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QUANTUM STOCHASTIC FLOWS WITH INFINITE
DEGREES OF FREEDOM AND COUNTABLE
STATE MARKOV. PROCESSES
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SUMMARY., Quantum stonhastic flows are consifucted for infinite degreea of freedom,

The theory is then used to show that a classieal epuntable state Martkov provess cen be looked
upon a&s one fch oommutative stochastie flow.

1. TwTRODUOTION

The concept of quantum stochastic process was introduced by Aceardi,
Frigerio and Lewis {1982} and a construction of a quentum stochastic flow?
gatisfying a gquantum stochastio differential equation was carried out by
Evansg and Hudsen (1988) sand Evana {1889). IHowever this construetion
was achieved mnder two restrictive hypotheses—firstly that of finite degree
of freedom for the neiso space and secondly that of boundedness of the strao-
ture maps on the algebra of ohservables of the asystem, Here we build &
theory of quantum diffusions removing both these restrictions ie. with a
sountably infinite degree of freedom for the noise and replacing the hounded-
ness of the structure maps with suitable strong summability hypotheses on
them.  In the last section we apply this theory to the case of countably infinite
state Markov chain and show that they can be understood as commutative
quantum {classical) stochastic Hows over the commnutative algebra of
functions on the state space. This extends the previous studies by Meyer
(1989) snd Parthasarathy and Sinha (1990},

2. NOTATIONS AND PRELIMINARIES
All the Hilhert spaces that appear here are assumed to be complex and
separable with scalar product << ... > linear in second variable. For any
Hilbert apacs A& we denote by I' (4} and &{.#) respectively the boson Fock

AME closeification » S0HI9, 446L50, 81199,

Koy words and phrases : Quantum stochaatic process, Quantumn stovhestic differentisl
eguation, Markov processes.

t Though the phrase “‘quantam diffusion™ has often been veed in the paat, it seems theb
“quantum stochastic fiow” is more appropriste in snalogy with the terminology used in the
theory of ordinary differential equations,
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gpape over A and the O%—algebra of aB bounded linear operator in g
Lot A4, and A& be two fixed Hilbert spaces and we write

'jz = LE [ﬁ-i-} ®wl

ﬁz “'ﬂﬂ @ P(‘ﬁ]' ey {2.1}

For any fe A we dencte by e(f) the exponential or coherent vector in Iy
associated with f and by & the set of all vectors of the form « Relf), ue K,
fe A Also we adopt tho convention of writing ue(f) in place of x® e,(ﬂl

Note that & ia total in :‘2

Woe fix an orthonormal bagis {e}2, of K and set: B =| ¢ =< g3, i
The basic quantum stochastic provesses of the theory are

(Al a @ EB) , i1
dxpa®e) , i >, j=0

L
i o, ®ep) , i=0,5>1 - )
L ¢l , $=4=0.
The guantum Tto’s formula gives :
dAEAY = 8ldAE, 4.5,k 12 0 . (2.3)
where H=0 ifi=000i=0 o {24)

— & otherwise.

For further details on these definitions and quantum Ito's formula the reader
is referred to Fvansg (198¢) and Hudson and Parthasarathy (1984).

Definstion 2.1 : L ={L{{s)}i ;0 is said to be an adapted square inte-
grable family of processes {(w.r.t. Af) if they are adapted and satiafy for each
§320, > 0;:

5 jubjts} wel )| dugls) < oo, Y

=0
whero

) = § (SN, S A G LN @ K o= N, H)
being looked npon as f = {f(s)|f(s) ¢ A3, ¥ a dense subsst of A

We need to ocousider quantum stochastic integrals of the type I

Li{s)dAY(s) and the next theorom sums up tho resalt on their existence and
their properties. We denote by fi(s) = << ¢;, f(a} > and fils) = f(s) foz
j>1 and foe) = f{s) = 1. We also ohoose & = {fe K|f(}=0 for ui
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pxcept finifely many j's} and for a given fe .o, set N(f) = max {j fi (.} # ¢}
Sot & (A} = {ue(f)|we Ay fe o)

Theorem 2.2 : Suppose L = [Li{s)} ¢ an adepled square imtegrable
operator family defined on &. Then X{l) = j ”E Lﬁ{s}dﬁ:ﬂa) exists in the
4=0

sirany sense on &{(H) and defines o regulnr adopled process sntisfying for w, veH,,
f.ge i

?
< uelf), X(Evelg) > = u]' s HE ﬂ.ﬁ(ﬁ)g’{ﬂ < ue(f), Lifshue(g) >, ... (2.6)

@
X (EJuelf ) < 2 exp {‘“f(*DHE [ Z |E{s)uelf)[Pdvsle). - (27}
§=0 0i=D
If L' = {L# (s} i3 another adapted square-integrable operator family and
XW)=] I Lt {(8)dAS (s), then
0430

3
< X'(tyus(f), X(t} ve (g)>> = £ JS{ jguf:{s}g’{fs}{ << X'(s)uwe(f}, Lj (s)velg) =

+ < L (shue(f), X(s)velg) >
+x§1{ Li¥(s)ue(f), 1 (s)velg) > }.

The proof is similar to that of Theorem 4.3 in Hudson and Parthasarathy
(1984) and Theorem 2.1 in Parthasarathy and ®inha (1988), The second
part is the quantum Ito formala.

Now suppose Lie &( 4}, % 5 > 0 and that for each j > 0, there exist
congtants € > 0 such that

D EuiP s OF| w®forall ue A - (2.8}
£ =0

Note that
:13 @ IR IP < GGl 9 [ for all yre A - (2.9)
Then we have
Theorem 2.3 : Let Lii, j »» 0) satisfy (2.8). Then there exists 0 unigue
reqular adapted process X = (X{f), 0 € t & T} aatisfying :

AX() = [ B I m(:)} X, X(0) =X, e (4. ... @10
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Proof : First we set up the iterative achems :
Xnh=X

[
Xl =xt | I LXK, szl .. @
and show that
EAOSS SG T P L STy YO
where S0
BAT) = 2 oxp fuylT] j_é; aj. . (213)

Note that X, is well dofined by (2.8) snd Theorem 2.2 and it is also eaay

to verify (2.12) for = = 1. Suppose that (2.12) is verified for 1 € n g k.
Then it follows that

X x{Byme(f)l < Const. [ Xl [al] llelf)
50 thet Xz, is well defined by {(2.9) and we have by (2.7

11X saf) — X (] 6 (] < 2 exp [y (TY]
Nify ¢
< 3 [ - Xl (Didyle), - (214
which by (2.8), (2.9} and the induction hypothesis is
N 4
< 2explyM] [ = OF] [ IXele)—Xis(8)] e (DI oy (5)
=0 0

ﬂr(T}”

[ £+ 68 &y @] I PP

leading to (2.12). From (2.12) i% easily followa that X(i)ue(_fjas—lirm X 8 we(f)
n m

exists for all 4 ¢ A, f e 4 and defines & regular adapted process. That X {9

satisfies {2.10) follows easily from the above estimates.

Finally agsume that there are two solutions X and X' satisfying
X(0) = X{0) = X,. Then by {2.7) and (2.9} we have

X @)X (#YJue(f)|® « Const. :F_ [ X{8)— X" (&) el £}y 6}
By iterating n times and observing thet by virtme of (2.12), {X{Eree(fl:

| X" (Bme(f)i both are uniformly bounded in 0 < ¢ < 7, and leting #n—
we conclude that X = X’.
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Suppose Ly(i 2 1), 8} i, § » 1), H ¢ 8(A,) with H self-adjoint patigfying
B ol < Ofulf for all we A, .. (215)

T S8 8= 88 =4
S Ez1

Observe that the series involved in the second part of (2.15) converges in
gtrong operator topology and that if we designate § — {Sf} in A, @ 5% in
the matrix vepresentation with respect to the canonical bagis in ¢, then this
implies the unitarity of 8 in A, & . Now we make the following identi-
fisation

(S if 14,4
I if 1<4,j=0
L = 4 _FI:EL LSt if 1€4,i=0 .., (2.18)
rm_%kgl Ly if i=j=0.

o

That ¥ L, Ly converges strongly is not difficult to see from (2.15) end the
convergence of T L 8% follows from (2.16) and Lomma 2.4, 'We also observe
that the above If's satisfy the following identitics :

LALPt 3 Of = I+If+ B LI =0, . @1
=1 k=1
The necessary convergences in {2.17) follow from (2.15) and Lemma 2.4.

Lemma 2.4 ;. Suppose {4z} and {Bi}, & 2> 1 ure two fomilies of bounded
operabors in K, such that X Ay Ay ond B B By converge in strong operotor

izl Exl

topology. Then T Aj By also converges in strong topology.
@1

Proof : Lot w, v Sy Then 3 lzol* < O Joif aod 3 Bl < Yol
Thus for n > m

<0 B 45> "< ( Bk 1B}
Emm m

<E et £ uBolt < O B _1Buul?
" |<v % AiB>| " '

2 4Byl = mp —2=5 < Oy 2 |Brf?) = 0
el . o ko

a3 1, n—r 00 snd henece the resnlt.
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Theorem 2.5 : Let {Li}, 4, § 2 1 be as in (2.16) with (2.15) sabisfied. They
the quonium stochastic differential equation :

v = { ;‘-’-M Ly aAnYUE), U0y = 1 o (2.18)

has @ unique undtary operator vabued process as a solufion.

Progf: From (2.15) and (2.16) it follows that I} satisfies (2.8). Thus
by Theorem. 2.3 existence of & unique solution follows., The unitarity is an
sagy oconsequence of Iio’s formula (2.17) and the proof is identical to that
of Theorem 7.1 in Hudson and Parthasarathy (1984).

3. QUANTUM STOQHASTIO FLOW
Lot A4 be a unitale-subalgebra of &(A).

Definition 3.1 :  As in Aoccardi ef «l. (1982) and Evans (1639), we define
2 quantum stochastic flow on ¥ as & family {Je, # 2> 0} of identity—preserving

«-homomorphismg from A into &(A) satisfying for X6 A ;
(1) jfX)=2X
(2} g (X} is an adapted process
{3) there oxist structure maps pf: A= A ; 4, j > 0 such that j(X)
satisfy & guantum stochastic differential equation :
GfX) = I HuSX)NEAK). . (3
Li=0

As in Evans (1089) it is easy to verify formally using Ito’s formula thab
if such a {j} existe then the structure maps have the following propertios ;
for =, ye A,

{1} g} ie linear on A

(2) ml)=0 o (B2

(3) pf (X) = g (X*)

4) &Y} = g (X)Y+Xp} (F)-+ 321}4[31#}' (7).

Our sim is to construct a flow given the structure maps uj satisfying
{3.2). Clesrly wo necd some summability condition to make sense of the

structure equation (4) in (3.2). We give one such condition which, for finit
number of degrees of freedom ¢ and j, reduces to that of Evans (1989).
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Assumption 3.% . In addition to (3.2), we suppose that for emch § > 0
there exist comstants a;>> 0, a ocountable index set 4 and a family

{ }Jﬂjﬁﬂi.&,] such that for all ue A, X e A
I (X< T XD,
a2l ‘EJj
where .. (8.9)
oo 127l <
by

Remork 3.4 : Note thet with sssumption 3.2, the structure equation
(3.2} now males rigorous sense by Lemma 2.4 since the sum on the right hand
side of (4) in (3.2) is of the.form bE . X pH( 1) =.=,-E B XY (Y.

= =1

The construction of j; in such a case is essentially along the lines of-the
proof of Theorem 2.3. Beforc stating the theorem we need some notationa.
Notations : We fix fe . Then for 4 ¢ A, X e A we st
BN, wu)=|Zul?,

¥ 1
KX, w) = [ 207" = XD'® pie1 _p's ph -w" . e (3.9
i } [ ] ﬁgnﬂf&.l};,fkéﬂml‘ In = I o h1
0 kL n
and,

RAT) = [ ze"f"*"-"] g

i=
By virtue of (3.3) we note that

ol o (B:8)

vy (T L . .
[zef ]wﬁ”mﬂ}n}w}{m u) & KPP (X, ), e (3.8)
m LY
K X, u) < [T X[ Jjne] % e (3.7)
A]ﬂﬂ wea act . K} (.E ﬂ-} }k
and sp X w = £ S5 B 8

- " [EATY* i T)¥
A%, W = Im &0 (X, 0 < | 3 LGS B Lo I e . (28)
Theorem 3.5 : Let the atructure maps g} : A—r A saiisfy (3.2) and (3.3).
Then there evisiz a constructive quantum flow {§, ¢ » 0} on A sftisfying (3.1).
Furthermore the map (¢, X)— ji{X) is jointly continuous in sirong fopology with
respect ko the strong topology in A B(A,). Alan jy sotisfies the estimade.

Wil uel IR & SAX, w)le(FHI* v (8.9}
A 1-7
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Weo begin with a series of lemmas concerning structurc maps sabisfyin g
(3.2) and Asgumplion 3.2.

Lemma 3.6 : For Xe A, there exist reqular adapled processes jO)(X)

g FUE) =

t
PO = X4 [ 5 S EEA e 10

such that for we Ay, feoll, 0 < 1 < T,

L@ el LR oy

and
X )ue( NI < SPLE, w)]e{f). - (3.12)

Proof : The proof runs along clines identical to that of Theorem 2.3 and
go we avoid giving/details. The inequality (3.11) is obtained by the method
of induction starting with » = 1 for which it is immediate. The inequality
{3.12) follows from (3.11) and an application of Caunchy inequality :

LX) < “ 3 [ E) I8 el ) u+uxwf}st)”
3 (KD, 9P .
< [ 3 L e | e
< 8P (X, wielIR.
Lemwa 8.7: For sach X e A, j5 (X)ue(f} = s-lim J9 (Xhue(f) exisls ond
o1
defines @ regular adopled process on K, ® &(H). Purthermore,

(1) llde (X) we(F)* < 8y (X, %) [leff)I?
< ofy T X faell® {ieCFH2, e (8.13)

o Ef(TP 2 p(T)n
af, 1) = | B 20 £ 2R,
i

@ Dy~ O neipl < 3 [ ELEDEP gy o

where

(i) 4, satisfies (1), (2) and (3) of (3.1) ;
(v} (& XY 4e (X) uelf) is strongly condinuons with respect io the sivong
operator topology of AC B(MH).
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(V) Je 8 +-preserving as a form on Ny @ &(HK) t.e. < velg), (X" Vuelf) >
#{:jg (X} !.!B{g'], 'H-E[f)} "ﬂ"' &, '!’Eﬂn and fr ge .

Proof : The existence of strong limit of 7(X) we(f) follows from the
summability of the square toot of the right hand side of (3.11) by virtue of
(8.7) while the cstimate (3.13) is an easy oonsequence of (3.8) and (3.12),
Similarly the inequality (3.14) follows from (3.11).

That ji (X) is linear in X and satisfies {1} and {(2) of (3,1) is i int
from the construction of j.. To show that j¢ (X) satizfies {3) of (3.1) we note
that by (3.10) and {(2.7)

NECTS S e T Y P |

< 2 UdX) 7 (X)] wel fif?

vlt) L sn—1) f ol ]
+de Eﬂ J03eGots (X050 (o (X)) welF)* gl

which converges t0 2ero 88 #— o0 by (3.14),
From {3.11) and (3.4) we have that for X, Fe A

VAZ—Frualf)ft < e (£ L)

& [2exp (AT in 5 ona
}:’ E T z X_ D Ty D
Lo R

which proves the gtrong continuity of the map X-— j; (X)ue(f) with respect
to the strong topology in _# (. & (A, by virtue of the second part of (3.3}
and an application of dominated convergence theorem. The continuity of
the map f— j¢ (X)ue(f) follows from the differential equation {3.1) satisfied
by 7 {X) and from (3.8), (3.13). These two ohservations together yield {iv),

Clearly j® (X" =40 (X*) for » =0, Assume that j*D (X%
= ji-1 (X)* for some n in the weak sense ie. < welg), "0 (X ue(f) >
= < jiF0 (X)velp), ue(f) > for u, ve A, f. et Then by (3.10), (2.6},

(8.2) < velg), §P (X"Yudf) > = < Xoelg), welf)> + <welg) | 2 jr

L0
(XN Adue(f)> = < Xvelg), uelf)> -i-{ ds ‘Ej gite)fie) << F W (X)) ve (g),
we (f) > = << JX)we(y), uelf) > ond passing to the limit we have (v),
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Temma 8.8: j; i muliplicative on 4 as & form on M@ & A ic,
Jor X, Ye A; u ve ko [ g6t <udf), i (X¥)relg) > = < jd X }uelf),
J4 T elg) >
Proof : The proof is by induction and iz different from that in Evans
{(1989) For this we set for fixed f, ge #; v, v6 44;: X, Ye A
R (X, u) = 8 (X, u)

RO (X, up= T R (X))
i, Me R N{f)

First note that by (3.4)—(3.8), the above sum is well-defined and furthermore

B (X, 0) < oy 2 ) "NXIR pu, - (@15)
Jeet

where op(T) is as in (3.13).
Set for # 22 0,
BYE, Y)< FP (X uelf), 5% (Y velg) > —<<ue(f), 79 (X T)velg)> ... (3.16)

with §¢ defined in (3.10). Then we claim that

B (TR o ()
1B &, 7)| < & 2t sl X, Y, v g

+f5¥"L (T2, 9; X*, u,;’}*} . (817

where

»(T)= max {¢(T), vy (T)},
#alf) = [ [(1+1|.f{ﬂll|’(1+flﬂ(ﬂ}lls}]*ﬂfs _, X ) Y, 0,9)

= [zﬂ'f"*"’]-*?"fx,fﬂ**?‘" @, u}R‘f” (¥, oelNI? el

{3.18)
and the second summation in (3.17) is over ¢’z and j’8 subject to the
condition &, =F =1, 1 <éthr 2 for 2 rag k.

For # =0, it is eclear that BY (X, ¥) = 0 and hence satisfies (3.17).
For », we have by an application of Ito’s formula, (3.3), Remark 3.4
and Temma 37 (iv) that

B (X, T) =£ ,“E Filygta) (Bir=D (X, sl{ V)-+- B (uf(X), T)
s in t.ﬂ'il

+ B B (af(X), sf(T))ds +BP X, T)

ha]l
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where
R = [ s Fulelghe) { < LEOOE =" VIuelf), 50 (P et >

+ < g X elf), [T )00 (Veelg) >} .. (3.19)

By (3.11), (3.12) and application of Canchy-Schwartz inequality it is cady to
seo that

[R® (X, )| < {{E (X%, )BT, o) -+IES( T, o) B (X%, w)li)

(T
AL et . (320)

Thuy for » = 1,

B (X, ¥)= R{" {X, ¥) and eagily van be seen to satisfly the estimabe
{3.17) with » = 1 by virbue of (3.20). It is easy to verify for any fixed ¢; ... &
f1--de; 1 < ks n the followimg

fds B (] 1gMn| € (X, w1 T, 008 < G
0 uﬂiﬁN{Q
Dgig ¥
(X, 0.1 T, 0, g lth - (321)
(ds = 'k (3(X), Y, v, o)t < 6L ¥
fde B [f] 10| 6 G, w5 T 0 0t < GG
ﬂﬁjﬁﬂg
(—Is Ty I ; ¥, 9, E}Vf,y(‘}: nes (3..%2]
Al
[
[ ds [Pl igte)} B G G, ., ), 0, 0
P “ygieng
< GV Ew f 90 g ) . (3.89)

Next assume (3.17) for (n—1). Using trisngle inequality in (3.19} and.
the estimates (3.20)—(3.23:, the estimate (3.17) for B }X, T) can be verified
and then (3.17) is established for all n by induotion.
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By (3.5), (3.7), (3.15) and (3.18), we have

|G3.

WAV RS ALY}

< JIX R )R el leIP el aolT) (Sady™s 20 [R5,

. NN
< (At (2 ) ¥ [ 2 o) Ry

1

xin Nif)

& {.. 3z, (T) ( Inax { af, ;51 ok, 1} )“’ K Ty

=
§=1
Thus by (3.17)

B B a,ﬂ""ﬂbk
|B™ (X, ¥)| < Congtant ilkh’{ﬂ—k%—l}! )

where
e Nefy
¢ = VATHEAT), b = B(T) max { 3" af, KT), K1), 1},
&4 = % 1
7 \]
t?lkf Vin—E+ 1)1 < Jal (a4-b)*— 0, we conclude that B™ (X, ¥)—> 0

a9 #~=>» oo and we have the desired result by appealing to Lemme 3.7,

Proof of Theovesn 3.5 : Agrin Evans (1989) we first claim that the weak
multiplicatively of j; a5 shown in Lemma 3.8 and (3.14) implies boundedness of

j{X) in K for every X ¢ A ond in fact contractivity of j; map. This result
allows us to conclude (i) strong convergence of j{(X)in A 98 n—» oo (ii} strong
continuity of (f, X)— j(X) {iit) [H(X)]" = 7{X*) for X ¢ ¢ from Lemmma 3.7
and that (iv) 5 is a homomorphism of 4 into &(4).

The next theorem shows that if we have a classical aystem of observables

Le., if A i3 & commutative s-subalgebra of &(.A;), then the corresponding
gunantum flow is also commutative.

Theorem 8.9 : Assume the hypotheses of Theovem 3.5 and suppose fur-
sherimore, A iz commulative. Then for X, Ye A ; 8, ¢ 2 0
LX), 3(¥)] = 0.

Proof: Tt ip identical to that of Theorem 2.2 of Parthassrathy
and Sinha (1900) with # = max {N(f), N(p)}.
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4. APPLICATION TO MABEOV OHATRS

Consider a counbably infinite state Markov chain. Aasin Parthasarathy,
and Sinha (1620), let @ be a infinite group acling on a separable o-finite measgure
space (B, &, #) so that u ip guasi-invariant under @& action, and define the
unitary representatiom 8, of & in I*p) by

(Sg0) (X} = +/ —gi- (g1 Dulgt =), u e L¥p). o (1)

where p, (B} = p{gE), Fe . Lot m he & complex bounded messurable
fanction on & % &2 and let A = L, (), the commutative w-subalgebra of mul-
tiplication operatorsin & (L¥u)). For a countably infinite set ¥ (G & indexed
in eny suitahle faghion by # the set of natural numbers, we st — S;S“ and

Ly = Symy, e {4.2)
where ny == m,, € Lo (B}
In A= Lit) @ T(L(R,) @ Ly(F) =~ L¥p) @ T (@ LyR.), wo write

dAY = dt, dA} = ddAF, dA, = dd;, dAf =dAy & (i, §> 1), with respect
to the standard basis of I,

The guantum sfochastic differential equation :

aw =[ > {{L¢ dA;T—HSf,—l}dm-—L:S;dA;-—; 'L dt}]ﬁ? e {4.3)

with initial value W{0) == I has a unique nnitary solution by Theorem 2.5
if we assume that B L'L; = Z|my|® converges strongly, If we now define
i i

#i{X) = WiErX @ I W) e (44)
80 that 3(X;) satizfies
d, (X) = {3 S UE, L) dAF 455 X 8i—X)d Ay
HillL;s Xg, dAG-Hid LX) &, e (45)
whers
1
&%) = SIX L~ 5 LLE—y XL, . 49)

X e A We observe that the series in (4.6) converges strongly by hypothesia
gtated above and by Lemma 2.4 and in faot shows that L is & bounded map

on A with LX) < 2Xif [% Lt L.
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Noxt we apply Theorem 3.5 directly to {4.5) ta get o quantum flow. For
this we need only te verify {3.2) and (3.3} for struoturc maps. ¥or
X e 8 (Ly () we nots :

piX) = 81 [X, L], (X)) = (X" = [Ly, X184

HIX) = (S7X8—X)3(5, 5 » 1), X}y = LX). ... {&7)
Now, 2 |#§(Xhi® < 1N §XulP+2l| X Lyw?, where we have written
i }=§ﬂﬁ.
Forj> 1,

Z I E i = e E W < 2AZ-+2 X Sl
Finally as we have already remarked, by Lemme 2.4
1 1 i
o8l < 5 M el | X 2ot A (5 )X L )
Thus (3.2) and (3.3) are easily verified.

Thearem 4.1 : Let X e A= B(Ldp)), and let pi be as given by (4.7).
Then there exists o family of contractive adapted processes [3X), ¢ > O} satisfy-
ing (4.8), Furthermore, eack 3; is o «homomorphism of A and (¢, 5) — jiX)
i8 strongly continuous with respect to the strong operator topology of A.

The proof of Theorem 4.1 follows from the verification of (3.2) and (3.3)
and an application of Theorem 3.5.

Let &7 be the state space of a countably infinite atate continuzoua fime
Markov chain and let pdw, 3} (@, ¥ ¢ &) be the stationary transition probabili-
ties such that:

mm=%ﬁmmmu e (4.8)

Then f(z, ) > Cife %2 yand X Iz, 9) =0 We now realize this Markov
ye 2
chain as a flow. Pub any group strueture on 97 so thet ¢ = 4, g ia the
oounting measure and & acts on itself by loft translation. Set
moly) = v, 4) iz = ¢
=0 otherwise . (49)
As in Parthasarathy and Sinha (1990), the structure maps can be compuied
for ¢ € Loo(p),
(D)) () = m{y) [Plaoy)—p)iuly).
(3(P)e) () = [Ploy}—dy)Iuly)

(#2()e) () = m, () [ay)— Dl heles),
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and iom) () = 2 |m@)]® [Play)—d@luly). ... (4.10)

T e g7
The following theorem sums up the resulie in this case.
Theorem 4.2 :  Let the Markov chain be described as above with sup | Uz, x)]

e &0
=d <0, and led g F= Lolp). Then {§ild), t > 0} is a classical (commau-
tadive) conbraclive, strongly continuous flow satisfying

@) = I {ug(@))dAF +502(d)dAS
xe &L

HHIBNEAY P, .
with j$) = 9- | ‘ ’

Proof :  We have only to verify the strong convergence of 3 |m,({.)|? and
appeal to Theorems 4.1 and 3.9. TFor w ¢ Ly(x). :

<% I [m()[*u>= X I Uy zy)|u)|?

re. e ye D
= X [ I Uy epliely)i?=— Z Uy o)|epl®
pe ) vEs ye
< & [l

Remark : Note that the condition of Theorem 4.2 is also sufficient to define

the generator £ us a bounded map where L (g) () = T (=, ¢) ¢ (¥). In fact,
yel

1€6) @) < E e DG + U 2] [$00)]

< 2 sup |z, 2)| [I¢ie-
®e L
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