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Asirect

Ordinal caregorical random variables are cotnmon in many studies. In different contest it is mpertant to
appropralely defme and simulate from such ordinal categorical randeom varables with a desired pattern of
the correlation structure, This is an important problem in longitudina)l studizs as well as analyring clustered
dats Invalving ordinal categorical responses. The present paper deals with the theoretical prezsentaton and
the construction of multivadte ordinal ilegorical rundom varables wilh some desired patterns of
correlation structure. Algorithms Tor generating samples for 1the AR-type correlation with particular
illustration of AR(1) and AR(Z), and equicarrelation are discussed using some urn models.
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1. Introduction

Correlated random variables with some kanown patizrn of correlation strocture are often
Important in slatistical study. In the recemt years, with the revelution of longitudinal studies and
clustered analysis having mixed etfccts, theorcticans 4 well as practitioners are to deal with
different types of correlated ordinal categorical data. In several datasels involving pain, post-
operalive conditions, etc., correlated ordinal random varizbles {classified as nil/mild/meoderate;
severe, for example) comnes under the purvisw of sludy. Somme examples of correlated categorical
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tandom variables in the literature are due to Drale (1986), Klein et al. (1984), Koch ct al. (1989)
an Molenberghs and Lesaffre (1994), among others,

Zeger et al, {1985) discussed the construction of AR(1) autocorrelation strueture for repeated
binary data. Prentice (1988) dealt with correlated binary regression with common value of
pairwise correlations. Correlation siructure for the multivariate binary data can now be easily
defired and represented by using the Bahadur representation (Bahadur, 1961; Prentice, ]psg';
Lipsitz et al, 1991). But rclatively little attention has been paid to polytomaus calcgerical
variables. Ie the recent vears, among the explosion of papers on repeated meagnrement problems,
models have been developed for modeling repested observations of some ordinal categoricai
response obtained over time on the same individual, Une of the first approaches to the analysis of
repeated categorical responses is due to Koch ot al. (1977 In such modeling, both the transition
moddels describing the probability distribution of subject’s future events given the subject’™s prior
history and the marginal models utilizing various methodological stratepies to account for the
correlation between repealed measurcments can be cmploved {see Ware et al., 1988)
Consequently, there has been soime atlempts to moedel correlated ordinal respanses. In practics,
we peed a flexible model for such multivariate categorical responses. Based on the work of Daje
{1586), Molenberghs and Lesaffre (1994) used the multivanatc Plackett distribution to explain
multivaniate ordinal data. Note that none of the existing models for categorical responses
incorporate simuitanecusly a simple model for the conditional and marginal approach (see Ashhby
¢t al., 1992). The present paper is motivated 10 fullil that gap.

To study the performance of severul concermed theory, onc may nced to simulate
random samples from a properly correlated setup, The latent variable approach is not
suitable as correlation between the derived categorical random variables are nor of simphe
form or of simple mterpretation. The present paper provides some simple algarithms to generate
snch random samples for some specific correlation sttucturcs. Consequently, one can write down
the joint probability mass function of such correlated categorical random variables which, of
cousse, may oot bave a simple form. But the sample gencratian technique is quite easy and
¢legant. In Section 2, we propos¢ our technigue with the AR-type correlation with illustration
with AR{1) and AR(2) models. In Section 3 we deal with the equicorrelation structure. Section 4
provides Lhe psuedocodes of the algorithms of Sections 2 and 3. Section 5 ends with some

concluding remarks,
1 Antocorrdation models

In the present papet, we discuss the AR(L) and ARi2)-type autocorrelation models. A gencral
AR(p)-type autocorrelation model can similarly be described.

2.1. AR(1) modet

Suppose we need 10 penerale ¥, 1,,..., ¥y, which are T identically distobuted ordinzl
random variables, longitudinally obtained at T wucorssive time points and we are interested to
introduce a desired correlation siructure within them. Suppose gach ¥, can take the passible
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values 0. 1,. .., k. Again, for known g{>0), j = D,1,... .k, we want to have

AYi=f) g (1)

where gy he the correlation coefficient between ¥: and ¥, To achieve p, = p¥l, for some
p= b_f{zf:[, d; + &), we employ the following algorititm. The pseudocode of the algorithm is
presented in Section 4.

Algorithm Al.

l.

We discuss the -:umtm;mn of ¥, ¥Ys,..., ¥r successively with the help of T urns, labeled
1,2,..., T, cach having E _g @ balls at thi: outset, z; balls of kind 4, j =0,1,...,& A bali of
kind A represenes the \raIue of corresponding ¥ as 4.

. At ﬁrst we take the arn labelad *1°, draw a ball from it and notice the kind of the drawn ball. If

the drawn ball is of kind .4; , then the value of ¥, will be j,. Then we add &n additionzal b balls
of kind j, to the urn labeled “2’. This um will iow have a total of (EJ‘:“ a; + b) balls of which
(a;, + &) balls of kind A; and @ bails of every other kind A;. This urn will now reflect the

conditionzal probability dlstnbutiun of ¥a given ¥;. We now dmw & ball from this wrn to find
¥,. Let the vealized value of ¥» be j..

. We now take the urn labeled “3°, add new & balls of kind A, in it which makes the total number

of balls in thai urm e be {E_f_[, a; + b), of which (g;, + &) ha]ls of kind 4;, and 2; balls of every
other kind 4;. We draw a hail from the urn to find ¥,

. We cnnt:inue thiz procedure up to the T'th urn,

Mote that all the positive values of g are covered by this approach and an interval of Lhe

negatlive velues. From the urn model formulation (2}, in order the right-hand side of {2) to be
nunnegative, we need &3 — min{g}, and hence

r

ef-  min{a;)

Y a, — minfa}’

Result 1. The observations (Y, ¥s,..., ¥¢} obtained using the Algorithm A1 is such that

{a) The marginal distribution of any ¥, is given by (1).
{t) Here p, = p'™' for p = B/(Y_ a, + &).

Proof. {(a} From Lhe urn model formulation it is easy to note that from the compasition of the urn
‘1" we have

AYi=hH=

F=01,... .k

Eﬁ:u iy '

Again, the conditional probability distribution of any ¥, 7=2,3,...,T, given ¥;_; is

= BICY
PY, = 17 ) =R L)

Traa IR0k @
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whers I[Ir’.j] i3 the indicator variable which takes the vatue 1 if ¥ = and ¢ clszwhere. Taking

fxpectation in both sides of () with respect to ¥, i, noting that E(fi{Y .. /M =AY,

af 5 a2y, the unconditional probability distribuiion of ¥ s given by (1)

(b} Let Af and F be the cxpectation and variance of any ¥, respectively, whers

.
H B +
v e ie) - {Eﬁ{-)’

(e

=jl=

Now, the conditionsl probability distribution of ¥..; given ¥, ¢an be obtained by taking

erpu:talm cver the distribution of ¥y given ¥;. Thus

ﬂ'+bﬂfﬂ
4+ 6P (¥, = IY) “-"“’( Sas

Y =jY)=

Na.th Ya,+b
-, AT ay +B) + by + WY
(- ay, + By

Proceeding i 1hie way amwd taking expectations recursively, we have forr =12, _,

T +¥1Y))
oo+ 5Y
Consequently, the conditional expectation of ¥y, given ¥, is
(X (e + Y1) L ¥ T iKY,
B, 7= T P (2 JII:E:IJr+b}' LY
Noting that E{ ¥.7{¥:,/)] = fP(Y, = ), we obtain
E(Y;Yirr) = E{Y\E(¥ o d ¥}
L i E (T + 8 “)+b'(2ﬁd;}
(g a+b)
Then the covaniance of ¥; and Y.y, is
| (il (T (Ta+ 80" + 8 (0 ) (Ta)?
P Tuwnt = el + 5 - (%)

Py =17 = Tt

_ YA a) = (a1 ai + 5 — (CaME L (o, + by

(¥ (3 a; + b
MNoting thas

a=|
{C+0F-CY (C+DPF" = pr
=

-1
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the expression under (3} reduces to

0
(5e+3) "
vll'j-l'b

Thus the correlation between ¥, and ¥, becomes

cnrr{}",-, ]’:]:Jﬂk:py—n:

with p = /(" ay +5). O

The joint probability mass function of ¥y,...,¥r is

T
_ | _%n ay, + b1, i
P(}.| yl!"'rrr yT]_(ELDﬂﬂ)E( Eau+b )'

22, AR(2} mode!

Here, we wanl lo achieve 0,5, = (8ppy) + 0002}/ 0w + B+ ¢) with oy = 8/(5 . +

b+ o).
Algorithm A2.

L
21

Here, @s earlier, we start with T urns, inttialiy each having 3° 2, balls, a; balls of kind A;.
We draw a ball from urn ‘I to find ¥, Suppose the observed value of ¥, isj,- We add (& + ¢)
balls to the second wn., {6 + ea; /3" @) balls of kind 4, and cey/ 3" a, balls of every remaining
kind A;. Mow this urn 2’ will have a total of (3 a, + & + ¢) balls of which (2; +5 + ¢a;, /3 )
balls are of kind A;, and all the remaining kind A; have (u; + ca;/ 3 ay,) halls.
Here, at the rth tisne point, & balls reflect the influence of Y. and ¢ balls reflect the influence
of ¥y, Al =2, thereis ne ¥,_3 to add °¢" balls to the umn model Hence, by convention, we
distribute these ¢ balls according to the weights of the possible (& + 1) values,

- We draw & ball from this urn to get Y5, let it be f,. From the third um onwards, for any urn

lubeled ', we add (5 + ¢) balls ic the urn, & balls of kind j,_,, the realized value of ¥,_,, and
also add ¢ balls of kind f;_;, the realized value of ¥,_;.

. We continue this procedurs ap t¢ the Tth umn.

Resuli 2. The observations generated using the Algorithm A2 are such that

{a) The marginal distribution of any ¥, is given by (1)
{b) Here

&
S )
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and all other correlations satisfy the racursive reladon

_ . 5P£!'+r-1 + fp.'gi-r—!
P S T b te ©)

Praof. {&) From the above urn model we observe that the wnconditional probability distribution
of ¥ is

ay
¥Yi=l==", =,1,....k

the conditional probability distribution of ¥; given ¥, is
g + bf(]'rlgjj + ﬂ'ﬂj,’rEdn
Y=
AY2=j|Yy) ST
and, for i = 3,4,..., 7, the conditional probability distribution of ¥, given ¥;_, and ¥F,_2 is
V. . . oy G M)+ el(Yi.))
P(Y; = ¥y, ¥ig) = S S

Taking expectations in both sides of (6) with respect to ¥y and in both sides of (7) with respect to
¥, and F,_;, we find that ¥/'s, i=1,2,..., T, are identically distributed as {1).

(&) Clearly, the expectation and vanance of any Y; wilt be M and ¥, respectively. From (7), for
any #4223, taking expectations on both sides, we get the conditional probability distribution of

¥u given Y, as
. + 5P ¥ 1y = 17, Ficrz =i ¥
P(F e =il¥) =4 At LT lf: f;f:( -2 =AYA)

Conssquently, the conditional expeciation of ¥y, given ¥, is
SE( Yol F) 4+ ¢E(F i 0| Y
E(Y,-H|Y,-}-Ejﬂ3+ {Yipril X)) E(¥i110| ]'

Santbhte
icldi

» J=00K (6}

F=0,1,... .k 7

F=01,... Lk

%‘L +OB(T Fur) + BCY: Vi)
Yathte

E(Y ¥ g} =

Conseguently, we find
beov{ ¥, Yo 1} + ceov( Yy, ¥ipra)
Say b+
and hence {5) follows. Using Lhe same technique, one can easily abtain (4). 1T

We can use the recunsion relation (5) to find several correlations provided we know p;. It can
be abserved from (5) thal for any other pair (7,7 + 1) except (1,2}, we have

bty i
Yo trhec’

00"4"[ Y[., }'H-I] =

A1 =
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which also holds for p, if we define gy, =0. ln that case (5) holds for amy (i8):i=
1,2,....,T-1it=1,2,..., T — . Again, from {4), we can argue that (5 + ¢} should be at [east as
large as — min{a;}.

The joint probability distribution of Y,..., ¥ r can be written as

P(T|=F1=-+.,]’r=}'r)=( ay, )(ﬂyz+bf@2=l'11+mr1fzﬂu)

E::l;uﬂu Latbte
» f[(“n +0I =y )+ elly = J’f-z})
=i Eau +h4r

3. Equicorrelstion model

Equicorrelation structures are immportant in cluster analysis, where the random variables have
equal correlation ameong them due o some random effect. To obtain equal cortelation,
{8/ a.+ b, for correlated ordinal categorical random variables we proceed as foilows.
Suppose, in a clustered analysis, a random effect is affecting each of ¥, ¥5,..., ¥ in the same
way. Our object is to model that effect of the random component and obtain the correlations
betwesn any two ¥;'s.

Algorithm A3,

1. Suppose the random effect is denoted by ¥y which is also ordered categorical, taking values
i,k with (¥Yg=/= ﬂjfzau-

2. We start with T urns for generating ¥, ..., ¥'r, each with g; balls of kind A; at the cutsct.

3. If the realized valuc of ¥ is jy, we add % balls of kind A;, in each of the T urns. Each of the urhs
have now (3 a; + b) balls in total, (q;, + &) balls of kind A;, and a; balls of all the remaming
kind A;.

4, Then generate ¥ ,..., Yy by drawing one ball from each of the urns,

Result 3, For the obsarvalions {¥,, Fz,..., ¥r} generated using the Algorithm A3, we have

{a) The marginal distribution of any ¥, is given by {1).
(b} The correlation coefficient between any ¥, and ¥, is given hy

_{_2 )2
Pr= Eﬂu + b -
Proof. {2) From the urn moded, we have for i= 1, 2,..., T, the conditicnal distcibution of ¥;
given ¥y is

. a; + & ¥y,
(Y, = f| o) = 22 T o)

Sath ’
whence taking expectation we get the uncondilional distribution as piven by (1).
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(b) Taking conditinnal expectation of the above, we get
BE(YA¥o) = e+ (Yo, ))

b a+b
and conscquently,

(Ljay +b3/a
e a+b)°

E(Y Y} =

yielding
b
o = Z a& + b
with g, being the corvelation between ¥y and ¥;. Exactly in the same way we find

: r _";_ bP{Yﬁ JlYJ}

and, consequently,
. b b\’
p"_(Eﬂﬁb)P“:(Eﬂﬁb) .

Note that the randam effect ¥y s affecting all the ¥,’s in the same way, and as the correlation
between ¥;'s are thyough this random effect, we pet a positive correlation in this case, which is the
case, in general, in any random effect model. The joint probability distribution of ¥(,...,¥rin
thiz setup can be written as

_ _ _ L s ay. + b{y; = py) dy,
P(f:—ru....,rr—yr)—z{g( T 1b )}ZL,&"

=0 \i=

4. Implemetitation

In thie section, we provide the pseudocodes of the Algerithms A1-AJ in the spirit of Paatero
{1999).
FPrewdacode of the Algorithm Al

1. Initialize the prebabitity distribution of Y.
1.1. Setp“]'—P(l’r—s]—-a,fE 2, 5=0,1.. .k
2. Drawing random sample from ﬂ'ua probability d:stnbuhun of ¥y.
2.1. Find the cumulalive probability distribution of ¥ as QP = P(¥, <9} =30, s =
0,1,...,4.
22, 8et 04 = 0.
2.3, Draw a random number # betwean [0, 1].
24. Forj=0,L,... k if @ <r<Q", then ¥ =}.
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3. Drawing random sample from the probability digtribution of ¥,, ¢ =2,3,...,T.

3.1. Find the probability distribution of ¥, t =2,3,..., T, as follows. If Y, = Z, then p§ =
P(Y =2)=(az +B)/(Tioq+ by and pl = K(Y, =) = a, /(T yar+b) for s=
01,...,k but s 2.

3.2. Set the cumulative probability distribution of ¥, as O = P(¥,<8) =37 o5, s =
o 0,... .k

3.3. Set oY) = 0.

3.4. Draw a random number r, between [0, (].

35. Forj=0,1,... Kk if &, <n< 0, then ¥, =7.

Preudocode af the Algovithm A2:

1. Initgalize the probability distribution of Y.

L1 Set pi = P(Y1 =9 = a,/3 g, s =0,1,...,k.

2. Drawing random sample from the probability distribution of ¥.

2.1. Find the cumulative probabibty distribution of ¥, as QE.” =¥ == EJL,};I}”, § =
0,1,... .k

2.2. Set 07} = 0.

2.3. Draw a random number r; between [{, 1].

24. Forj=0,1,....4k if @, <r <", then ¥; = .

3. Drawing random sample from the probability distribution of Y.

3.1. Find the probahlity disiribution of ¥, as follows. If ¥, = Z, then pg} =PMY,=2Z)=
taz + b+ caz/Sk_a)/(Th oa +b+ o) and P =P(¥: =8 =(a,+
eaz{Y i ya)/C s od+b+ o) fors=0,1,... .k bul s#Z.

3.2. Set the cumulative probability distribution of ¥; as 0% = P(Y,<9) =32, 5=
) I 4

3.3. Set 0™ = 0.

3.4. Draw a random number r; between {0, 1].

3.5. For f=40,1,.. . k. if Qﬁ},{rﬂgg}m, ihen ¥3 =j.

4. Drawing random sample from the probability distobution of ¥, : =3,4,..., T.

4.1. Find the probability distribution of ¥, 1 = 3,4,..., T, as follows. Denote ¥,_; = Z and
Yio=W. If Z£W, set g =H¥, =)= @z + DA oy + b+ 0% il =PY, =
W) = (ap + l:'),f'{z;;u a+b+¢); and P =¥, =5 = ﬂs,f(zjj;u g+ b4} for 5=
O,L,....k, but sAZ, W. If Z= W, set py = P(¥, = Z) = (ax + b+ /(T ya; + b+
&) and p* = P(¥, =5) = agf{ELDa; +bh+epfors=0,1,.. .,k but s Z.

4.2. Set the cumulative probability distribution of Y, as ¢ = P(¥,<5) =50 ,p%, s=
0,1,...,k

4.3, Set ¢ =0.

4.4. Draw a random number £, between [0, §].

45. Forj=0,1,... .k if 02 <r <O, then ¥, =

Pseudocode of the Algorithm A3:

L. Initialize the probability distribution of ¥g.
1.1. SEI‘,PE“] =P Y= J}I = ﬂ',‘."rzj;ﬂﬂj, s=01,....k
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2. Drawing raxdomn sample frem the probabiiity distnbution of Y.

2.1, Find the comulative probability distribution of ¥y as &% = P(¥y<s) = v [y
0,1,....k )

2.2. Set Q% = 0.

2.3. Draw a random pumber ry betwean [G, 1].

2.4. For j=0,1,.. .,k if 0% <ry< O, then ¥y =}.

3. Drawing random sample from the probability distribution of ¥, ¢ = 1,2,..., T.

3.1, Find the probability diseribution of ¥, r=1,2,...,7, as follows. If Yo = Z, then pif =
PY =2 =(az + BN hoq+8) and P =AY =s)=a/Fya+h for 5=
0,k but s 7

3.2. Set the cumulative probability distribution of ¥, as (47 = ¥V, <) = 3, 2, 5=
0.1,....k

3.3. Set QM =0,

3.4. Draw a random number r, betwsen [0, 1].

35 Forj=0,1,... .k if 0%, <r, <0, then ¥, =},

5. Concinding remarks

The proposed models have quite & large number of potential application in problems regarding
multivariate ordinz] data. The immediate applicability of the present model is 10 the analysis of
iongitwdinal data where covariates are not time dependent and also ta the analysis of clustered
data. As our intention is to pravide a theoretical model only, in the present paper we are ot going
for any real dats anelysis. Also the presemt algorithm can be used to stndy the propertics of
different inferential approaches concerning correlated categorical random variables.

Omne obvious but nontrivial generalization could be where the marginal distribution of ¥;"s are
different and also the care where the number of categories can vary for different ¥,'s. The present
method cannot be directly applied in that situation. The situation is under study aml we hope 1o
pursue some resulis in a [uturc commumication.
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