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Abstracl

This paper comsiders a class of combined {2n - 1)stage ¥x N interconnsction networks composed of two
n(= logaN)stage onrepa-aqiivalent networks Mf(x) and Af'(x). The two networks are concatenaled with the last stage
of M(n) overlapped with the first stage of A“(n), forming 2 combined 21 — 1) stage network. Though both Bemes net-
work and {2n = 1)-stape shufe-exchange network belong (o this class, the former ose is a reamangeable netwark,
whereas the rearrangeahilily of the Iatter ong ig still an open problem. So far, theze is no algorithm, in general, thai
may determine whether & given (27 — L)-stage combined network is rearrangeable of not. In this paper, a snffzdent con-
ditiom for rearrangeahility of a combined {2n ~ 1}-stage network has been formulated. An algorithm with Hme com-
plexity G{An) is presented to check it. If it is satisfied, a uniform renting algorithm with time complerity O{Nn] is
developed for the combined network. Finally, 2 novel technique is presenied for concatenating two amega-equivaisnt
networks, so that the rearranpeability of the combined network is guaranteed, and hence the basic differrnce between
the topologies of a Benes network and a (2r — 1)-stage shuffle-exchange network has been pointed out.

Kevwords: Multistage imerconnecion network (MIN); Blocking MIN's; Rearmngeable petworks; Topolagical equivalence; Omega-
eqllivalant networks; Pertiwtation routing

L. Introduction nection nelworks are also emerging as a promising
networking choice [1] for connecting processors

For high-performance computing/commuinica- andfor memory modules. A full-access unique-
tion applications, multistage intercominection net- path N x N multstage interconpection network
works (MINs) have been studied extensively [13,14], consisting of n stages of 2x 2 switches,
during the last \wo decades. With the advances (N=2", &5 essentially a minimal sttuctare that
im optical technology, optical mulristage intercon- provides [ull-accessability with exactly one path
between any input-cutput pair. But these net-

" Tel: +01 33 2575 3005; fax: +91 33 2577 3035, works are blocking by namire. Since, to route
E-mafl addrase: ndasiisical zoin any arbitrarty N N permutation P through the
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network, tvo Mpwi-output paths may require the
samne link cansipg congiicd whivh ipdicutes thai
the paths can notf exist simvltancons]y.

An Nx N rearramgeable network s ome which
can connect fts N inpuls o its N outputs in all
M posgible ways, by reurranging the existing con-
vections, if required. Hence, rearrangeability is a
desirable featnre of MIN's thal ¢an realize all per-
mutations using miivimnal hardware, Benss perwork
in a widely stodil reamangeable multistage
architsctire that uses the thecretically mininmom
mumber of atagee required for resrrangeable oper-
ation [2,16]. This petwork provides an equal palh
length, low latency and low switch cound. Its roui-
ing i alse simple with & corplexity O{Nn) in
general, thowpgh many important classes of permn-
tations like BPC (bit permute complement), LC
{lincar-complement}), etc. are found to be self-rowt-
able i it [3-5]. It cun Ge used as optical muldstage
imterconnection networks as wel] [7]

However, Benes netwoik 18 essentially the con-
catenation of two wnlgue-path fuil-geeess blocking
MIN'y, each with » stages, namely the baseline
network Bip) and the reverse-baseline network
B (%) [13], overlapping the last siage of k) with
the first stage of 5~ (1), Since then the study of the
interconnection topologies of {2 — 1)-stape net-
works lommed by copcatenuting two uhigee-path
Juil-occess MIIN's becomes a topic of high mtorest.
In (8], the authors comsidered a clags of combined
(2n — 1) wage networks, represented ag A G2,
where both A and A" are omega-equivalent net-
works. They proposed an O{A*H) aigorithm to
check the topological equivalence [8] of two such
networks. In (9, Lee proved that @3 07" s
equivalent in Bepes network, and, hence rear-
rangeable, But most inlersstingly, the rearrange-
ability of 12502 =il remains an open problem
[L7,18}. A coding schempe was propesed in [10] (o
check the equivalence of a limited clays of
€2n — 1)-stage petworks with Benes network, So
far, thers is ne general alporithm to find whether
any given (In— 1)-#Aage combincd nerwork ie
rearrangeable or not. Throughout this paper, the
equivaizrce between petworks means (e topologi
cal equivalence [14].

The lopological equivalence of any (20 — 1)-
stage network with Renes network proves hat

the former one is a teatrangeable petwor B,
so far, it will need XN*A) time to devide the E;qui“
alence [5]. Moreover, skl there i 1o resut o shm:
how we cap corrzlate the information of topoiog,
2l equivalence with the exact rouling algontiy of
z meiwork. In [11,12] some conting A2ty
bave boen presented for symmetic (3 — 13 stoye
networks, liks Benes and 2 < 2! only,

in this paper, we focus oo the problem of dey;
mining  the rearranpeability of 2 combige
I:ZH. — ].}-ET.E.E'E network A A’ Hl.'.'l't‘,, a2 Hufﬁﬁmt
condition for the rearrangeability of 2 combineg
network has been cstablished, and an algorithy
of O{Nn) time complexity has twen developed 1,
check it. Nexk, giver any such rearrangeabls pep.
wark, and an arbitrary NMx N permuotalion P
stmple and wmform reotng echaique buy ey
developed that routes Fin O(An) time. Finally, in.
stead of overlapping the switches in he same phys-
ical position, an elsgant rake has been proposced for
concatenating bwo L-equivilent networks b
puoarantzes the rearranpeability of the combine
metwork, and hence points out the difference be.
tween the Bene: network and the £ @ {2 networks,

The papet is organized as follows. I Section 2,
soine preliminary ideas have begn introduced. e
Section 3, the concatenation of vwo {-aquivelal
petworks has boen considered, In Section 4, the
suwiicicnt condition for rcamanpeability of oot
bined [2r - 1)-slape natworks ha: hesn proved
Section 5 describes the new concatenation e
nique to puarantee the rearrangeability. Section b
presents some concluding remarks.

L Preliminaries

S0 far, a large nwmber of hlacking MIN
have been proposad in the [iteraturs, e.g., baselif®.
amnega, reverse-baseline, fip, cte. Here, w:_rurﬂ'ﬂ'
sent such an MIN with the fol'owing notations

« iupuls fand outpurs) are labeled as: Y P
N =1, respeciively, and each is repessit
umiguely by an a1 bit binary stong Xa. 1 %w-2"
X1

v Lhe slages am: labeled as: 0,1, -2 ~ 1. from
the input side towards the outpul side;
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¢ the switches of cach stage are labeled as:
0.1,... (A2 — 1}

» the output links of any switch with labcl j,
0 < j< N2, are marked as 27 (the upper link),
and (2} + 1) {the lower kink), and each is repre-
sented uplquely by an A hit binary string
Xn—1Xn-2 - - X1 ¥0;

« The path from an input link of a switch-7 at any
stage-L 0 < i< (n—1jand O < f < (M2 =T}, to
its cutput is determined by the routing bit v.. The
path goes to the upper link 27, if r; =0, o1 to the
lower link (Zj+ 1), when »; = 1. This bit 7 is
termaxd as the reuting Bit for the path at stage .

Ai B x 8 baseline network £{3), with a labeling
of the awiiches in fap-to-bortem order is shown in
Fig. 1. Aiso two paths 53 — 2 and 5 — 3 are shown
which follow the routing bit sequences 0110 and )11
rezpectively. It is to be noted that here the routing
hit sequences are actually the corresponding desti-
nations {2) and (3), respactively, in binary.

Here, the interconnsction betwesn stages 7 and
(F+ 1) 05 i< {n—2), is represenied as a nnique
permmutation of (v — 13 bits of any output hink f
of stage i, appended by the routing bit ., that
maps { to hink I al the owtput of stage (i + 1).

For staged), the mapping of orginal inputs to
the autputs of stage 0 is considered.

It is to be noted that the [abels here mndicate
somme Jogical names to identify the switches/links
uniquely, which help to formalate the topaloey
deseribing rules in the forin of permutation of bits
described below.

-1 H

tages: @ 1 z

Fig. 1. An & =% baseline oetwork #Y) with two paths 53— 2
ik & — 3,

Example 1. For S(3) with the labeling of the
switches shown in Fig 1, the interconnection
betwesn siages O amd 1 can be represenfed as a
mapping fijxaxxp] — xpxory, Le., any oulput link
of stage O, tepresented as x2x) Xy, is connected Lo a
link xq.x2ry, at the output of stage 1, whare », is the
routing it for the path at stage-1. Note that the
permntation f; is mvariant [or alt the nks at
the outpul vl staye 0.

Definition 1. Given an MIN M{n), with a labeling
of the links, i there exists a mapping
M1 X2 .. 1X0] = Pu1 Y-z .- 17 for each
stage f, 0 i< (w — 1), where, v, 49, o... 7152
permutalion of any (g — 1) bils of (xy_ 1, %4 32, ...,
x1, xp), and 7, is the routing bit, such that any link
iix, 1 X.23 ... X Xg at the outpiit of stage (i — 1) is
connected to link 7, at the output of stage i, cep-
resented as f[4] - f:_H, where 1\ o i¥ez---
i, the labeling of the switches 18 lermed as a
hasic {abeling, and £s are defined as the i-mappings
For (). :

For simplicity, we represent an mapping as
Fi— Vu_1Vea .. PiFe asslming that it is always
applied on [_y %y_2 - -- X1%0).

Faxample 2. In Fig. 1, with the labeling of the links
shown, the i-mappings for the bhaseline network
f(3) are given by

So— xgxira, fi - XeXah, and i — xaXey,
where, r; is the routing bit at stage-i. Since with
the labeling of #(3) shown in Fip. 1, the i-mappings
exist for all i, 0 i £ 2, it is a basic labeling.

In general, for fx). the Fmappingrs are

Jo—Xy_y - e, f1 0 Kedpr. XA, o
X 1 XoXn_a. . KaFz, .., ADd
Jaol = Xp_1%g—z . - X2X0Fu—1-

Remark 1. Given an MIN Mix) the basic labelmg
1% not unique.

Definition 2. Given an MIN M(n), the labeling of
all the inputs, and the switches of each stage i,
0 £ {< (n— 1), in top-to-bottom order (as shown
for f(3) in Fig. 1) is termed as top-to-bottom
labeliog.
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Bemavk 2. Formost of the wall-known fall-acpess
migque-path MIN's Mix), e.g., bascline, reverse-
baseline, omega, mverse-omega, ip, cube eic
113], the top-to-bottom lebeling is found te be a
hiaxic: |abeling.

Exwmple 3. Fig. 2 shows an & ¥ B omega network
%) with top-to-bottom labeling,

It ia tn be noted thal the i-mappings for (3} are
gZiven as

Ji— xyxar0, fi — F1%ry 2 — X1 KoFa, Whits,
ryds the routing bit at stage-i, 0 <i < 2.

B peneral, for £Xr), fi— xy a3 ... xgr for
0gigin-1)

Given an MIN (n) with a basic labeling of its
links, 2oy mput-owput parh through M(x) starts
froen an input, selects cither the upper link, or
the lowee link of 2 switch, determined by the rout-
ing bit r, thaverses via consecukive slages |,
5 {n—1} and reache;s the final outpu,
Therefore, we may reprasent a path as a sequence
of Iinks, starting from the wput x (=x,_1 %, _=. ..
xy %), and following the outpat liok .y at stage
i, gven by 4], finally reaching the ootput v
{t}rn—l Pz .- }"1]'"}]

Example 4. Given the labeling of the bascline
nelwork B(3), az shown in Fig. 1, and correspond-
Ing i-maypings fo — X3y Fo, ) = :Xg X Py, and 5 — -
¥pxgrz, (Bxample 2), the sequence of links followed
by the input<utput path 5 — 2 arc given by

Ingnat 5 : 101 2% 10r D sg by 25 mpry .

Now, since the netwerk follows destination tag
routmg, and the dostination is the final outpat 2
ie 010 in Binary, iy =0. 1y =1, ra = 0.

Ll =]

wa ba

[L

-1

Fig. 3 An Bx§ cmega setwork N3 with top-1o-botiom
Jabstimg

Substiuting these values of #/s on cach ling e

get the path as the sequence 5—d4—31;
shown in Fig. 1.

Now, 1o set up paibs from input to outpyt o
an MIN, theee would be a conflict at 2 siuge.; i
avd only il two o1 more paths need the same Iml
i the vulpid of any stage 1. )

Exsmple 5. Fig. 1 zhows thar in 2(3), the patk
3=+ 2 conflcls with the path 6 — 3 1 Blagp 1
represented as ’

544232 andé—6—=3—3

Both the paths require the same Lok 3 at the oy
put of stage 1, and thetetore confliet.

The eoncept of topelogical equivalence of 1wy
MIN's was first introdoced in [14,8], and has beew
studied extengvely thereafter. Given an MIN i
with & stages, it fupology graph TG(M), is & graph
where each switch is represented 03 & distingt ver
tex, and the links betwveen switches are reprosented
by edpes between corresponding vertices. Q-
ously, the topology graph would be a leve] aragh,
with M2 vertices at sach level-, referred as VM)
representing the N2 switches in stage /, 0 £ 75 &
In [6], the topological equivalence has bean defined
in the following way:

Defiition 3. Any two Astage Nx N MPs o)
end ALy are called topologically squivalent i and
only if there is an Jsomorphic mapping i from
T M} to TO(M;y, such thal yiv) e FiMl
Yo PAMD =01, .. kL

Given any n-grage N x N MIN A2, by the Lr-eqie-
alence checking algorithm presented in [6], we Dy
chieck its equivalence with Q(x) network in Q{An)
tirae, Example 3, shows & hasic labeiing [oc 93
network, thal resuks 2 sct of Rmappings describr
the interconnection topology of the network.

Lenwuy 1, For any Q-cquivatens AIN Min) theré
will exist ot least ome basic labcling, resulting a 5
of i-mappings, Wi, 05 i< (rn - 1)

Proof. Let the petwork (Xn) is given with all 15
inputs, switches and output links tabeled actotdiis
to top-io-botiom labeling. It has already beed
shown that it is a basic labeling for £in)-



N, Das { Josrnal of Systams Arehizecture 51 (2005} 207222 211

Fig. 3 An 3§ D-squivalent netenck M(3).

From the definition of equivalence, the tapel-
opy graph of M} is isomnorphic with that of
(x) natwork. Therefors, the nodes of each stage
i of M(n) have a one-to-one correspondznce with
those of stage i of L), for 0 < < (n ~ 1). There-
fore, we can re-label the network nputs and the
switches of sach siage § of Mix) according to the
labels of those of stage { in fHn). Now it is evident
that this labeling of the nodes of M(x) will resalt
the set of i~mappings, same as those of fNn), as gi-
ver in Example 3. Therefore, thiz lzheling of
switchas of M) comprises a basic labeling for
Min). Hence the proof. O

Example 6. Fig. 3 shows an 8x8 MIN M(3)
{equivalert to £2 network) with a labeling accord-
ing to its topology isomorphist with £(3).

The corresponding ~mappings are given below.

T x xor0. it Xy 3071, for Xy X072 Since f; exists
for Wi, 0 i<, the labelmg shown 18 a basic
iabeling af A(3). Note that the imappings are
Bame as those of Q{3).

3. Comcatenation of {)-equivalent MINs

Givets any n-stage &% N MIN M(n), by the -
equivalence checking algorithm in [6], we may check
whether it {s equivalent to {#) network. If yes, we
can also compute a basic labeling of the links of Af
and the corresponding i-wmappings of M(n) by the
alporithme presented in Section 4.

Next, twe f-equivalent networks, each with a
bagic labeling, are concatenated 10 form a com-
bined (2n — |)-stage network A @ 4°. 5o far, con-
catenation meant the overlapping of each switch
of the last siage of A with that at the same physical
position in the first stage of A'. But it does not nec-
essarily retain the topological equivalence of the
combined network, so formed,

Definition 4. Given iwo L-equivalent networks 4
and A', each with a basic labeling, i the combined
network A @ AY, the labels of the network inputs
andi the ontput links of stages {, 0 £ 7 < (n - 2), are
kept same as they were in 4, and for stages §,
(n— 1) ig2n —2), same as those in A'. This
ovetlapping actually causes a one-10-one mapping
of the final output links of 4 to the links at the
output of stage-0 of A°. This mapping i5 defined as
the concalenalion mapping.

Example 7. Fig. 4 shows the combimed (2n - 1)-
stage network £ 3 AL, where M is the MIN shown
in Fig 3. In stapge-2, the corresponding switch
labels 5 in £23) has been shown as (x). It is to be
noted that the concalenation mapping is given by

c~(ﬂ123455T)
N0 1452367

?
o

i

9y
e
o
é

1
L

-1

-a

—
[
.
-
IN
-

7 3

Fig. 4. The combined £ % B network Q& M,
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Example 8. Fig. 6 shows n Benes network
Bi% @ B~Y3), a concatenation of a baseline net-
work fi{3} and a reverse-bassline network $71(3),
siiown in Figs. 1 and 5, respactively. Here the
ma:.mtenaﬁnn mapping C is an identiey permu-
tation.

Remark 3. In [12] Feng et al. considered the net-
works, where the owtside-in coding of the swiiches
of the center stage of a (2n — 1)-stage nerwork are
identical from bath sides. It corresponds to lhe
case where the concatenation mapping 15 always
an identity perrantation. But, in this paper, 1 more
geoetnl class of combined networks has heen
considared.

Lenma 2. Given amy combined (2n — 1ystage net-
work A & A", where both d and A are equivaient
In 2 retwork, there exist i-mappings for 2l |,
DLig (2n—2), & and only if the concatenation
mapping is a bit-perneite permutution,

N Dar ! Journerl af Systems Architactors §7 (NS ) 7222

Proof, Let us consider two 2 equivalen: RetWQrks
4 ang 4’ with the set of i-mappings Yo lh,
fn-—I}: and {J'I;rﬁ: L-- 1f;-1 }1- mr*ﬂﬂ-lilfﬂj}‘. Thga;
two are combined to form the network £ o 40

if part. Let us first assuine that the concareny
tion mapping C i3 a bit-permute permetarioy,
Then obviously, with the labeling described jy
Definition 4, for the combined network 4 @ 4, 1,
i-mappings are pven by Fy=f, for0<ig(n—3
Fi=f, for n<ig(2n—2), and Fi = Cof; far
I=in~— 1), where Caf; i the composttion of 1wy
bit-permute permutations, ¢ and f;, and henee
another bit-permute permutation. Therefore, it
is evident that for 4 @ A°, the Fmappines exist for
all £

Oriy if parr. Let us assuime that for 4 & £, the
f-mappings exist for all i Hence for i = (7 — 1), the
mapping rule from the output links of stage
(# — 2) 10 the oulput links of stage (v — 1) foligns
& bit-permute rule, It will be true only if e
concatenation mapping ¢ itself is also a b
permuic permutation. Hence the proof. O

Example 9. For the network Q& M shown b
Fig. 4, the concatenation mapping C 15 2 bit-per-
mute permuiation given by: C xy xzx (Example

?l
The i-mappings for the network are given below.

Fy xyxpry Fio xixer; (3ame as those of O
network),

F;z: Cﬂ{x|xu?2}: XpXy T2, and .
Fy: xy xpry, Far X, xgr, (same a3 the Lmappings 0
last two stages of M3} as given in Example 8).

0
S

Fig. &i. An §x ¥ Bepes network f(3 & 5~'(3).
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Remark 4. For any network 4 @ 4°, where the -
mappings for A are f, and for 4* are §7 for
0« i< {p— 1), and i the concatenation mapping
be the identity permutaticn, the [-mappings for
the combined network will be 7, where F;=7,
for ﬂl-'t.:. i(n—-1) and Fn—l+j =f}s for 1 oy
{n—1}

Example 10. For the network £(3) @ £(3), it is to
be noted that the concatenation mapping i an
identily perrtation. Hence, i-mappings arc given
a3

G A xpt "i‘rl-, U= is {23“! - 2}-

4. Bearrangeability of combined networks

An N % N petwork is called to be rearrangeable,
if all A= N permutations are conflict-free on it.
Mow Henes nefwork is & mearrangeable one,
whereas the rearrangeability of (& Q is still an
open prablem, though hoth of them are con-
sinicted by comhining two (-squivalent networks.
3o, the question is that in the combined (2n - 1)-
stage networks, what factors actvally determine
the rearrangeability of the network?

It is io be noted that in a combined (2x - 1)-
stage network 4 @ 4°, two {equivalent networks
are concatenated by superimposing a switch of
the last stage of A to that in the first stage of
4’, which are in the same physical position. They
may he logically different according to the rela-
tion of topology iscmorpbism. Hence, first of
all, the i-mappings may or moay not exigt for the
combimed (2n - )stage network. Also, even if
it exists, it may vary from network to network
depending on the physical positions of the corre-
spanding switches in 4 and A°. The most impor-
tanl. poinn 1 that, even if the concaienation
Mapping renains the same the behavior af the
networks regarding rearrangeability may differ.
As it is evident from the aetworks 2@ Q7', and
D1 Given the i-mappings of a combined
(21 — 1)-stage network, here a sufficicnt condition
is formulated for rearrangeability of a combined
network, in general.

Definition 5. Givern a combined (2r — 1)-stage
network A& 4', for a particular input-output
path, the rourmg bits for stages 1, (R— 1<
i< (2n —2) are predetermited by the destination
tag, but the routing Brs r, 05 i n—2) are
arbitrary, and are referted here as arbitrary
rouking bits {4 R-hits).

4.1. Windows and rearrangeahility

Here the notion of windows {15] bas been
uttlized io represent a path through the network,
and {o correlate the characteristics of windows
with the rearrangeability of a combined net-
work.

Defmition 6. For 2 piven combined (2ir — 1)-stage
network A$ A", with 2 sst of Fmappings, |5,
By, .o, Fapoa), aninput—output path x — v, can be
represcoted as a  sequence of links x —
!| —5‘12—-' e Iz"_g — ¥, Whﬂfﬂ, }t is the Lok {iﬂ
binary), the path follows at the cuiput of stage
k—1), 1E£k€(2m-2), and iz pgiven by
Iz = Fp_q[l—1], fo 15 the input x, and &, is the
output y. Now, given an Nx N permutation, at
any stage &, the set of links fellowed by individoal
paths is vepresented as an N xn matrix, calied
window W, where each row L, 0<j5 (N - 1)
of window W, represents the link in bmary),
followed by the path from input 4, at the output of
stage K.

Remark 5. A permuiation is confhici-fiee on a
combined (2 — 1)-stage network, if and caly if
there exist windows B Wk, 0 < & < (21 — 1), uch
that all rows of each window are distinct.

It iy to be poted that window Wy and window
Wigs—1y are, respectively the Nxn matrxes of
mputs and outpuats, ie, for any N x N peramta-
tion all rows of Wy and Wy, o) are distinet.

Definition 7. For a combined (2n — 1)-stage nel-
work, A& A7, if i-meppings F, sximt for all 4
i (2r-2), each window W, 0g£ks
(2r— 1) can be represented uniquely as 2 string
Sy = Fr_|[Sg—1]. where S is the input string, i.e..
Su = Xp—1Xp—2 - X1 X Sk is defined as the charac-
teristic sting of W,.
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Exomple 11. For an 8xE BHeness network
#(3) & (3}, the characteristic strings for the
windows are givert by

8o Iz-ﬂ-’ﬂm 1t FolSo] — x21 00, S0 Fi{F] -+
raxary, By FfS5) - mnrs, Se FS3] = rarar,
and Sg Fy[Sy] -+ rakyry, respectively.

Dedinition 8. From a conflict-free window M, if
one column is deleted, the pair of rows having
the samn hit pattern are called conjugate rows.

Thearem 1. S g combined (2n — L-sigge network,
A A, if lmappings oxivt for 2l | O5ig
{dn — 2}, and euch AR-Bit ry 0 € § < {n — 2) ocowrs
onfy bt each S, for (f+ D=k <{2n -2, the
BeiWORT I8 rearrongenide.

Proof. In 2 combined {2k — 1)-stage network
4@ A', ket us assume that all the imappings exist
for 0= i< (2n - 2). At stage-0), the characteristic
string 3, is the inpot bit string . _yxe-2 ... X%
and also the string S5, ; 1 the outpui bit siring
Yo Ya-3-o P1¥ee NOow from 5, S5 8 oblaiped
by applying the &mdpping Fo, ie., deleting one
it x; and adding Lbv: routing bit ry, and pernmting
the bite nccording w Fp. In gemeral, anv S; is
obtained by permuting (2 — 1) bits of 5,_, eccord-
ing o &_; and adding the routing bit r,_;.

H is to be noted that the ronting hits for the last
R’ stages, namely ¥, g, 7o ... Fonop 2 the cutput
bits ¥o_toFn—2 - P1o Yy, TeSpectively. They are
already fixed by the given penputation 7 The
remaining routing bits, namely, rg, 71, . .. 2 AT
the AR-bits whick are to be determimed to make
all the paths of P conflict-free, i.e., to make 311 the
ows in each window P, 05k (n—1),
distines,

Fiowever, for any permutation B, #y is always
conflict-free. Same ie true foc W5, .

Let it be agumed that for the given network,
the characterislic yirings are such thar any 4R-Fiy
Frn 07 (w—2), ovcurs only in each S,
F+1) k< {20 —2— /) Hence, the fit routing
bit #5 which is an AR-bit appearing first in window
F;, has to occur in each window W, for
1€k (In-2).

Since W7y is conflici-fiec, und W) comprises of
the pame (n — 1) columeps of #5 with an addidonal

celumn for ry, 3 would be confliet-free, 1f and o,
il complapeantary bits are assipned for the g
conjogate rows of Wy The same will be true g,
window Wa,_» aiso. Let us start from s
artitrary ki of Wy with all bits fixed from H;r
exeept Lhe bit ro. §.ot ue put 7, = (), say, in thai oy,
Now iet us ind the confugate row ', and put rg = 1,
50 that the two rows become distinct znd hem
conflict-free in W:.

Next, in By, f' the conjugate row of ' i
found, with all bits fixed from W5, mcelz-t the bit
Yo Fp 15 assigned as rp = 0, 50 1bat rows-f' and #
beeome distinet and hence eondict-frec in W,
Next the copjugate row of /* is examined in #,
and is assigned as #, = 1. This process is repeatsd
unless g cytle is complete. Next it is 10 be stapked
atbitrarily again from aty row lett in W, and the
procedure is repeated unless ry is assigned for uf
the rows, Hence, both tie windows W) and W,,_,
becaome conflict-Tree.,

The same procednre is to be followed 1o assig
pext ARSI r, making the windows #5 and
W, _ 3 condlict fres,

In this way, considering the (r — 1) AR-bits, we
necessarilty can make all the {20 — 2) window:
cotflictfree which compleles he conflict e
reuting of the given permuation P

It 15 to be noted that for any arbivrary permu-
taticn, the procedure always can find s conflict-
frae routling. Hence, the networl ia rearrangeable.
It proves the theorem. O

Remark 6. Example L1 shows that Benes network
satisfies Theorern ). Obvionsly, all the combined

— {)-stage networks which sansfy Theorsm b
ate rearrangcable,

Example 12. Fig. 7 shows ap Q7 (3} nctwork
with top-to-bottom labeling. The shufflc at
puipul is ymored, since it just causes some refab]
ing at the sutput The corresponding émapping
are given by

fﬂ-" T rﬂxzr],ﬁ: T Xala
Figs. 2 and 7 show that for REn™,

concatenulion muoping is 4n kleatity pcrlmutﬂl'lﬂl
Hence the i-mappmgs for @ ¢ (3 are ghen a8
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Fig. 7. An & = § joverse omaega oerwork 179,

Fo: xxgry, Fi2 xyxgry, Fob xyxery, £y oxgaees,
Fai Xy x%2¥a

Any path x — y in the network, where x and »
in binary are (xz3, 3o} a0 (32 1) po), respectively, i
represented by the sequencs of links:

£ £ 2 Fy Fa
X3y = X XgFy — Xphgly — FpryFa —F Fofgny — TRy

Henre, the corresponding characteristic atrings for
the windows ars

S Xaay xg, 510 Xy xare, 52 karery. 5 rar ro, Sa
Farpty. and Ss: rarery. These sirings eatisfy Theo-
tein 1. Hence the network it rearmangeable.

Example 13. Fig. 2 shows thal for & $ O net-
work, the comeatemation mapping is an identity
permutation. Hence the imappings for Q90
are given at:

Fo xixpre Fi 2vxan, F2ioxxgrs, Fy X Xots,
and Fy X Xty

Any path x — yin Lhe celwork, where x and y
in binary are {2 1 xo) and (pg 3 o). respectively, is
represetited by the ssquence of links:

-Fr_: F] .F: Fj !'-n
RN\ Xg — X\ Mgy — dpivgl, — gtz — Aty Rl

Heuce, the corresponding charastenstic strings for
the windows are

So: xy0 xp, 810 27, 52 Xgrory, S by Sa
TiFars, a6d Sy rar:2; These strings do not satisfy
Theorem 1. Hence the rewranueability of the
uetwork can not be muaranteed.

The networks B £, S f, Q@ f~L fo 0,
F'a 07" are yome more examples of combined
ne'works which satisfy Theorem 1, and therefore
rearmngeale,

4.2 Alporithms for checking rearrangeahility

Given any Qeequivatent network Min), here fol-
lows the algerithm to labe] the switches and tha
Imks, and te find out the corresponding -map-
pings. As has been mentioned eadier, the equive-
lenes with 2 petwork can be checked im Q(Nm)
lime using the algonthm presented 1o [6]. I Afn)
is eqarvalent to 12 network, it iz cbiviogs that it is
also equivalent to baseline network fk). In the ol
kowing alparitinn, the switches are labeled accord-
g to the one-to-one correspomndence between the
oodes of AM{n) and S(k).

Let any switch of M{n) be identified as S(4/),
whene i it the stage, and 7 is the physical position
of it in stage 4, 0=« (nw— 1) and O« g (N
2 - 1). The mput links of 3{1,f) are reprezanied
as {41, /), and /(. /), and the corresponding ouiput
links as folf, ) and 7001, 5, respectively, such that if
the switch is set straight the link I4f } is copnected
ta iglh, ), and link £[3, /) is connecred to Zg(L, /).

The following algorithm marks the nodes 5%, /)
of each singe oniquely by ihe labels (0,1, ...,AY
2= 1) aud the two Input {owtput) linka of each
gode zte marked as T oand ‘17, mspectively. The
node conneated by the emtpnt Tink marked as 0
'y of S/} in the next stage i3 salled the w-child
(d-childy, Similarly, the pode connected by the -
put link marked a3 "0’ (‘1) of St4,f) in the previous
etage is called the w-paremt {dpareni).

Abgorithm {T.abel-Swlich)

THpait. The n-level graph of AMin} with nodes 52, 71,
OgLis(n— 1} and 0 << (W2 - 1)

Outpui. The sei of nodes {867}, sach wilk a label
X~ Epeafpat. Ay 0= (N2-1) aopd iwo
input footput) links macked as ' and ‘1,
respectively.

Step 1. Mark S(0,0) as 0,040,0) = fo0, 0 =0, and
4{0,0) — 5,{0,0] = 1.

Step 2. Fori=0to{n—2)do

{for j =0 to (M2~ 1) do

{0 800 7Y 15 marked as x = & a. . -Xe

then mark wchild of Sii/} as ¥ =x,2...
Xy Oy .. %y, and

mark Fchild of S5 28 X' =Xp 3...%n-in1
]J.'H_g a...x.
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I x is aven, the conmecting input link and corre-
sponding ontput link of both w-child and J<hild
are marked as T, and the other pair of input-ont-
put finks are marked as 1"

else the marks on links are reversed.)}

Step 3. Pori=(r— 1to 1l step (1 do

{for j=0to {¥2 — 1) do

{for 5.} marked as x = x,_3%,_3..xg, if any par-
ent of it i unmarke]

then for s-parent wark it 85 x'=x, 2.%-
b PR P J&hﬂ, and

for d-parent orark it as x¥ = xy_ax, i ¥eau2. .- Enl.
If %, ;; tin xis ',

the comnecting output link apd corrasponding
impwi link of bholh w-parent and d-parent are
raacked a3 0, and the other patr of input-ontpt
Foke are marked as 'L’

else the miarks of links are reversml }}

Stap 4. Terminale

The above algorithm assigns a unique label x,
0 & x < (NF2 — 1) to each gwitch 807, /) of any stage
L, 0gig(n~-1), and marks the two input (out-
put} links of each ewitch as m=0 and m=1,
tespestively,

Exmmple 14. Fig. & shows the switch labels and m
values on links of the MIN A£(3; as Jorived by
Alworithen Label Switch,

Note that Fig. 3 shows the same network with
labedy according to its topolegical isomworphism
with X3}, whereas in Fig. 8 the Alporivhne Labe!
Swireh labels the gwitches according to f{3).

Here follows another abgorithm that runs on the
outpat of Afgorithm Label Swirck, and asstgns un-
ique label to each input of Min), and 1o each out-
put liak of any stage i, < i<in — 1), Hence it
computes the Smuappingsof the nelwork.

Algorithi {i-Mappings)

Inpir. ‘The network M) with nodes S0,
Ogigin—1), and 07 (N — 1), sach with
a labei x. U< x5 (A2 - 1), and two juput (out-
put) links macked as m = 0 and m = 1, respectively,
Outenit. The set of i-mappings £, each an armay of
size n, representing a8 permutation of {0,1,...,
(n=1),0< i< tn— 1.

te L= dL=]

Fig- 8. AR3) with swilch lubels and lok fabels as derved fron
algorithmy; Erfe! pudeeh,

Step 1. For each mput switch S(0, /) label upper
{lower} mput link as 27 (27 + 1),

For cach ouipul switch S — | ) lahe Ufper
{lower} vutpul biok as 27 {27 + 1)

Step 2, For i=0toi{n—2) do

ffor j=0to (W2 ~ 13 do

{for each switck SYi,/) label output links g5
{2v fakel of S0+ m))}

Step 3, ful0) = ro

Furj=0to{N-1do

{for any inpui tiek of S0, H with label 2 k=g
1, ..o (1), 1f the labal of corresponding outpol
link of S(0,71 13 2°, p + 0, then fHlp) =k, elaa‘na i
mappings' and tcrninate. }

Srepd. Fori=0tw[n - 2)do

{0y~ #;

for f=0to (& — 1} do

{f the label of the ik i of St is 2
E=0,1,... {#— 1}, and the label of connecting
link at stage {f+ 1) is 27, p £0, then fip) =&,
else 'no Fmappings’ i}

Step 5. Terrninate

The above algorthm finds £, 0< i< (1 — 1 ay
an arrsy of size {n—1), where fiBI=h
Qg kL{n—1) L£p<ip—1) dencres fhat 0
the mapping #; the kth bit of input string is mapped
to the pth bit of output stiing, and f{0) =7

Exampte 15, Fig. 9 shows the link labeis of 1b¢
MIM M(3} as derived by Aigarithm i-Magpings-

The algorithm also outputs the following sel of
fmagpings tar M{1):

a2 Xoxyrn, i3 KoXary, and fi: Xaxpre

Maote that these are same as K3}
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Fig. 3 M(3) with swilch kabels and link Labels as derived from
alporithm Hrappings,

Therefore, given any two O-equivalent net-
works 4 and A’, the i-mappings of the networks
can he foomd along with a basic iabeling of the
links hy the algarithms described above.

Now let us consider the combination of two
such networks A and A' to form the network
A@ A, The Jollowing procedure will check
whether thas nelwork satisfes Theorem 1 or

not.

Algorithin (Check-rearrangeability)

Step 1. For cach network 4 and 4, apply Algo-
rithm Label Switch, and then Algorithm i-Mappings
to obiain 2 basic labeling and corresponding J-
::Jupplings {fd and {f}. respectively, Dgixg
r— 1}

Jtep 2. For sach cutput switch S{n - 1,0 of 4,
if the input switch of A" iz switch $70,%),
G2 =2kaond Oy +1)=2k+1 for 0 < js N
2-1

wSIFG{F}:zﬂtl rﬂraﬂP:“ﬁFumé(n_!}s
and forany i= Xy 1 Xp2... X1 X, O TS N =V, if
0 = DapCixg), forall j, 0 £ j £ N— 1, go to next
step, else report success == 0 and terminate.

Step 4 Frmfy, Tor 0 i -1, Fr =41, ot
ngig{2n -1, and Fi:=Csfy fori={n - 1).
Step 5. Sp = X3 Xen ... X Xg, Spi= FolSe ]
forlg ksIn—|,

Step 6. Fori=0to(n - 2) do

if r;€5, for all j, G+1)<j< n—2— 9 and
rig § for all j, (G —1 - H < j< (2n— 1), oport
success .= 1 else sucoess ;= 0 and terminate

If the procednre reportz success ;= 1, we kmow
that the combined network satisfies Theorem 1,
and is therefore rearrangeable.

Example 6. Fip. 10 shows the network M(3) @
£(3). The switch labels and the j-mappings for
M(3) are same as given in Exampls 15, whersas for
{H3) those are given in Example 2.

In tivis case, the concatenstion mapping £ is an
identity permutation.

The characteristic strings for M{3) & B(3) as
obtained by the above algorithm are

Sor X2 %) Xop 81 %21 ¥o, Tl Foxz¥, S57 roliFe, Sy
Farpts, and Sﬁ? FaFyfa.

Here the AR-bits are rp and », respectively. It
satisfies Theorsma 1. Hence the network is
rearrangeable.

Each of the three algorithins mentioned above
is of complaxity O(Nw). Therefore, given any two
Q-eguivalent networks 4 and A4, it can be checked
whether A 5 A satisfies Theorem | and hence is
reurrangeable, in O(AT) tme.

Fig. 10, Combincd necework &3 & M3
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4.3. Rowting m combined setworks

By the technique presented here, if it 15 found
that a given combined network satisfies Theorem
1, and henew is raarranpeable, wa man easily zecign
the AR -hits deterministically to ronte any permu-
teHon without sny conflict, following the same
procedure, a3 has been described in the proof of
Theorem 1. Here follows the algorithm.

Algoritn (Routing)

Input, The charactenist strings S, (an #-bit aray),
for each window B, 1 £ 7 € {2n ~ I}, and the win-
dows Wy and B, i€, the mput and output
wimdows, respaciively, derryad from the givan per-
mutation P.

Gutnaz. {n — 1) AR-bits /g, 71, ..y 7p—2 €ach rep-
meeatsd as an  N-bib amay, where (i,
Oskgin—2), 05Fis(N-1) represents the
routing bit for mput ; at stage &.

For k=0 to (n—2} do

fForany row j, 0 5 j= (N — 1), neff) = 10; find the
conugate row 7, in Wi

rl¥) == 1; find the conjupate row " in Wop g ;.
rl} =G

Rapeat it until r, hit of a conjugata row is found o
be aleady assigned.

Ifall r.’s are not filled vp, start from any achimary
unfilled row and repeat the procadurs umtil all
rowa are fllad up.

The windows H‘r*-u and H"gh.;.._k are formed
defined b!' Sk-r] and Sz,._z_;;-. respantiwhr.}

This algorithma will determine the AR-hits lor
each path for routing through first {r — 1) stages,
for the rest each path is self-routing, Le., the desti-
natioyy tap Ttgelf will dgermivwe the route. As has
boen explamed in Theorem 1. the above procedure
will abways be succeasfil to find conflict-free paths
for any arbitrary peranetation through 2 combined
network A & 47, If the network satisfisz Theorem
1. It i evicdeny that the time complexity of the alge-
rithm #s O N only.

Fxample 17. Consider the combined network

Mo M3 shown in Fig 10, Given any
pamutaiion

P_(0123456?
'314?250&)

the inpat and oulput windows Wy and W ane B
follows:

r’{— W = = W - Y
& F FBinl wls wind
O 0 0 0 l 1

0 40 1 ] 0 1

O 1 1 n ¢

o 1 1 1 ! 1
I 0 ! i)

I o 1} 1 0 !

I 1 % 0 0 g
b1 1 1 .

Mow, the Routing Algorithm determives the AR
bits In the respective windows as shown below

f+— W, — "'I
= H"‘ -—

¥ ;i T yin) wnis)
0 0 9 o0 !
0 6 1 0 0
0 11 1 0
0 1 0 1 1
1 0 & 0 1
1 0 o 1 ]
11 0 0 0
\y 1o 1 1)
[~ B -

— W3 —
xronoon yin)
¢ ¢ 0 0
0! 0 @
o 1 1 1
| S N T
LA S T
A
S | R S
V1 o1 o8 1/
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Fig. 11, Peths through Afi3) & 503 for realizing P,

For the renaining atages the paths follow the des-
tinalion tag routing. The complete paths are
shown o Fig. 11.

4, Concatcaation for rearrangeability

With the ideas developed so far, given two {2-
equivalent networks A and A°, il they are concate-
nated by superimposing the switches according to
thei physical positions only, as has been consid-
ered so far, the rearrangeability of the combined
network 4 6 4° can not be guaranteed, If A @ A7
is found to be equivalent t¢ Benes network, it is
obvicusly rearrangeable. But so far it noceds
O(N'%) time to check it. More interestingly, many
combined networks would not be equivalent to
Benes network and hence their rearrangsaiilicy is
not puaranteed.

By our technique, if the concatenation mapping
bz a BP-permutation, we can deletmine whether
the network satmsfes Theorem [, and bence rear-
rangeable, in O(N#) dme. However, again, the
rearrangeability of any such A& 47 i3 never as-
sured, even when the concatenation mapping is 2
BF permutation.

But most interestingly, if we modify the combin-
ing procedure a linle bit, we can guarantse the rear-
rangeability of the cormbined network always.

3.1 Concotenarion techniqus
Here, the 85 f# network is taken as dhe slao-

dard example of combinad neiwork whick is
reasrangenble.

Giveds two -epaivalent networks A and 4° the
steps followed for concatenation are staved below:

» Label the switches of each network accarding to
the one-to-ome correspondence with baseline
netwatk f(n) by Algorithn label-twirch, Theae
labels are logical ID's of the swiiches at each
stage. Find the i-mappings for sach,
Concatenate the two npetworks by superimpos-
ing the switches with same logical 105, The
concatenation mapping would be the jidentity
mapping.

Find the i-mappings for (be combined nerwork
by Algorithm i-Mappmg. It would be similar
to that of B{n) @ B(x), exvept some relabeling
at the fnal input and/ or output links. Hence
it will ratisfy Theorem 1, and will be
rearrangeable.

The new network is repragented as 43 A% It is
to be poted that the whole procedwe would be
completed in O{Nn} titne.

Example 18. We know that 2% 2 does not sai-
wfy Theorem 1. But the cotbined network & ¢ £
satisties Theoram 1, and hence is rearrangeable.

Fig. 12 shows the one-to-one corraspondsnce of
the switches of £43) with f(3), as given by
alponitbun Labe! Switch. Fig. 13 shows the logical
combination (3) & Q3). In the combined net-
work, any path x — v, whare x;x, Xg, and y; 34 ¥y
are the hinary representations of x and y, respec-
tvely, can be represeniad at different windows w,
for 0 £ 7= 5 as:

XX Xp =+ AgXyFip— FaXp¥y — Fpfy Yo —

¥rfa¥1 —= ¥z Yo



r&i

Fig 12. 3 whth switch labels and link labels according to
F3)

1t eakizfien Theorsm 1, and hence the network is
rearrehgeabie.

Theorem 2. The combination of any two (-equiva-
fentinetwork, say A © A’ always cam be made rear-
raugeable, if we label the switches of A and &'
dccording fo the isomorphizn with rwe kRawn topol-
ogies, say M and M', respectively, and it is own
that M & M Is rearromgeable,

N. Dey | Jowrnol of Sysvems Archiseciure 51 (2003) 207-232

Proof, if the switches and links of 4 network ag,
labeled according to its isomorphism with netwar
M, the Lmappings of 4 network will be samg 5
those of M network. Similarly, the i-mappings o
4 will be same as those of M network. The super.
position is done accarding to the logical-1D0s o
the switches. Hence, the concatenation mapping
is an idemtity permutation. Therefore, the i-Migp.
pings, and hence the characteristic strings of the
windows for network 4 & A' will be the same a5
those of M & M'. It proves the theorem. [J

3.2. Difference between Benes and (1@ 03 networls

With the ideas developed $o far, finaily the dif:
forence betwean the topologies of Benes and o
networks can be pointed out which actvally camse:
the behavinral difference of the two.

The switch Iabels and link labels of the £(3) net-
work according to Afgorithen label-switch are
shown in Fig. 12, When another (3) 15 concats-
pated with it superitnposing the switches in the

Fig. 14. Two (33) networks to be corsbinad to Form 2% & S063),
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Fig. 15, Combined netwark f03) & O3)

first stage of £}(3) with the corresponding one in
the last stapge of £X(3), at the same physical posi-
tion, it is evident that switches merged are not with
the same logical-ID». Fig, 14 shows the concatena-
tion of two (X3) networks to form $2(3) & £2(3) net-
work. Here, switch with logical-ID 2 is merged
with switch labeled as 1, and vice versa. But from
Fig. 6, it can be notad that in Bene: petwork which
is the concatenation of two fl-equivalent netweorks,
the switches with same logical-ID are superim-
posed. Inm fact, this difference in the topologies of
Benes network amd 2@ &) actnally causes the
behavioral difference of the two networks. Exam-
ple 13 shaws that the & 5 Q does not satisfy The-
orem 1. Hence, the rearranpeability of 2@
network still rmains an open problem.

More interestingly, Fig. 15 shows the concate-
nation of two £A3) networks to foom Q3) @ [X3)
tetwork. Here, the switch pairs merged have the
same logical-ID, according to the topological iso-
morphism with #{3). Hence by Theorem 2, this
network would be a rearrangeable network.

%, Conchusion

S50 far, a lot of research has been reporied
on (27 — |)-stage combined networks M & M,
formed by concatenating two n-stage 2-equivalent
networks M and MY, respectively. But there is no
algorithm, in general, to check whethsr a given
combined mnetwork s carrangeable or not.
Though both Benes network and 2 £ belong
to this class, the former one i= & rearrangeable net-
work whereas the rearrangeability of the latter one
is atjll an open preblem. In this papet, a sufficient
condition for the rearrangeability of a given com-

bined petwork has been established. An O(Am)
algorithm has been presented for routing in such
a rearrangeable combined pelwork. Moreover, a
novel scheme has been preseated for concatenating
any two $-equivalent networks that always results
a rearcangeable network. Finally, it painty out the
exact diffevence belween the topologies of Banes
network and Q@ &2 network.
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