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ON FAMILIES OF DISTRIBUTIONS CLOSED
UNDER EXTREMA

By K. BALASUBRAMANIAN, M. I. BEG* and R. B. BAPAT
Indian Statistical Institute

SUMMARY. Order statistics from nonidentically but independently distributed random
variables are not easy to deal with. But, when these belong to families of random variables
closed under maximum or minimum elegant simplifications are possible. We consider such .
families and derive formulas for expectations of functions of single order statistics and deduce
some recurrence relations.

1. INTRODUOTION

If A is a nXn matrix, then the permanent of A, denoted by per A4, is
defined as
n
per A= X II ayq
cES, i=1
where S, i3 the set of permutations of 1,2, ..., n. Thus the definition of the
permanent is similar to that of the determinant except that all terms in the
expansion get a positive sign. The book “Permanents’” by Minc (1978) and
the survey papers by Minc (1983, 1987) provide an excellent source of reference
on permanents.

If a,, @,, ... are column vectors, then

[a; @, ..]

LG
will denote the matrix obtained by taking i, copies of a,, i, copies of a, and
S0 on.

Let X;, X,, ..., X,, be independent random variables with distribution
functions F,, F,,...,F, and densities f,f,, ...,f, respectively and let
Xy £ X,,, <...< X,,., denote the corresponding order statistics. Vaughan
and Venables (1972) have shown that the density of any order statistic or the
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joint density of several order statistics is conveniently expressed in terms
of a permanent. For example, the density of X,., (1 < r < n) is given by

Fix) 1=Fy(x) fil®)
1

hf’:n (x) = (‘ ')“_——1)! (n_ 1'_)' per

, —00 < ¥ < 00

F n(x) 1-F n(w) f n(x)
r—1 n—r 1

Similarly the distribution function of X,., (1 < r < n) or that of a subset
of Xyins Xgopy oov s Xp:p may be expressed in terms of permanents. For
example, the distribution function of X,., (1 < r < %) is given by (Bapat and
Beg, 1989).

File) 1-F()
Hy.p(2) = Er“—(_n%_—i)—! per | - » TR0 <200
Fo@) 1=Fa()
i n—t

The following notation will be used throughout this paper. If SCN
= {1, 2, ...,n} then §’ will denote the complement of S in N and |§| will
denote the cardinality of S. Let X,y denote the r-th order statistic for
{X| i€ 8} and Hy.s (x), the distribution of X,.s. When there is no confusion
we will replace S by its cardinality. For convenience, for fixed z, F will
denote the column vector (Fy(z), Fy(), ..., F,(%)) and 1 the column vector of
all ones. We will denote by A [S|.) the matrix obtained from 4 by taking all
the rows whose indices are in 8.

Explicit expressions for moments of order statiztics for a number of
distributions, when all X;’s are independent and identically distributed (i.i.d),
are available in the literature. A good number of these have been documented
as exercises in David (1981). Balakrishnan et al. (1988) have reviewed several
recurrence relations and identities available for the single and product moments
of order statistics from some specific continuous distributions. All of these
are for the case of i.i.d. random variables.

If it is desired to incorporate one or more outliers in X, X,, ..., X, then
it naturally leads to the situation where X, X,,..., X, are nonidentically
distributed. It is a common practice to restrict the analysis to the case of
one outlier since, for more outliers, the treatment becomes complicated. The
permanent representation plays an importent role in dealing with such
situations. In some instances Fy, F,, ..., F, may be believed to be of the same
functional form but with different values of the parameters involved.
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In this paper we consider the case where F,, F',, ..., I, are not necessarily
identical. In Section 2, we express the distribution function of X,., (1r<n)
in terms of distribution functions of the minimum and maximum order stafis-
tics of some subsets of {X,, X, ..., X} where X;’s are arbitrary but indepen-
dent random variates. In Section 3, we obtain exact and explicit expressions
for expectation of functions of single order statistics, using the identities of
Section 2, Finally, in Section 4 some applications to specific discrete and
continuous distributions are given. Some known recurrence relations, when
X¢'s are ii.d. are also deduced.

2. IDENTITITES
In this section we prove the following identities.

Theorem 2.1. For arbilrary distributions F,, F,, ..., F, and n > 2,

% Hygs (@)

n—j—1
) 181=n~1

n—r
(a) Hyaplx)= % (——1)n—r—j(

J=0 n—r—j

r—1 e n—j—1
() Hyoe) = 2 (~1y74 ((7770) 2 Hus @)

Proof. (a) The distribution function of X,, (1 <7< n) is given by
(Bapat and Beg, 1989).

Hy.p(2) = ‘é T—i)1 per [iF :;:f ]
=§ zml:—T‘ ’g (— 1) (n;@) per [nﬁ_’j jl]
-3 n_(n_l___z)' ’g(_l)n—z_, (n;—ﬁ ) o230 LS
=2 ey B0 (M) B ) Hs @)

n-sr n—j n—j
= X X (=1t ( ij) Z  Hgs (%).

J=0 {=r 181 =n—j
Since,
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we got

n_r n—j—1
. = X (=1)nJ-r X Hy.
Hy@ =2 (= (707 ) 2 Higis(

and the proof is complete.

It is easy to see that (b) follows from (a) by considering —X,,
—X,, ..., — X, instead of X;, X,, ..., X,.

Corollary 2.1. Allowing x— oo, Theorem 2.1 gives

5~y ( n—j—1 ) (n) =1

4=0 n—j—r/ \j
and
r-1 n—j—1 n
—1)y-i—1 —
jE)( ) ( n—r ) < J ) !
Corollary 2.2. For the p-outlier model, that is, Fy = F,... =F,_p,=F
and F,_p., = .. =F, = G (outlier distribution), Theorem 2.1 yields
ner n—j—1y\ 2 4p n—p
N = -—1 ”—f""j . ’
Hyaw) = 31t 707 0) 2 () i ) ctonpm @
and

r—1 7yl 2 /p n—p
. = —_— —J-1 . :
Hoe)= 2 (=12 (7 1) 2 () (57 ) Hiaim@)
where X,., , denotes the r-th order statistic from a sample of size n of which ‘a’
are outliers.

Corollary 2.3. For the case of a sample of n independent and identically
distributed random variables X;, X,, ..., X having distribution function F(x),
Theorem 2.1 simply reduces to

n-y —9—1
Fra@) = 2 (=07t (77 ) (") Fagose)

and

Frp(z) = ;E—: (—'1)"5"1 ( n—j—1 I)(j ) Flm-l(w)

n—r

where Fypp(x) denotes distribution function of X,n(1 < r < n).
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3. MAIN RESULTS

In this section we make use of the identities of Theorem 2.1 to obtain
expressions for expectations of functions of order statistics.

Suppose the random variable X has an arbitrary distribution function
F(z). Define the following two families of distribution functions with a
positive parameter A.

Family 1. F*z) =[F(x)]* A >0
and
Family II. F,(z) = 1—[1—F(z)]* A > 0.

Let X® have distribution function F4(z). Let X, X,, ..., X,, be indepen-
dently distributed as X(‘", X("), e X ) respectively. Then

Hyg.6@) = 11 F@) = 11 [F(z)]"
teS i8S

= [F@)" = F*¥@), s = = A
ieS
and from (a) of Theorem 2.1, we have

Tl s s, o)

Heoe) = 3 (—1pwrs ("0
=0 n—r—j! 181=n—j

Let X;, have distribution function F,(z). If X, X,, ..., X, are distri-
buted independently as X 1y X, PR X, A then

Hys(@) = 1— I [1—F@)] = 1— I [1—F@)]"
i.e,s' ieS

= 1-[1-F(@)]* = F) (), As = = X
ieS

and from (b) of Theorem 2.1, we have

S g [ I
Hea@) = % (=12 (77 ),S,E,,,.Fw) @)

Let g(.) be a Borel measurable function from 72 to /. Assume that
E{g(.)} exists. Then, from (1) and (2), we get

S~ n—j—1 . :
ByXel = 2 (-t (L 0) B rG)  @)
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and G T . ".
r-1 : n—j—1
EgXpp)h = = (—1)r-i ( ) X ogs) .. (4)
T =0 S\ n—r 1S1=n—j ’
where :
g*A) = E {g(XP)}
and

9.@) = E{Q(Xu))}-

From (3), for » > 1 and r = n, ‘
E{g(Xnn)} = g*(AN): /\N = igv /\i ver (5)
aud for re M ={1,2,...,n—1}

E{g(X,. = —1)n—r-4 > * *
& = 5 (=1 () .gé‘,ﬁ,-g (A.)JFI%I _gﬁ_lgmsﬂ,,)}

n-r n—j—1 :
=B (=1 (V) 5 g
j=1 n—r—) !SSIEn-J'

n-r i1
+ T (=1 N ) G I g0t

=0 R s
= E{g(Xy:p_ 2 —1)n—r-j *
{9(Xs:n 1)}+’ (=1) ( n—r—j )ISI Ej_l 7*(As+A,) ... {6)
From (4), for n > 1 and ?: l,
Blg(X1.)} = 9.An), Ay = ieEN A e (1)

and for 2 < r < n,

et PRV e Bt
Blgr)} = 2 (=17 (77 ).g = 0.0s)

n—j—1

+ 3 (1 7.05H4,)
=0

n—er - ) S mj~1
gL

r— ___'_.1
= B{(Xy_y:pa)}+ 2“1(“"1)«"—’—1( SR ) X g,(As+A,).
=0 n—r |Sjmn=j-1
' e ®

The relations (3), (4), (5), (6), (7) and (8) can be used to get. recurrence rola-
tions involving single erder statistics. -
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4. APPLICATIONS

In this section we obtain exact and explicit expregsions for expectations
of functions of single order. statistics for some specific distributions. Some

known recurrence relations based on smgle order sta.tlstlcs, when all X¢’s are
ii.d., are deduced.

Examples for Family 1. (i) Consider
Fl@)=q¢"%, 2 = 0,1;0<¢<K1
then Fiz) = -2 2= 10,1 ; O < q <1,A>0

which is a Bernoulli distribution.

If g(x) = et®, then
1 o
g*(A) = X e% P(X* = )
z=0
= ¢*+¢ (1—¢")
© tk
=g +(1—¢") = &
k=07
Hence from (3), the mgf of X,., is given by

w(t>=:§: (it (0T 3 g e 7). Bl vier.

n—r—73 | |S|mn—j

v (9)
From (9), for k=1,2, ..., v

n—-r - —Fi—1
BXt,= B (- (7)) B (=g

n—r—jl ISl=n=j

n—i—1, - N
_1-% (= 1)n~r—1( J ) T ¢, .. (10)
S g=0 _ n—1r—75/ 181=n—j o

using Corollary 2.1.

Also, for n > 1 and r» = n,

E_X,kl«” — l_—g)'N, AN =E A«[: . Sz . (11)
’ : ieN
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and for 1 < r<n—1, (6) gives

n-r __'__1
EXt, — EXE, ;* 3 (_1),‘_,_,(7& J ) 3 (1-q‘5+“u)
3=0 n—r=)) 18l=n-4-1

n—j——l) (n-——l)

L
= BXfuyt B (=1 T ) ()
4=0 n—r—jl \ j

%=1 )n—r«j(n—"j - 1) 3 s
=0

N—1—F/181=n=j-1
T n—j—1 Ag+a
= EXk, — X (=1)-rJ R St v (12
o= T (1) (n—r—j).s._,,-,.-lq (12)

(i) Congider

Fa)y= 02 0;0>0

S

then

F‘(x):(%>1,0<m<0;0,i{>0

which is a power function distribution.

Tf g(x) = et, then
0 z\A )
S Q) =] etzd(-) — A [ 6-deteai-riy
0 0 0

Putting y = z , we get

1 ® Gkt
*A) = A [eftvyr-ldy =AY ~—— .
A =ALy Ty =A L THw

Hence from (3), the mgf of X,., is given by

n_r n—j—1\ © Ok st
)= X (—1)8-r-J 2 = DR A S A
v j=0( ) (n—r——j );;-_-o k! {lSl-n—j (As-i-k)} VieR
(13)
From (13),fork =1,2, ...,
n—r n—j—1 Ak

EXt,= X (—1)nrd _ 14
e =0 =1 ( n—r—j ) 18) = n—j (As+k) (14)
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Algo, forn > 1 and r =n,

P
ko
EX”’"_(AN By

1
ko . 3-1 —
EX,,;,,——O(I 3 k)EX,,,,,, AN nE Ag
and for 1 < r < n—1, (6) gives

n-r

—p—1
EXf;n = EXI:,'”-I-l_ Z (_l)n—r._j( n .7 ) ) z (A3+An)0k
j=0

n—r—j
(iii) Consider
F(x) = exp{—e~ &=/}, —00 < & < 00, —00 <& < 00,0 >0
then

FA(x) = exp{—A e=@8}, 00 < & <00, —00 <{<00;60,A>0

18] gcn‘;j-l (AS'l'/\n‘l‘k)

383

(16)

(16)

17

which is an extreme value Type I distribution (See Johnson and Kotz, 1970,

p. 272).
If g(x) = etz, then

7' () = _f’ ¢t dfoxp{—A e~to—1/f)]

= a]‘ et® dlexp{—e~#—¥"/8)], £’ =40 log A
— &'t D(1—01)

= A% et® T(1—68), 6]t] < 1.
Hence from (3), the mgf of X,., i3 given by

nor n—j—1
Pit) = % (—1wr ) B AMPeRT(1—00), 006 <1
7=0 N N—r—) 7 18|=n—j

Examples for Family II. (i) Consider
Fl)=1—¢*,2=0,1,2,...;0< ¢ K 1,
then
Fl(x) = 1—'ql(x+l)7 x=0,1, 2: e s A >0
which is a geometric distribution.
If g(x) = (1+)®

— Ty o (*
= 1+xt—|—( 2) ¢ -|-( 3 ) B4...
2 3
= 14+aWf-4-a® 2~;—+m(3’ m—|—...,te7‘?

A 3-17

(18)
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then ®
9,A) = Z ¢ (1—¢*) (1-+1)
2=0

@ l_qll
=(1—g") = @+ = — L
(1—q )xao(q (1+7%)) I—g*(1+?)
_ 1= ¢ N7
= == (g Y
_ © q/l k
_kZJO ( 1—g¢* ) £

Hence from (4), the factorial mgf of Xy.,, is given by

r—1 —_p—1 © As k
> (_1)r—1—1(” J ) = 5 (L )w . (19)
§=0 N—7F T |S|=n—j k=0 ‘] _q*s

From (19), for k =1, 2, ..., the factorial moment of X,., is given by

r-1 —j—1 As \E
EX® = % (—1)'—7-1(n ) 2 k(- ) o)
4=0 N—1 [ |Slmn—j 1—g*s

Algo for n » 1 and r =1,

4N k
EX""—k'( ) , . (1)
AN
1—¢
1
BX® =k (—L—) BXED, 4= 2 A . (22)
1— q N fieEN
and for 2 < 7 < n, (8) gives
r=1 —7—1 Ag+a k
EX® = BEXPyp 1+ T (—1)'-1-1( " ) 2 k! ( " )
7=0 n—r 1S | mn—j-1 l_q‘S"'An
(23)

(i) Congider
Flx)=1—e2,22>0
then
F,(z) =12, 2> 0,A >0
which is an exponential distribution.

If g(x) = et%, then

g.(A) =? etod(l—e) = ,\]‘n =tz g,
0 0

- (1-5)"= ,:,];klk!' It <A
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Hence from (4), the mgf of X,.4 is given by

W= 5 (e M

Bapat and Beg (1989) obtained (24) by different method.
From (24), for k=1,2, ...,

n—j—1 ) s k!

EXt, = % (—1)y1 ( k!
’ n—r | |8lan—j A%

4=0

Also, for n > 1 and r = 1,

EXIf:n= S5
k k k-1 3
EX%, = b EX33 ’\N = X A
N €N

and for 2 < r & 7, (8) gives

n—j—1 ) k!

r—1
EXt, = EX} ).t ;‘.‘;0 (=11 ( o

(iii) Consider

Fx) = 1— (

8|

) &> 050>0

then A
If’l(x)=l—(—) ,220;6,A>0

]

which is a Pareto distribution.

If g(x) = 2%, k = 1, 2, ..., then

@ 0 A 'S
= k —(= = kE G2 p—(A+1)
g.(A) ga:d[l (a:) ] Ag‘x 6* x dx
_ AGF R s 1y ik g—i-ktD
= 0=h b[(/\ k) 6% 2 dx
AGk
= (A——ET’ k<;\.

Hence from (4), we have

n-—j-—-l), 5 Ag 6%, k< As

-1
h = ___1 ,\_j-l
B =X 0 (00 ) B e

) .S,P,._,.(l—xt;)_l, It] <As; ¥ SCN ...

IS=nd=1 As+A)e

386

(24)

(25)

(29)
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Forn>»landr=1,

0k A
EXt,= " _ Ay=2 A k<A .. (30
1 - _ k-1 . .
EX;:»—H(I A,,—k) EX%, . (31)

and for 2 < r < n,(8) gives
r—1 n—j—1 0k (As+A,,)
EX, = BX* ,, .+ 3 (=141 ST ) (32
(iv) Consider

: Fl@) = 1—e3"%23> 0
then

Fo@) =1—¢*"2 5> 0,1> 0
which is a Rayleigh distribution.
If g(x) = et%, then

g,A) = T etwd[1—*2]

=]

=/1_|‘ 222/ § tk k1

d
o kT

= Ak 3 kil: fe‘“z” aktl dy
k=0k!o

k1
9.:() = A 2 7 I v (2y) *

az 2 Iw —Ay (2y)¥2 dy
k-0 0
k .
o g T (?"‘1)
=3 ~okr_ 2 ' 4o
k=0 k! Ak/2

Hence from (4), the mgf of X,., is given by »

k
- e o 1'\ —_ 1 . -
¢(t)='z’(-1)r-;-1( n=y 1) s {z i _(_2_1—_)} te 7R
J=0 v I1S1=n -5 k1 J

. n—r £=0 Ak

(33)
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From (33), for k= 1,2

387
r— . 2k/2l‘l<u_+l)
L m—j—1 3
BXE, =% (~1p (" . (3
" j=0 (= ( n—r ) 18] =n—j AL/2 (34)
Forn > 1 and r = 1
> leep(,]zi_{‘l)
BXEon= (3)
N
Bx®n = B2 gy (36)
N
and for 2  r < n, (8) gives

n—j—1

r—1
X = BXfycrt B (<17 (5 1)

2/»‘/21‘(;4-1)
) Steagr

A
(v) Consider

.. (37)
Y
N Fr)y=1—e¢ ,22>0,§>0
then
128
Fu@)=1—¢"",2>0;£>0,1>0
which is a Weibull distribution

In particular, with § = 2, A = A/2 it reduces
to the Rayleigh distribution and with § = 1 the exponential distribution
If g(z) = 2%, k=1, 2, ..., then
7.0) = | kd[1—e ™ ) = AE [ ekt gy
Putting y = ¢, we get

k
gy TEFY)
9.(A) = (A) J‘ PRy =
Hence from (4), we have

ko
. (41
-1 n—j—1 (f )
BXE. — 3 (—1)y-#1 8
b =2 (S0 (DT ) B (38)
Forn>1landr=1 P(k'l)
; |
EXx:: [ hd 4 (39)
Lin AEE,
EXY =

(40)
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and for 2 < r < n, (8) gives

k
_ . I'f+—+1
-1 n—j—1 (g )
EX%., = EXk . —1)r-j-1 z L
r r-1in-1T ,'Eo (=1 ( —r )|S|=n—j-l (X F Ay (41)
SCcM
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