 1 when all the components z; agree and the value
zoro if at least ono is different. This leads to an expression different from
(2.3.4), ns tho basic function for assessing difforonces botween individuals
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is not tho samo. Wlon ), ..., Zm aro independently distributed, an explicit
oxpression for the DIV based on tho combined multinomial reduccs to

I = 1—(1=11)] ... [1—L{m))]

whero I(r) is tho DIV based on zy, tho r-th character only. It may bo noted
that the expression for DIV given in (2.3.3) is /I = X If(r) whothor 2; are
independently distributed or not.

Nole 4 : If wo consider tho componont 2, in tho vector X of Nofe 2 as
tho gonotypo of a diploid organism as determined by a pair of allels at locus r
and dofine & in (2.3.2) as 1 if two individual organisms have the same valuo
for z, and zero otherwise, then wo get the DIV and DIS based on tho measure
of genotypie idontity devised by Hedrick (1971) and applied by Mitton (1977)
in genetic studics. The oxpressions aro tho samo as in (2.3.3) and (2.3.4)
with pyy, interproted as gonotypio frequencies instead of gone frequonci

Note 5: If we consider z, as a genotypo as in Nole 4, but defino the
differenco a8 2m—2X 6, whero &, is tho number of genes common to the in-
dividuals at the r-th pair of loci (which may bo two, one or zero) then we
obtain the DIV and DIS based on a measuro introduced by Lattor (1973, 1980).

(3) The Gini-Simpson indox JI(p) defined in (2.3.5) can be interpreted
as tho oxpected distance betweon two individuals drawn at random from a
multinomial distribution when tho distanco is defined to be zero if the in-
dividuals belong to the same category and unily otherwise (sco Rao, 1981a).
But in practice it may be more meaningful, in some situations as in sociologi-
cal problems, to assign differont distanco values to different pairs of categorics,
say diy > o between tho categories ¢ and 5. Introducing dy for the dist
of the category & with itsclf, which is usually zero but may be taken as
difforent from zcero in some problems, tho expected distance is

I,(p) = ZEZdypipy = p'Op w (236)

whero A is the matrix (dj;). For the Gini-Simpson index, the diagonal entrics
are zoro and the rest aro unitics. For II4(*) to qualify as a divorsity measure
it should satisfy somo properties.

(i) It should be zoro (minimum) whon all tho individuals beleng to tho
same catogory.

(ii) It should be a concave function on tho sot S ={p:p > 0, Zp, =1},
so that tho diversity in & mixturo of distributions is not smaller than
tho avernge diversity of tho individua) distributions constituting the
mixture.



DIVERSITY : ITS MEASUREMENT AND ANALYSIS 7
These conditions place a restriction on tho choico of tho cloments dyy such us
dy=..=du . (23.7)
and the (k—1)X(k—1) matrix
(@xtdp—dy—du), i,j=1,..k=1, e (2.38)
is nonnegative definite.

e call H,(p) with A choson aubject to the conditions (2.3.7) and (2.3.8)
a3 the g hzed entropy function of degreo 2.

The choice of dj is not a statistical problem and will depend on an
individual's assessmont of differences between qualitative categories with
reference to a given problem. Howover, one can use methods of multi-
dimensional scaling in estimating diy by using supplementary information
such a8 inequality relationships between djy and dy, for difforent combinations
(i,7) and (r,8). The use of such estimatcs may be more appropriate than
taking dyy = 0 and djy =1 in the analysis of qualitative variation using
methods such as those discussed in Section 5 of this paper.

2.4 Similarity (SIM) measures. Instead of a difference measuro betweon
two individuals, it may be natural to consider a similarity function 8 (X, X,)
and define S, S and Sy by taking oxpectations analogous to Iy, Uy and Hy.
Then the DIV of m may be defined by a suitable decreasing function of S,
such as 1—8; or —log &, specially when the range of S; is (0,1). The
DIS obtained by choosing If; = 1—8; is

Dy = ¥Si+8))—Sy e (24.)
and that by choosing II; = —log S ia

Dy = {(log Si+log Sp)—log Siy

Sy
= —log—= . e (24.2
SRV 24.2)
Tor instance, in the socond ple of Soction 2.3, a natural dofinition of
#X,, X,) = (2 &)/m, which lics in the rango (0,1). Then

Si=Jy, 8= Iy Sy=Jy e (24.3)

where Jyy are as dofined in (2.3.3). Using (2.4.1) and (2.4.2), wo havo the
alternative forms
Dy = Wu+Jsm—Ju o (244)
Jy
VIudy

Dy =—log we (2:4.5)
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The expression (2.4.4) is the same as tho “minimum genetic distance” (2.3.4)
of Nei (1978), and (2.4.5) is what ho calls tho “standard genetic distance”.
Again, in the examplo (2), we may dofino the similarity function as

(8 ... 8n)/™ instead of (8,+...+8m)/m. Tho new function has the value
unity when the gene alloles coincido at all tho loci and zero otherwise, In
such a case, when the characters aro independent,

Sy =4 gl = (S

Siy = o JiP = (J)m w (24.6)
where jf aro s defined in example (2) of Section 2.3. Taking logarithms
of (2.4.6), the corresponding DIS is

(2.4.7)

which Nei calls the “maximum genetic distance”.,

2.5 Measures of entropy. A wido varicty of DIV measures have been
introduced through the concept of entropy and information. The general
approach in these cases is basically different from that of Section 2.2 whero
a function d(X,, X,) mcasuring the difference between individuals X, and X,
is chosen first and probability distributions of X, and X, are used only to find
the average of d(X,, X;). In practice, d(X,, X;) would be choson to reflect some
intrinsic differonce between individuals relevant to a particulari nvestigation.
On the other hand, a measuro of entropy is directly conceived of as a function
defined on the spaco of distribution functions, satisfying some postulates,
Some of the postulates aro that it is nonnogative, attains the maximum for
the uniform distribution and has the minimum when the distribution is
degencrate. Thus a measure of entropy is an index of similarity of a distribu-
tion function with the uniform distribution, and hence a measure of DIV,

We shall consider the space of all multinomial distributions for simplicity
of presentation of results, observing that the formulne for the continuous
cnse can be obtained by replacing the tion by the integral sign. We
represent the probabilities in the & colls of a general multinomial by py, ooy 2y
and for a particular population @ by 2y, ..., p;y. Mathai and Rathio (1075)
mention three general forms for entropy :

1 = (1—a) log(E 7z i) - (260)
n=(Eg" 5 p—-1) = @--1) - (252)

H = =% log /S 3" . (253)
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whero all the sunnnutions are taken from 1 to k. When fr =1 for all r,
2.5.1), (2.5.2) and (2.5.3) are respectively the oxpressions introduced by Renyi
(1961), Havrada and Charvat (1967) and Shannon (1948).

With gy =1 for all r, all tho functions (2.6.1) - (2.6.3) ure nonnogative,
attain tho maximum when p; are oqual (maximum diversity) and aro zcro
when p; =1, p; =0, j # ¢ (minimum diversity). Mathai and Rathio (1975)
discuss the various additional mathematical postulatos which lead to these
functions. Patil and Taillo (1979) and Liclou (1975) provide interpretations
of somo of theso functions in the context of ccological studics.

It is ensy to show that when £, =1 for all r, the diversity measures
(2.5.2) and (2.6.3) aro concave but (2.5.1) is not 80 in general. This appears
to be o drawback of Renyi's entropy as n measure of diversity.

3. DECONPOSITION OF DIVERSITY (DEDIV)

3.1 General formula. In somo problems it may be of somo interest to
decompose the total diversity within a population into a number of compo-
nents each of which is attributable to a given or a conceptual factor. Such
a decomposition can bo done in & natural way if I js defined as in Scction
of the basic difference function

2.2, by idering n d

(X, X,) = d(X,, X +...+de(X), X,).

Taking cxpectations, we obtain the decomposition of diversity in o populu-
tion Pe P as

H(P) = Uy = NI+ 11 w (3L1)
where ) = HY(P) = E(d(X,, X,)| ). Wo obtain tho corresponding
decomposition of DIS between populations Py and Py in the form

Dy = DP+...4-Dfp e (3.0.2)

whero

210 = 1t P‘L_") —JH Py~ U (B).

3.2 Some caumples. (1) Let © bo an m-vector random varinblo with
L(x) = pp and E@x—p(z—p)’ = ¥ in the populution 7. Let 0, > ... D O
bo tho cigen volues und Ly, ..., Ly bo the corresponding cigen voctors of X,
1f we chooso

d(X;, Xp) = (X;—Xo)'(X,—X,) - (32.1)
A2
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i.e., the square of tho Euclidean distanco in R™, then

d(X,, Xg) = [L;(X,—x.)]’+...+[L;(X,—X.)]’ . (3.2.2)
which gives the decomposition of II; for m as
Hy= 240 ¥ = 20,+...420,. . (3.23)

The oxpression (3.2.3) is the familiar hierarchical decompositon of the w(.nl
variebility in terms of principal The cor ding d p
tion of DIS between g and my is

Dy = &by = (Lydy)*+...+(Ladiy)t
whore &y = p(—py, tho diffcronce in tho mean vectors of m; and my.

(2) Let (X,—Xy) = (dy, ..., dm) with d; representing tho i-th component

of X=X, Then the expression (3.2.1) is Zd?. Ponrose (1954) considered
the decomposition

T @ = mdt4E(d,—dy - (3.24)

whore md = £d;. If tho individual measurements are standardized, i.e.,
E(d}) = 2 for all 4, then the diversity in a population = is

= E(X d}) = E(md")+E[Z(d—d)")

2m = 2(14+m—1 p))+2[(m~1)(1—p)] e (3.2.5)

where p is the average value of all the correlations. The first term of (3.2.6)
represents the diversity duo to “size™ and the second duo to “shape” as defined
by Penrose.

Spicl (1973) iders & d position of the type

L@ =(WEXE—VEXIPHAVERLVEXE-S X X) ... (3.26)

where Xy; and Xy are the components of X; and X, respectively. Taking
expectations of both sidos of (3.2.6), we obtain a decomposition of the diversity
due to “size” and “shapo” as definod by Spiel The expoctations of the
expressions in (3.2.6) dopond on tho actual distributions of the variables.
If X, and X, have the multivariate normal distribution, then the expectations
con be computed from the noncentral chi-square distribution.

Instead of the principal compononts as in (3.2.2), we may chooso any
sot of orthonormal vectors 3y, ..., M and considor tho decomposition

(X=X Y (X~ Xy) = (X — X )P+ ALK - X)) .. (327)
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and obtain the corrcsponding d position of diversity by taking expecta-
tions, We can chooso the vectors Afy, ..., My, to represent conceptual factors
such as shapo and size as shown in Rao (1962, 1971b). For instance, a
choicoe of M, such as

M, =(0'S-3g)1 ¢,

where  is tho variance-covarianco matrix of X and o is the vector of standard
deviations of the components of X (i.e., the square roots of the diagonal
clements of L), represents the size factor. Thon taking expectations on both
sides of (3.2.7)

E[(X,—X,)(X,~ X))}
= E{M(X,— X+ E(M (X, ~ X )P +... + [ X, — X1

-1
24rE =2 ‘;—%Z o = Uyt Hi . (3.28)

we have a decomposition of the total diversity as due to eize (H,) and
shapo (Hy»).

(3) Decomposition of diversity in a population where the individuals
aro classified by categories of a number of attributes has been considered
by ecologists through of entropy (sce Patil and Taille, 1979 and
Pielou, 1075). For instance, a bird's nest may be classified by the species
to which the bird belongs and the lovel of height at which it builds its nest.
If p;; denotes the probability that a nest belongs to a bird of species ¢ and
is at level j of height, then the diversity with respect to both the attributes,
specics (8) and height (L), is

HSL) = H({p), i =12, . ii=12,..)

choosing some measure of entropy dofined over all multinomial distributi
The diversity duo to spocica alone is
H(S)=H({p}, i=12..)
where p. == Ly, i =1,2,.... We may formally considor the decomposition
! H(SL) = I(S)+(I(SL)—TI(S))
= H(8)+1s(L)

and define Hs(L) as the diversity due to L given S.
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A natural way of defining conditional diversity ia
=S Py =
ll(L|S)_..n.11({ B },_, 12,

whero wy is a suitable weight attached to entegory s of attridbute S. If I7
is Shannon’s entropy [formula (2.5.3) with £, = 1), then

Hs(L) = (L] 8) with w, = p;.
If 11 is tho entropy of Tlavrada and Charvat [formula (2.5.2) with f = 1}
then

Hg(L) = I(L| 8) with w; = pg.
There i3 no such simple relation in the case of Renyi’s entropy {formula (2.5.1)
with fr =1). In this easo

Hs(L) = (1—a)!log | B ‘L‘"' x P
s(L) = (1—a) Og[‘> £ 5 "‘]
whereas

H(L|8) = (1—a)t Sy log £ -2
1 P

From tho point of view of decomposition of diversity in the form considered
by ocologists, the use of Shannon's entropy secems to bo a natural one.

4. APPORTIONMENT OF DIVERSITY (APDIV)

4.1 General formula. If Py, ..., Py aro the distributions of X in popula-
tions my, ..., m¢ with apriori probabilitics A, ..., Ag, then the distribution in
the mixture m, is Py = A,Py+...+APr. If 11 i3 & DIV measure defined on
& and is concaveo, thon we can writo

H(Py) = Z NIL(P)4J (A (P)
=W+B e (411)

03 tho sum of two nonnegative components. The first term IF is the avernge
diversity within the individual populations and tho second term B, which
is called the Jensen difforenco or mutual information using tho terminology
of Information Theory, is the diversity hetween the populations. The rtio-

6= (4.1.2)

B
B4V
is called the index of diversity between popalations in genctic studics (s
Lewontin, 1972; Nei, 1973 and Rao, 1980).
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Moro gencrally, let ns consider a number of popnlations grouped in n
hierarchienl classification sueli as populations within regions and regions
within species and so on.  If the distributions within populations and their
apriori probabilitics aro known, then the distributions at any level of classifi-
cation such as regions and species and the associated apriori probabilities
can bo computed.  This wonld enablo us to computo the averago diversities
Hp, Hp and Jls within populations, within regions and within species res-
peetively and I, the diversity in the mixturo of all the populations put
together. Then wo have the apportionment of diversity as in Tablo 1,

TABLE 1. APDIV IN A HIERARCHICAL CLASSIFICATION

dao to divorsity ratio
within populations Iy

betwoon populations (within reginns) Hp—Hp  (Hp—MHp)lg
botwoen regions (within apecics) He—Ug (lis—Hag)Us
botwoen specica Iy~ (Uo=Hs)H,
total 1,

4.2 Exzamples. (1) It is interesting to note that if II is defined as in
(2.2.1) using a basic difference function d(Xy, X,) then tho formula (4.1.1) ean
bo written as

(P =Z X I (P)+ZZ A 4Dy
swhero

Dy = o (Pt ) ~mpy—npy.

is the DIS between m; and ay.

Let us consider ¥ populations as in example (1) of Section 2.3 where in
m, tho m-vector variable X ~. (1, ) and choose d(X,, X,) a3 the Mahalanobis
D2 {formula (2.3.1) with A = Z-').  Further let 7, be & mixture of 7y, ..., 7
with apriori probabilities A,, ..., Ax. Then, tho decomposition (4.1.1) becomes

I, = I(w)+D(b)
=2m+EE A Ay 8 1 8y
= 2m(14+-V) o (12.1)

whero 8y = yy—py. Thus tho diversity within populations is 2m and tho
ratio G(b) of (4.1.2) is ¥ which is tho weighted combination of Mahalanobis
D¥a for all paira of populations.  The anthor hns suggested (see Mahalanohis,
Majumdar and Rao, 1849) the uso of an estimato of 1 in tio seleetion of

variables to maximizo dissimilarity between popul

ions,
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Let us consider oxamplo (2) of Section 2.3 and denoto by m,, the mixture
of my, ..., mp with apriori probabilitics A,, ..., Ar. In thia easo (4.1.1) becomes

Hy = m[E M(1=Ju) +EE A A (Wt by —dig) o (429)

which is tho decomposition obtained by Noi (1973) and Chakraborthy (1974).
The ratio G(b) dofined in (4.1.2) is

EZ A (3 u+3Jy—Jy)
1-ZE A Ay Jiy

ab) = (4.2.3)

The ratio (4.2.3) obtained by considering only tho two populations m; and my
with equal prior probabilities

6y = —FTon==u_ o (42.4)

is tho hybridity coefficient of Morton (1973) who used it as a DIS botween
m and my in phylogenetic studies,

(2) Let p;), ..., py, be the probabilitics of r attributes in population m
with apriori probability A, § = 1, ..., k. If wo use Shannon’s ontropy. thon
(4.1.1) becomes

- E; (A Pyt 2k pyg) Jog (A i+ Ak By)

k r
=—Z X I p;logpy
=1 g=1

% A £ py log B

iy 1o .
+ {1 ‘]-l Py T8 ‘E"IPU

If we use the entropy of Havrada and Charvat, then (4.1.1) becomes
(apart from tho multiplier 1—2'-9)

r
1— /‘Px (A1 Pigt oA 2y

=§,\.(1—!_§‘ps‘:)

f=1
r
+ E‘ (A 23+ 4 A p—(Ay Pyt +Ax py))

Renyi’s entropy cannot be used in APDIV sinco tho concavity condition
does not hold (sco Rao, 1980).
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5. ANALYSIS OF DIVERSITY (ANODIV)

5.1. General theory. Apportionment of diversity considered in Scetion 4
corresponds to analysis of variance of one-way classified date, where the
populations aro identified by the levels of a singlo factor, with P; as the
probability measuro of the population m. Lot us now consider two factors
A, and A, and represent tho population specified by the i-th level of A, and
the j-th level of A, by 7y and its associated probability measure by
Py, i=1.,p sd j=1,..,¢ Further let MY, .., A be the prior
probabilities for the lovels of A, and AP,..., A be independent prior
probabilities for the levels of A, so that the prior probability associated with
Py is AP M. Define

P.=SEXNI AP P,
P =ZXp Py, Py=3 N0 Py e (L1
1 ‘

where P.. is the overall distribution and Py. and P.s ave the marginal distribu-
tions for the levels of the factors A, and A; respectively. Consider the
decomposition of J/(P..) as indicated in Table 2.

TABLE 2. ANODIV OF TWO-WAY DATA

due to divorsity
faotor (4,) JAM: (P
factor (45) JM; ()
intarsotion (4,4,) 10, (A}"); Py
within populations ZEAM AP B(Py)
total H(P.)

The J functions in Tablo 2 are as dofined in (4.L1) with respoct to the
appropriate marginal distributions. The I function, obtained by subtracting
tho rest of the values from the total J{(P..), is in tho nature of diversity due
to inleraclion of tho two factors 4, and A,. We need I to bo nonnegative
for a proper interpretation of tho interaction component. While tho con-
cavity of I onsures that the J function is o , the gativity
of 1 may require somo furthor conditions on the choice of the diversity
function H.
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As in the cuase of analysis of variatco we can consider threc-way or higher
ordor classified data and defino higher order interactions in a recursivo way.
Thus, tho tlreo factor interaction (4,d,d;) can be computed by the formula

T (), (8% (Pud)
= H(P...)—ESZ APADXNDI L g4
—(dy)—(Ag)—(Ag)— () — (A1 45)— (42ddy) e (50)
whero (4)), ..., (dyy), ... arc obtained as in Tablo 1 Ly considering the

appropriato two dimensional marginal distributions. Similarly higher order
interactions could be computed.

Wo shall investigate the choice of diversity functions which make all
interactions nonnegative when tho apriori probabilities associated with the
different factors aro independent.

5.2. Choice of the diversity meusure. We consider the diversity coofficient

H(P) = [d(X,, X;) P (dX,) P (dX,) o (5.2.0)

and show that if JI(P) is a concave function on P, then all intoractions as
defincd in Table 2 and formula (5.1.2) are nonnegative,

For instance, the interaction term in Table 2 is
LA}, (A8 {Pa))

= X AP I(PL)4-E NP H(P.)—EE N X H(Py)—IKP..)

=3I A (M) (P})—J (XD} Py). . (5.2.9)
It is a straight forward computation to show that (5.2.2) is cqual to

—Z T EIZ A AN A AR
X [ AXy, X)Pu_gira (dX3) P y_pyr-a) (@X) o (8.2.3)

where Py_gr_gy = Pip+Py—Py—Pyy. Noto that tho torm under the in-
togral sign in (5.2.3) is proportional to

I (1’4r+1’nj1’u+1’!’) __;
I (‘“"_'_'_;Pl‘_) A

I ( Ph—;l'n )

which is non-nogmtive if 2(P) dofined in (5.2.1) is concave over P, which
provos tho desirod yosult,
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Similarly it can be shown that all higher order interactions are non-
negativo,

5.3 Sampling theory. Up to now, we have discussed ANODIV in a
mixture of populations in terms of varions components assuming that the
individual population distributions are known. In practico wo have only
observations from different populations, in which case we can only estimate
the various components of diversity and, if neccssary, test hypotheses
concerning them. Woe shall briefly describo how the appropriate methodology
could bo doveloped for this purpose.

To indicate how ANODIV provides a unified approach to the analysis
of different types of data, let us consider the familiar analysis of varianco
of one-way classified quantitativo data as in Table 3.

TABLE 3. POPULATIONS AND OBSERVATIONS

1 2 k
mn T o m
"'l 2"2 Ting

We estimato the probability distribution function Fy for the i-th population
by thoe empirical distribution function Fy based on the observations
Tty vees T e Let us chaoso n,/n., ..., nifn., (£ ny = n.), as the prior probabili-
ties (Ay, ..., Ax) used in the theoretical development of Sections 4.1 and 5.1.
Further let us consider the diversity measuro

H(F) = [ (X,—X,)t FldX,) F({dX,). e (53.0)

Substituting the estimates Fy for F¢ and A; = (my/n.) in tho basic decomposi-
tion formula (4.1.1)

INE MF) = SAIHFY+ A {(F) e {5.3.2)
wo have

mMp) g™ mMy 5
(=2 R) =22 mFy+s ([ﬂ } , (P} ) . o (533)
Computing the varions expressions in (5.3.2), using (5.3.1) for the X function,
we obtain (in tho standard notation)
1 _ n 1 1
—IT(ey-EN =3 1‘.1 = 3:(:.,—5._)-+’: Tu@m—2) . (534)

which is the usunl analysis of sun of squares as within and betweon popula-
tions. The decomposition (5.3.4) is relovant for tests of significance. But

Al-3
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if the problom is ono of estimating tho varianco botweon populations dofined
in terms of given prior probabilitios A,, ..., Ag, then tho formula (5.3.2) substi-

tuting Fy for F, only may have to bo used.

Wo can, in an anologous manner, derive tho analysis of varianco for the
general m-way classified data when there aro equal number of observations
in cells or when the number in cach cell can bo oxpressed as a product of
numbors spocific to tho levols of cach factor.

The ANODIV for one-way classified categorical data (two way contin-
geney tablo) using tho Gini-Simpson indox is already illustrated in the paper
by Light and Margolin (1971). As mentioned earlior, it may be more appro-
priate in some practical probloms to use a more genoral diversity index of
tho form p'Ap as defined in (2.3.6) for a multinomial distribution
' = (g .., Px) choosing an appropriate distanco matrix A. Consider the
following contingency table giving the responses of people to four alternatives
in an opinion survey.

TABLE 4. FREQUENCIES OF DIFFERENT OPINIONS
IN k OBSERVED POPULATIONS

populations
pi total
1 2 k
4 i fia e L
Ay fay faa () -
4 oL a2 na L
A o1 M2 o Nex [
totol ny iy ny [

In dato of this kind it is more appropriate to assign different distances to
different paris of alternatives, Wo shall illustrate the ANODIV wusing the
diversity measure p’Ap (sco Roo, 1981b for o numerical example). The
estimated multinomial distribution for the j-th population is
py=mnyng i=1..,4
and that for the mixturo of all populations choosing A¢ = n.//n.. is
p=mn., i=1,.,4

Using the basic decomposition formula (4.1.1) with the ostimated distribu-
tions and choosing A; = n.¢ /n.. we have the following analysis of the total
divorsity

SSdypip. =3 ;'—‘ £2d4 pri put+B. . (5:35)
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The first term on the right hand sido of (5.3.5) is the divorsity “'within popula-
tions” and tho sccond term B, duo to "betweon populations”, has the explicit
rcprcscnln'.icn

B=SE 24 SRl (pi—py) (Pa-p). e (53.6)
Of courso, wo could have carricd out tho analysis using any appropriately
chosen set of prior probabilities instend of tho ratios determined by tho sample
sizes for tho various popuwlations. Tho large samplo distributions of tho
expressions in (6.3.5) can bo obtaincd on standard lines (sco Agresti and
Agrosti, 1978; Bhargava and Uppuluri, 1977; Light and Margolin, 1971 and
Chapter 6 of Rao, 1973).

We can extond tho ANODIV to two-way classified categorical data
(threo way contingoncy tablo) using tho formulae dovoloped in Section 5.1
provided the number of observations in cach cell is the samo or can bo
expressed as tho product of two numbers speciic to tho lovels of the two
factors associated with the coll and tho total samplo size. Let us represent
tho observed numbers for & different categorics in the (3, j)-th cell by nyy,
r=1,..,k and tho estimated probabilitics by py;, = (nyyfny). If tho cell
numbers ny. satisfy tho conditions stated above, then wo can obtain the
ANODIV as shown in Tablo 4 where py.r, p.yr, 2., aro defined in tho usval
way from tho appropriate totals and A = (nr.fn...), AP = (n.5.[n...).

TABLE 5. ANODIV 1 TWO-WAY DATA

duo to divorsity

factor (4,) IEdup , p,~tA" Edup, 7,
fostor (43) IZdup,p,~EXPITdup,p,
interaction {AyA,) * {by aubtraction)

within populations 2PN £2dap,, 0,

total EEdra P Pt

As observed earlier, when ay do not satisfy tho conditions stated above,
wo ean atill carry out tho ANODIV by choosing appropriate values of A{M
ond AP (sco Rao, 1981 for an examplo). Tho formula for tho interaction
component whon the prior probability for tho (i, j)-th population Ay 7= A AfY
is somowhat complicated.
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The sampling distribution of tho various expressiona in Table 5 when
nyr are large, which are currently under investigation, will be reported elso-
whero, The oxtonsion of the ANODIV to a general m-way classifiod data
can be done in the usual way.

6.4 Eniropy measures for ANODIV. Tho following entropy measurcs
1H(p)

—Zpilog pi, Shannon (1948),
(@—1)-*(1—Xp}), Havrada and Charvdt (1967)

aro concave functions and takoe tho valuo zero when all p; are zcro oxcept
ono. Thus they satisfy the conditions €, and C, of a diversity measure,
Any ono of them can bo used to apportion tho diversity in a mixture of
populations as letween and within populations. For instance Lewontin
(1972) used the Shannon entropy and Nei (1973) used the Havrada and
Charvdt entropy with a = 2 (which is tho same as the Gini-Simpson index)
on tho analysis of geno diversity as Lotween and within populations. Rao
(1980) indicated the possibility of using other entropy functions for this
purposo.

Can these functions bo used for ANODIV in an m-way classified data
as in tho case of tho diversity measures constructed in Section 2.2 7 This
question has beon completely answored in two papers by Burbea and Rao
(1980, 1981) and Rao (1981b). They have shown that Shannon's entropy
may bo used for tho analysis of two-way classificd data, and thore is a possi-
bility of higher order interactions being negativo when the number of factors
is moro than 2. Similarly, the llavrada and Charvét entropy can bo used
for two-wny classificd dsta provided @e[l,2) when A>2 and

ae(l,2)U [3, 131] when k= 2. But for data classificd by 3 or more factors,

higher order interactions may tako negativo values oxcept when ¢ =2,
which eorresponds to the Gini-Simpson index.
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