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UNIFORM INTEGRABILITY IN THE CESARO SENSE AND
THE WEAK LAW OF LARGE NUMBERS

By TAPAR K. CHANDRA
Indinn Stetistioal Institule

SUMMARY. Itisshown hete that I1 convergsnce holds in Iarge nnraber of cases where
tha WLLHN helds ; in fact, it 15 shown that the proof of the stronger fmot iz somewhat easisr
and more straightforward. Tn particoley, several extensions apd variedioms of the olassiosd
Ehinchin WLLN are obiained.

The classical Khinehin's weak law of large numbers (WLLN) says thet
if {X,} is & sequence of independent and identically distributed random vari-
ables with finite E([X,]), then a-X;4-...4X,) converges to E(X,) in pro-
bability ; actually ‘mutual independence’ oan e replaeed by ‘pairwise
independence’ {see, e.g., Chung, 1974, Chapter 56). The usual proof of the
sbove WLLN is due to Markov. Dharmadhikari {1876) gave an alternative
(and somewhas simpler) proof of the pame result ; in fact, he proved a slightly
stronger resoll thet n= X+ ... 4 X ) converges to E(X,) in I, It may be
noted hero that, under the above assumptions the etrong law of large numbers
also holds (see Htemadi, 1981).

The aim of the paper is to demonstrate that the L' comvergenee (and
hence oonvergenee in probability) of the sample mean holds under very general
conditions. It is worth-mentioning that the proofs of Markov and Dharma-
dhikari use the truncation at levels nd (see, e.g., Bao, 1973) and »'/? reapecti-
vely ; this paper usew s different truncation.

Below the X are integrable random variables.

Definition. A sequence {X,} of random variables is said to be uniformly
integrable in the Cesiro sense if

]
lim sup {-.:rl s [x,,1dp}=u.
F—p & Bl | X = w

Clearly, the above condition is implied by the uniform integrability of {X,}
{for the definition of uniferm integrability, see Chung, 1974},.
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Remark 1. A sequence {X,} of integrable random variables iy uniformly
intograble in the Ceshro sense iff

lim limsup {w‘l % { | X5] dP}= 0.
9w Horw =l | Xyl >a

Theorem 1: Lef {X,} be u sequence of pairwise independent random vari-
ables satisfying the uniform indegrability condition in the Cesiro sense. If
B(X,) = 0 for each n > 1, then ”'Iﬁlxh comverges fo o in LA,

T'o prove the above theorem, we shall use the following elementary result.

Lemma 1: If {X )} is & sequence of uniformly bounded poiruvse indepen-
dont random varicbles, then 5~ £ (Xe—E(Xy)) converges to sero in I,
-k

Proof of Lemma 1 : Because of the Schwarz inequality it suffices to
show {hat

w2 var ( El {I;;—E[Xk]}) — 0,

which is obvious because of the given assumptions.
Proof of Theorem 1: Let N be an inboger 2= 1 and put
=X if [L]l <N

= 1) otherwise.

Let F,= % ¥ and §, =% X,
=1 =l
n
Then 8, = (L~ BTN+ £ (Xam T+ KT,

Hence -1 B{| 8,1} € n* B(|T ,— BT} | }—n1 él B(| X3— Tz}
"I“ﬂnll'E{Sn_Tﬂ” (since E{Sn> = 0)
< n“E-'(iT..—E{T.H}+2w-‘§1 E{| Xp— Yz |}-

By Lemma 1, the firat term of the right side goes o zero as n— oo for esch
fixed & 3» 1. We, therefore, get for each ¥ 3= 1

»
Em sup #~t B{|8,]) < 2 =up {n“ > E[|x,,_-n|>}.
o w0 n k=1
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Now letting N— o0 and noting that

B(| Xp—Ye]} = | | Xe|EF
1Xg] = N
we got the desired result.

The above theorem extends the first part of tha Theorem in Landers
snd Rogge (1988) who prove, using a relatively more complicated argument,
the WLLN under the assumption of the uniform integrability of (X ). It
may also he noted here that the proof of the above extension of Khinchin’s
WLLN is much simpler than that, due to Markov, of Khinchin's WLLN.

A slighl modifieation of Lemma 1 will yield the following useful generalisa-
tion of Theorem 1. See, in this connection, Jamison #f ol. (1965} who discuss
the i.id. case.

Theorem 2 : Leb {X L be o sequence of pairwise independent random vari-
ables with WX ) =03 n 2. ILet {a,} be a sequence of non-negative veals
amﬁﬁm#(ﬁ aﬁ) 230 a8 n—r D whereb,,zkg ax which i8 assumed fo

E=1 =]
be positive for all n. If

sup {i 5 e

Xl dP 0
a \bn xa li;ml d }_l e b, (1)

"
then E(‘ﬁlﬂklt!)ﬁi“—hﬂﬂ-&ﬂ-—bw¢

It may be noted that the condition ( “E o ) j68 — 0 a5 n—» c0 holds
[ |
if 6, = o/n¥) for some £ > 0.

We now give an alternative deseription of the condition of the uniform
integrability in the Cesaro sense ; for the corresponding description of the
wniform integrability, gee Chung (1974).

Theorem 3: A4 sequence {X.} of random variables satisfies the wniform
degrability condition in the Oesaro sense if and only if the following fwe condi-
tione qre safisfied :

]
(&) sup {nt T E(1Xa]}) <0
» fml

{b) farmﬁ&}D,ﬁemaﬁﬂsuﬁ?ﬂmﬁﬁﬂwm{da}iaam
of events sulisfying the condition that

wp (n 3 PUy)) <8, .- @
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wp (n1 T { [Xp]dP) << . (@)
B k=% Ap

Proof of Theorem 3 :  We shell first prove tho ‘only if* part. Let Uy > 0
be such that

sup (n‘l ﬂE Py d.F) g 1.
» kel 1 Xy| > g

Then,
BllEe) st _ f | Xi| 4P
Xl > ag
which implies that

ﬂ"‘EEflxml}Q%-}-ﬂ‘*i | 1Es|dP < agtl;

k=1 { X >0y
thus (a) holds.

Now fix an e = 0. Let g, > 0 be such thst

qup (nt 5 Xz ldP) < £
™ ( t-1|xﬂr;,.%l g ){2

Pub &= e/(3a;). Then if (2) holds,
2t S [ X dP gt B (o P4 X
2 L 1B <ot B (s Pat T [ XeldP)
=g B PU4n S |
=l Eal | X ;u o,
Thus (h) holds.
For the ‘if* part, put

[ X | 4P < apftef? =g

- P

ol & M)

Then for each o > 0,

P(1Z| 30) o B X2} k31

and so @
"B (Xl po) < Kja wnml

Fix an ¢ > 0. By (b), there exists g8 > 0 such that (2) implies (3).
Put a;, = K/8. If a > g, then

I Xe|dP X
mmal | {1-‘:;1!;%' x| dP
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which implies thab

a1 E [ X dP Lt T [ | Xap|dP <
k=1 | Xyp)3 o, i=l | X, pay
Hence the proof ia complete.

We now show that for the L' convergence of the sample mean of indepen-
dent random variabley, the condition of uniform integrability in the Ceedro
gense is nob necessary.

Erzampie 1. Let {X_ I be & sequence of independent random vari-
ablea where X, follows N(O; od)ne 1. Put o5, = Then nl
B[ X, +...+ X, |i— 0 iff w¥of+... +02)— 0 whioch iz trne, since

N 0 R+1 =1

T ORI Y | AMdy—= J‘:r”’d:r.
il =l &K

Pot a, = 2E(N(0; 1) I(N(0,1) > alo,)), » » 1. Then =z, increases with »

and
f | Xp P = oy o
(.o e

We next ahow that uniform integrability in the Céedro senge fails for {I};
in fact, for every ¢ > 0

L
sup sn~L X Xp{dP} = o0
np { k=1 |zhjl-?ﬂ'l # }

To seo thin, it suffices to note that
[ 3 - )
w1 T oo oy (n‘l & ﬂ'x)
-1 o
> o nl | o da.
*

We next show that the uniform integrebilify in the Cesaro sense is stricily
weaker than the uniform integrability.

Example 2. (due to B.V. Rao): Let X, = +1 or —1 with probabilify
% ench if » is not s perfect cube, and X, = |»"® or —n? with probability
% each if % is a perfect cube. Then sup H(}X,.|) = o0, o that {X,} is not

uniformly integrable, But if ¢ » 1, then

» "
et E | |Xp|dPgn? X | [XgdP w1 B KA
= | X=e =1 | Xy|>1 :='?'
=n

< (#2812 [(2n)— 0.
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Now use Remark 1 to eatablish the uniform integrability in the Cesaro senge,

Far the lernma below, note that the uniform ingegrability of {X } implies
Condition (1) of Theorem 2.

Lemma 2: Lét {a,} and {b,} be s én Theorem 2. If whenever o, 3 0,
by 0 and (iﬁi af)Bi—s 0 a8 n->co, Condition (1) of Theorem 2 holds,
then (X} is uniformly integrable.

Progf : Suppose, by way of contradiction, that

BuUp [ | Xg|dP 40 2a a— w0,
IPl [ Xl s

Then there exisb an € > 0 and a sequence {km} of reals such that 1 < &, <<k,

<< kg << ... 8nd

X, |4 1.
Irk,ulaml k"l PoeXmp

Define @y =1, 6, =1%m3 1 and &, = ¢ for ali other values of 2. Then

]
E—laf = 1-{the number of j such that %y & n;
=B,
o that b ,— w and (;E:Laﬂ‘mi_}ﬂ a8 n—» o0, Clearly we shall get a con-
tradiction (to Condition (1)) if we show that
1

Iimaup—{ﬁa; 1]

X
PR T P |x,|}m| ilﬁ};a

Joreach m 3> 1. Now fiz an m » 1 and observe that for § 3= m,

kg
{Ei N 1 Xy {}m

3
1E o Radee)s

| Zs1aP oy,

j—m+1l 1 )
>3 ',g*—m-|-1{E

=ty |Ih‘|.!':'ﬂ Ixhldp}

}i—“—%ﬂ: (by the choice of (k).
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™ ey (e gz
imsup | 2 mlxii.;ml fldP}f&tj}t-

This compleies the prood.

We now replace the sondition ‘pairwise independence’ in Theorem 1 by
guitablo ‘other dependence conditions’.

Theorem 4 : Let {X_} be a sequence of o martingale-difference rondom
varighles relative to (8.}, de. B(X |8 1) =0 joralla » 1. If{X.}is uni-
formly iniegrable in the Cesiro sense, Hhen E{(|n718,|}>0 as n—» 0 where

8, = i Xenosl.
=1

Progf : Let A, be the trivial sigma-field, N an integer » 1 and Yi be
ag in the proof of Theorem 1{k 2x 1) ; put

Zy=5 (Tp—E{Yz|Br4)) » > 1.
P

Then o %
Sﬂ- = zn—l_ E E[thﬁt—l} + b {_Xi:"— Pt}*
=l k=1

Henes -
B(int 8,]) < ot B[ 2, )+ B (31 |B(Xx—Ye| S} |

1+ E (| Xp—Tel) o @)
=1
since B{Xz|8e_,) = 0 for & > 1. Now the second term of Inequality {(4) is

41@—13[ 2 B(|Xp— T |.a.;_:}]
o |
= 5 B Ze—Ts))
=1

B(|5 8,0) & 1t (12, |)+2 sup et B () Xe— Ti)
Below we show that
var(Z jr)—> 0 a8 n— o, - (B}

which will imply that »-1 E{|Z,j)— 0 28 #— oo by the Schwarz inequality
minee B{Z)=0. Letting ¥N— o and uwsing the uniform imtegrability of
& 3-8
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{X.} in the Cesaro sense, the proof will be complete ag in the proof of
Theorem 1. Now

a~ ¥ var{Z,) = n‘“[él?&r{ Fo—B(Y¢| BBr_a))

+2 T MY~ E(Te| 80T E(¥s| 65-0)]

& nH{4nN240)— 0 as #— 0
ginoe for 1« ¢ <7 & %,
B(Y — E(Y| & ) Yy—E(Y;]| £5.4))
= B{B(Y—E{¥y| @)X T~ B(Yy| 81.1)}| €11}
= B Y~ B Y] S ME(Yy| 85.0)—E(Y 3] 81.0)})
=,

For the next theorem, lot » > 1 and recall the defimition of ¢-mixing
sequence as given in Billingsley (1988, page 166).

Theorem &6 : Let {X,) be & sequece of v-mixing random variables such that

w1 uﬁl {pli))r-a>0asn> o0

and B(X )=0Jor v » 1. If {X,} is uniformly indegrable in the Cesttro senae,
then E(|n1 8,.])— 0 a2 n— o0 where S,=‘§X¢, %= L

i=1

Proof : Let N be an integer » 1 and define ¥y and T, a8 in the proof
of Theorem 1, Then, we get za before,

B(|n2 8,]) < = B(| T, —EB(T.)|)+2 sup m~2 El B(1 Xp—Til).
o)

It remains to show (a8 in the proof of Theorem 4) that for each ¥ » 1,
var(n T —E(T N— 0 as n— o0,

Now w2 var(T,) < nan Mo Eil oov{¥y, ¥q|)

< #Ydn N 1280 K (n—ip)
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by Lemma 2 of Billingsley (1968, page 187). To complete the proof, we let
148 =1 snd noto that
=1 =1 LE ; n—=1 r
_= B —v L3 _n ] W
N | (n—ipit) & { Elj!} { iﬁ [?{‘}'}

& nd {:'3’ ‘T 2 dx}""{ :_i: {q:(i})"}m

ur

= n~? { 3 0 da:}m{ :E: (cp(i))"}

<we (20} [ E wor |

= (e+ayue [t % oty ) > 008 nseo
=]

Remark 2. The assumption of ‘pairwise independence’ in Theorem 2 can
gimilarly be relaxed to cover the above two notions of dependence. We omrb

the details.
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