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SINGLE SAMPLING LTPD PLANS AS A STOCHASTIC
PROGRAMMING PROBLEM

By T. K. CHAKRABORTY
Indian Stalistical Institule

SUMMARY. Inthe lot tolerance percent defective {LTTD] singla sampling atbribigg
plan proposed by Dodge-Bomig {192)) the procces average and the LTED oannot be known
precissly. Thess two parameters are asqumed random variables an that the Dadge-Eomig
problemn becomes s stochestic programming problem. Two chanee constreint programming
models are developed. Solotion methoda with nmmerienl examplea are provided.

1. IBTRODUOTION

We congider 4 producer’s final inapection of a series of lots of size N, under
the production process where each lot retaing its identity such sa lots of
electronio equipment for & large computer or & missile. In designing a gingle
sampling attribute plan (85P} for acceptance inspection, it is assumed that
the producer knows his process average p,, under normal manufacturing
conditions and that he oocasionally produces lots of bad quality. He may
theiv seleot lob toleramce fraoction defective (LTPIM, p, say g, > p, ond
& rick P(py) = § of accepting the lota of this quality where P(p) ia the
operating characteristio of the SSP. The Dodge-Romig (1929) LTPD S8P

with total ingpectic n of rejeeted Iots iy to find the sample size n and the acoep-
tance number ¢ which

minimize I(py, 7, ¢) = n4-{N—n) (1—Pip,)) v {1
subject to P(py, m,¢) = f SR
and n, ¢ 3 0, inbeger. .. (8)

We note thab the sbove optimization problem (1) through (3) is & nonlinesr
integer programming (NLIP} problem,

In the above problem, the decision maker {DM) assumes p, and p, 9
determinigtie, However, in practical applications, p, and p, cannot be knowo
precisely but can be stated only in cloge range from the experience of the DM
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Ko these two parameters are assumed random varisbles such that the Dodge-
Romig problem hecomes & stochastic programming (SP) problem. We shail
congider two types of the stochastic version of the objective function (1} and
develop solution procedures for both the type of the problem. To the besk
of our mowledge, this approach to design 83 haa not appeared im the liters-
ture. However, for applications of programming techniques in designing
S48Ps, see Chakraborty (1986, 1089, 1990).

We shall restrict onr dizewssions under Poisgon conditions, see Hald
{1981),

2. STOCHASTIO PEOGRAMMING FPREOPLEM

Dodge-Romig LTPD SSP when the parameters p; and p, sre amsumed
random variablea is & NLISP problem and may be formulated, under Polsson
conditions, as

optimize I(py, 7, 6} = 0+ (N —n) 1—G {c, npy)) v (4)
sabject to PriP(p,) s, 1 » 1—¢ o (B)
n,6 » 0, inb eor (B)

where 0 <7 & <7 1.

The objective function is usually assumed to be the mean of the stochastic.
objective function, The constraint (5} ia known in the Jiterature as the chance
consiraint which was first formulated by Charnes, Cooper and Symonds
{1958) and by Charnea and Cooper {1959).

Tollowing Kataoka (1963), we shall consider a second versiom of the
Dodge-Romig problem with the objective function (for a real numbers & and
0 < &< 1)

minimize | Prilipnm, 6) € 6 3 &) )

sabject ta (5) and (8).

2,1, Deterministic equivalent of the chance constraint. It 18 eagy to Bee
that the constraint (5) is equivaient to

Pr{p, » mg ()fn} > 1—e. - (8)
Weo agsume p, follows the distribution F,_ ¢z} and let pg be the greatest value

such that Fﬂﬂ {pg) = €, so that from (8) we have

Theorem 2.1. The chance constraint (6) ia equivalent lo the deferminisiic
constraint

P: > mglclin e {9)
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2.2. Hupestalion of the chance objective function: Normal distributips
cose. We assume p, follows N{g, o?).
nigrd

2

Lemmsa 2.1. Eg{p)) = ;ﬂ:] e “(ﬂ# )E;I N(p —ng?, o%) v (10}

Proof. E{g(p))

4 4]
[ ol e 2= dpy
e . |

1 2Py (a0t} ptdnpo 4 afet - npod - wiet)

!
%
<

Py

) [ﬂj': ‘Pi,\/l e_ﬂ%" (P —(p— e

2nc

i |
=) By, N(p—not, o¥).

Theorem 2.2, The expected value of the chance objective funcdion (4) under
normaol distribution of p, is equal lo

0 7 — [ e —
N—(N—n) :-Eu ol ( T) Ep, N{p—no?, 62) . {11)
Progf. TFollows from Lemmea 2.1,

Remarks. Tho r-th moment g, of N(z, o2) can be obtained from
Bain, {1969)

r
: L gar-l (Br—1) 1 {u)*
#Ir""']. - El (2'5“"1} ! (r'—"ij 1 Zr_i 1’ T — 1. 21 3‘|r- - {lﬂ'}

. _ r {w}]ﬂﬂi
b= T =LA e ()

Bete distribution case. We assume p, followa Beta distributien
Ba.(py, 8, t). Also gl = z(x+1)...(x+r—1).
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ny = g T g [r+ax]
Lemms 2.2, Efﬂ@1}}=‘ﬁ3ﬂ{—1]“ag_]_—ﬂ"m . {14)

Proof. Bgtoy =& CE g1 Lo gy,

= Tae 1 P Ay dpy

TG | (1wt T it

Theorem 2.3. The expected value of the chance objective function (4) under
Bela distribadion of pq is equal to

FE o nriz slriel
IR AR I ) iy e B w2 B e (16)

Proof. Follows fram Lemma 2.2,

2.3 Delterministic eguivalent fo Kateoka objective funclion. We note that.
Iy n,0 Lk
@ A (N—n) (1—Gle,np) & &

< 1—Gle, npy) % H = ¢ {say)

<+ Py & Myyle)n. e (18)
We agsume p, follows distribution Fy () end let p) be the loast value mnch

that F, (p1) = &, so thab from (18) we have

Theorem 2.4. The probabilistic statement Pr{I{p, n,0) Sk} > a 18
equivalent to the delerministic slatement

P1 < My (c)/n. e {ID)

3. BorUrioN METHODE
3.). Bxpected value objective function cose. When p, is sssomed N{n,, of)
and p, is agsumed N(g,, 0f) the deterministic equivalent of the Dodge Romig
problem is to minimize (11), subject to (8) and (6).
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(iven g, ory 8nd ¢, one can find pe from standard normal table, Now
for ¢ = 0,1, 2, ..., the values of m,(c) can be obtained from Table 1 of Halg
(1981) and hence for each ¢ = 0,1, 2, ..., the corresponding value n iz sbtained
from (9).

Now for oach pair of {6, ), the {unction (11) i3 evaluated and by enamer.
ation the optimum pair (s, n) is found out.

Eoample 8.1. We congider the probabilistic version of the example given
in Hald (1981, p. 101)

N=2000, fB=010, pg =002 o =000l,
ey = 010, 0,=0002 and &= 0.065.

Solution. ps = pa—1.645 Xy = 0.0867. From Table 1 of Hald (1981),

_ . 5.222 ‘
weo obbtain the pairs (o, ). Fore—=2,n > 50667 — 00-04, so integer n = 56,

For this pair we evaluate {11} and obtain 255.24. The values are tabulated
in Table I below.

TABLE 1, OPTIMAL STOCHASTII LTPD FLAN WHEN PARAMFETERS
FOLLOW NOBRMAY. DISTRIBUTIONS

|

0 n B0, np;) Bl{p))

2 58 D.BE7AR1 25b.24

3 70 0.04513 176.90

5 96 {.08502 122.41
"'E 1089 008271 122.7¢

7 132 0.99525 130.02

The obtimal solution is » — 100 and ¢ = 6 with E(I(p,)) = 122.79. The
determinigtic problem has the corresponding solution » = 83, ¢=5 and
I{p;) = 114.

When p, is assumed Be(p, 2,, £;) and p, is aggumed Be(p, 85, i;), the solu-
tion procedure is modified accordingly. However, for praciical problems,
the shape parameter 2 is required o6 be greater than 20 and # is required to be
greator than 200. In this oase p; oan be found by approximate formulas
accurabe enongh, but evaluating (15) is very difficnlt since the function oon-
vergen very slowly.

3.2, Kalaoka-type objective function cage. When p, is assumed N{g, o3}
and pg 1s assumed N(ug, 08} the deterministic equivalent of the Dodge*Rﬂij
problem is to minimize k, subject to (17), (9) and {6).
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The solution can be obtained by adapting the procedure of subsection 3.1.

Ezample 8.2. Bame a5 Ezamyple 8.1 with on additional parametor
[ ﬂiﬁﬁl

Solution. As in Example 3.1, we obtain paira of {6, n) satisfying (0) and
(6). The value of p] is obtained ag 0.0216 and for each pair of {¢, ) we find
the minimum & aatisfving (17) and hence caloulste minimum & = (N —n)d4n
for the pair and hence obtain the optimal (», ¢}, The values are given in
Table 2.

TABLE 2. STOCHABTIC LTFD PLAN OF EATAQOKA TYFB
OBJECTIVE FUNCTION

e i minimam é minimwm b
2 56 1.1224 204.38
3 T Q.0872 168.70
5 'Ll 00104 132.04
g 1% O, 01045 128.81
7 1% €.0058 132.52

The oplimal solution is n == 109, ¢ = 6.

4. EFFECOT OF VABIABILITY AND CONMCLUDING REMARHS

In & production process, the parameters p, and p; cannot be known pre-
cisely and it is more appropriabe to sssume them ss ramdom variables. If
the variability of the parameters is also taken into account in the model, then
the DM will be more confidenrt that his ultimate objective of sending very
few bad lots to the market will be fulfilled. The effect of variability of the
parameters on the expected average imspectiom is presented in Table 3.

TABLE 3. EXPECTED AVERAGE INBPECTION FOR DIFFERENT VALUES OF
o, and oy 3 N = 2,000, g, = .02, 2y = 0,10, § = 0,10, 8 = (.08

1 0.000 0.001 0.002 0.003

Ty "o By n o EI) = ¢ BIy =» o Bl
0000 93 5 11569 93 5 1163 83 B 1176 63 &5 1195
0.001 95 5 1202 96 § 1206- 95 & 1219 o6 & 12490
0.002 98 &5 1224 I0p & 1228 109 6 1288 10 6 1254
0006 6 6 1328 Ils 6 1881 115 & 1843 115 6 1393

w L
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From Table 3 it is seen that for smsall variability of p, and Ps, the
increase in the expected average inspection is insignificant for practical appli-
cations, We may note that the classical Dodge-Romig model is robust in
the gense that even for sbating the values of p; and p, reasomably produces
near optimal plany. Bince it is well known that the deferministic Dodge-
Bomig optimal and its neighbouring plans have nearly same average ingpec.
tion, it will be advantageous tu apply the next higher neighbouring plan
which, will take care the possible variability of the parameters p, and Py
For example, in the cass of the example considered, (see Hald (1881), p. 101)
the optimal plan for the determimistic case is n =— 93, ¢ = 5, I(p,) = 118
and its next higher neighbouring plan is n = 108, ¢ = 6, Iip,) = 117. Tt is
seen that it would be advantageous to epply SSP n = 108, ¢ = 6 in the situa-
tion where it is required to assume small varisbility of p, and p,.

The procedure developed is simple and the required plans can be designed
eapily for any type of distribution appropriate to an environment such as
triangular, uniform, Beta ete. However, from experience ib seems that

agsumption of normal distribution is reslistic in most of the indusiriel
applicationa.
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