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poessed in terms of the moactonicity properties of the conditional probabllites: lavidving the canse
of [ailurc and the filure time, These properties of the conditional prvhabilities mre osed far testing
Four types of depariures from the independisc: of (he Frilure time asd the enmse of falere and st
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tests are applied to eve [Rustrative applications.
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1. Introdoction

Consider a situation where a umit cao fail due lo enc of two competing causes. Let 73 and 75
denote the latent lifetimes af the umit under the twa cauzes. The competing risk data available
are the failare time T of the unit, which is the minmum of (T}, T3) and the cause of Failure
indicator &, which isequalto 11F T = 7 and i 0 if T = T These data are ripht censored data
where cach latent lifetinoe acts as a cengonng vanable for tbe pther and, unlike in censoring,
the interest lies in knth the causes and hence in both the lifetimes. One concentrates on
different aspeets of the siluation by assuming appropnate dependence stoucturss (i) for the two
latent lifetimes (77, T») and (ii) for the randaom variables (T, &). The joint distribution of (T, §)
15 decfined here by the subsurvival funclions, S{#) = pr(T 21, d =7, i =10, |. The survival
function of T is defined by S} = p(T = £} = S + 5.(r). Throughout thiz paper, we as-
sume that the subsurvival functions are coniinuous with f{i}, i = €, |, as the subdensity
functions and A1) = ffN + A{F) as the density of T, The cause-specific hazard rate for cause
15 defined as Aft) = fA/80(1} and the crude hazard rate for cause J 15 defined as r{r) = jfis)/
S45). The hazard rate of T is Alfh = 250 = WD+ kalt).

The problem of identifiability i modelling the competing risks data m termns of the latent
lifetines 15 well known. The distributions of the latent lifetimes are identifiable under the
assumpeion of independance of the competing causes and also under some weaker conditinns
of non-tnformative censoring, see Kalbfleisch & Prentice {2002). There has been an enguing
debate for many years about the use of the models in terms of latent lifetimas and the models
In terms of (T, ), see Prentwoe ef of. { 1978), Larson & Linse {1985}, Davis & Lawranee (1989),
Deshpande {1990). Aras & Deshpande (1992), Gasharra & Karia {2000), Crowder (2001},



B & Dewan et al, Scand T S1a4m 1,

Kulathinal & Gasbarra (2002} and others. The peoblem of identifiability does not ayise if the
modedling of the compeling risk data is done in terms of the subsurvival functions of (T, 8) ar
related quantities like cause-specific hazard rates and crude hazard rates. The nature of
dependence between 7' and & is crucial and vselnl in such modelling. Il 7 and é are inde-
pendant then S0} = pr{d = H52), allowing the study of the failure times and the canses (riska)
of failure, separately. The hypothesis of equality ol incidence functions or that of cause-
specific hazard rates reduces lo testing whether pr{d = 1) = pr{d = G) = 1 /2. This stmplifies
the study of competing risks to a great exlent.
In this paper, we study the properties of the conditional probability functions

mi(;)=pr(§=¢trg;]=%1 i=01
and
m"r::]h—p-{&=i|r-::1]:%:—§, i=01,

whete Fi=prf < £, 8=, i=01 are the incidence functions or subdistobution
functions and F{Y) = pHT < 1) = 5} + F\{) i5 the distribution function of T

We also study varipus kinds of dependence between £ and & via those probabilitics, The
molivation for studying these probabilities, partly, comes from Cooke (19968}, who studied
failure and preventive maintenance in a censaring setting with the intecest in the distribution of
the latent failure time which would have been observed in the absence of preventive main-
enance, In the next section, the madels considered in Cooke (19596) are reviewed and the
properties of 463 are statad for Ulustration, The results of this paper are especially of interesi
11 reliability, but sxamplas ariee in many other fiekds whers the conditional probabilities of the
ype 47 and ©F{f} are of pomary importance, In clinical trials carried owt 1o study the
performance of an intrauterioe deviee where wnminaton of the device could be dus to several
reascns such as preponancy, expulsion, bBleeding and pain, 1t is often of interest to know the
chances of termination doe to a specific reason given fhat the device was intact for some
specibed period. Also, In eptdemiclogical follow-np siudies the probability of occurrence of an
event given that the ape of a parson ie above a certain limit is of interest. Te such situations,
conditional probabilities are expected 1o vary with time. Hence the applicability of the resulis
of thia paper is quite wide.

In section 2, we define dependence striwtures between T and & in terms of the shapes of
Ike conditional probability funcdons {1y and ©}(1). Alse, their relation to ordering between
the cause-specific hazard rales and crude hazard rates are studied. In section 3, we consider the
problem of testing Hy © 7 and § are independent which is equivalent to

Hy : @ {t) is & vonstanl
agawnst vanous altermative hypotheses which charecterize the properties of @) and ®)(¢):

My dy{¥) iz not a constant

Hy 1 By () > ¢ for all ¢ with strict {nequality for some ¢
#y : (e} iz 2 monotone nen-decreasing function of ¢
Hy - T (¢) ia 1 monotone non-increasing function of ¢,

where ¢ = pr(d = 1) = | — pr{# = 0). The properties described in seclion 2 motivate Lhe
above alternative hypotheses. A test based on the concept of concordance and discordance is
proposed for testing My against . Actually a one-sided version of the test iy seen to be
consistent against Az Twia tests ace proposed {o test My against 7o A test using L-slatistic is

—-_—
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proposed for testing H, against /f, and on the same lines a test is proposed for testing &,
against Hy. Mote that there is no relationship between s and Hy but both imply 772, Some of
the test stalistics considered here are already in (he lterature but in other contexts. In section
4, relative efliciencies of these tests arc studied and in section 5 Lhe Lests are apphied to twa real
data sets. To the best of out knowledge, tests based oo the conditional probability functions of
the type 40 and ©{1), which are vseful in modelling the competing risks data in terms of
{T, 4], are proposed and studied in detail here for the first time.

2. Properties of $,(r} and ¥}(1)

It is obvious that the independence of T and § is equivalent to constancy of $i¢) and iz alzo
equivaient to constancy of 17 {¢). Many popular bivariale parametric distributions used in
survival analysis have constant @,(¢f) and $(), for example, Block & Basv (1924), Farlie-
Gumbel-Morgenzlern bivariate exponential distribution, Gumbe] type A distrbution. How-
ever, in many praciical sitnationsg, this s not the case. We review the models considered in
Cooke (1998) in Llhe hght of the conditional probability fonctions €4(f) and $5 (7). Tt should b
nated that the fanctinon () used in Cooke (1996) iz squivalant to | — @y(f) defined in this
paper. In the [ollowing models, the two competing causes are the actual canse of failure of a
unit and the censaring caused by the warning. The failure time of the unit is denated a5 Ty and
1he censoring variable defined according to the warming emitred by the mmit befora failure is
ll.E-'l'l.ﬂth ai Tz.

2.1, Rondom Sighs censoring

A randam signs censoring, also known as an age-depepdent censonng, is 2 model in which the
lifetime of a unit T} is censored by 7o = T, — Wy, where 0 < B < T is a warning envitted
by the nnit before its failure, and 7 is 3 random variable laking values [—1,1) and is inde-
pendent of 7. Hence # = | would lead to the censoring of the lifetime at Ty — #Wand g = !
will lead ta the observation of complete lifctime 7). Assume that T has exponential distri-
bution wilh parameter A In this case, T2 > L, Hh < TN=ATN - W > Lqg=1) and
KTy >0 Ty < To)= AT, > P(x = —~1). This gives O{f) = P(Ty >ty = -1)HT, -
Wi =T, = 60 When W=gl,0 < a< L,

-1
() = (1 b fpcxp{—,h(a;'{i - ﬂ}}]‘)

where p = Pijy = 1) = 1 = P{sg = —1}, leading to the increasing nature of Oy{i) in £,

2.2, Consfanr warning-constant iMspeciion

In a constant warning-constant inspection model, a warning is emitted atl time Ty — o belore
the unit fails, where 4f < 1) is a constant. Assume that 7 has exponential distribution with
parameter A. Inspections arc made at regular intervals §. Here, Ty is censored by I3, with
I3 = Iy if.l'f; —_ny=T- d < f{rj < T, and Ty 1t ohserved to fail at time 1) il oo Inspection
oecurs in the intervel [Ty = &, T}]. Take T = 1. In this case,

exp{Ad} - |
exp{i}—1"

which is independent of i

i) =1-—
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2.3. Preportional warning-onsiant Mgpection

A proportional warnieg-constant inspection is similar to the constant warning-constant
inspection mode) except that the watning is emitted at lime T/q if the component fails at Ty
where # is a copstant. In (his case,

_l-oplifg-Dp 1
ol -0 (ep{dn} = 1)

which is clearly a decrmasing function of i
Thus, the monatonicity of &,(r) helps in choosing the appropnate model.

@ (i)

2.4, Hazard rate ordering and ageltg

The conditional probability, causc-specific hazard rate and crude hazard rate are functionally
related by the identity &L = P, i=10, 1.

Theoten 1
The conditional prohabiiity funcilon ©(8) T 1 is equivalens 1o 18} = KO S vl 0 for all «, and also
ter Fiy(f) S By(NA() and efi) 2 (1 = DU

The proof follows by using the fact that the demvative of ®{f) is non-negative and the
derivative of 1 — & (!} & non-pogitive being deereasing function of 1.

Thus, T{¢} is increasing is equivalent to the fact that the overall failure rate is lurger thun
the failure rate given that the Faitlure iz due 1o cawse 1 and is smaller than the Failure rate myven
that the failure is dwe to cause 2. N is also equivalent 0 saying that 5,{(f)/5g(f) 5 non-
decreasing in r. The above theorem also implies that ki (r/Agl) < $i()(1 — ©{)). This puts
factiong! bounds on the relative rate of ageing of rwo risks, see Senpupta & Deshpande
{19943 for definitions of relabve apeing,

Another interesting resuit stated below conmects the monotonicity of @ {1} with ihe ordering
between two survival functions.

Theorem 2
The conditional probability funcrion O {0 2 ¢ for all 1 if ard only i the survival funciion of T
given & = 1 s lgrger rthan that of T givern 6 =0, that is, S.{0Vd 2 5001 — ¢).

The proof foliows by noting that @ {1} = & i5 equivaient to (/¢ 2 S(1) and S0l =61
= Sn.

It is imporlant 1o noke that te crude haeard rates rr) and rplfd are the bazacd rates ol the
distributions given by 5 {r}/d and S {01 — ), respectively. These distribotions are ealled
conditional subsurvival fanctions by Cooke (1996), and in fact theorem 2 gives the properties
implied by the mandom signs cepsoring model of Cooke {19%6),

Under the proporticnal hazards model, /() = dhir). This is equivalent to independence of
Fand #and hence D) = &, forali ¢ = 0. It is wany Lo see that k{1) 2 Hhir) mplies O 2 &,
for all 1. Hence, the lests proposed in the nexi section can be usad to test the proporiionality of
the two cause-specific hazard rares also. When o 2 12, 5,010 2 500 for all ¢ and this means
that there is stochastic dominance between the two iweidence funciions as well as the condi-
tional distribulions.

It 15 interesting and also wseful 1o capress the cause-specific hazard rate in teyms of O4(F).
This epables ane to study the apring through the properiies of @ {1,



Scawi T Statist 21 On fcsting dependence #i

Theorem A
IF ®,(0) is monotone increasing and comcave then ki(t} is an increasing fumetion of ¢, provided A(f)
iy increasiny.

Praof. From the definidons of @) and Xi(2), it is casy to note that & i) =
—, (1} + D1 {e)k{r), where dF (1] i the first derivative of Oy () with respect to 1. Hence the result.

Further, let #¥{#) and %A'{#) denote crude and cause-specific reverse hazard rates, which are
defined as

1) =5k ana a9 =51
All the above results hold true hetween these reverse hazurds and OR{r). As the results are quits
similar, the details are not given here. The above resulis bring out the fact that many
important kinds of dependence between T and J can be expressed in terms of various shapes of
®,() and Op(i}. Notc that @,(/) increasing in ¢ does not necessarily iaply that @g(f) is
decreasing in t and vice versa. These properties rootivate various altermative bypotheses
considered in the pext saction.,

3. Teat statistics amd their disirlbafons

Let (T, &), 1 — 1,2, ..., n, be the competing risk data obrained from » independent and
identiczl ynits,

1.1, Testing Hy agoinst My
Ar defined eaclier

Hy : @;{r) is a constant
Hy @ (1) is not a constant

Kendall's 1 is used as a test statistic for a very genceal alternative of non-independence. A pair
(T, &) and (T, 8,) 15 a concordant pair if Ty > T, =1, & =000 T <« T & =0, 8, — ]
and is a discordant pair if T; = T, 8, =0,6; =l or ¥; < T}, 4; = 1, & = 0. Define the kernel

| K =T, =1 8,=0
ar <L, 6=0 61
P (70T d) =4 -1 ifT =T k=0 4=1
o<, =]l &=l
0  otherwise.

Note that when bath 4, and &; are | or (0, then §; — &; = 0. The corresponding U-statistxc is

given by
| .
u=(3) D, B T,a
| £ iEn
Motz that

B(EA) = BOb (2,80 T, 5, = 26+ 4 [ (64510
1]
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It is scen that E(L) 2 0 under H;. Hence, a one-sided test based on U, can be used to
test @y (1) 2 ¢ for ail ¢ also.

It is easy to write the statistic I/, as a function of ranks. Let £ be the raok of T, Let
T{ij w e oW T{,,)bﬂ lhﬁﬂl'lilﬂ'ﬂd T;E. Lat

IP':{I if Tin corresponds to & = 1
i # oclherwise.

Then ¥ = [;) 17 can be writien as

a A I
=) (8 -n—1)§ =3 (2-n- =2 oW 1)
Jul =t =
where @, = %~ n — L
Thiz statistic was introduced for the Lrst time In Peshipande & Sengupta, (1595) for pro-
portionality of cause-specific hazard rates with independent competing risks. The statistic
given in equation (2.3) in Dykstra er af. {1996), page 214 in a different context. 15 — 7 and the
correcl variance of ¥, is {I/3ai(r* — 1381 — &) and not the ene given on page 215. The null
distribution of ¥; can be found from its momeot generating funclion. Nole that under fy,
Ty .-.. Taatd &y, ..., &, are independent. Henee, under Hy, W,,.. ., W, are mdependent and
identically distribuled with pr{P#; = 1} = 9 and pr{W; = 0} = 1 — ¢. From here we obtain
that the moment generaing function of F, under Hy, is given by

M) = ija exp{e(2f ~a = 1)} + (1 — 1]

Hence the nult distribution of ¥, depends on the unknown ¢ evon under fy. For large a, we
can eslimate ¢ consistently by ¢ = &~ 301 H{& = 1). Under Hy,
_ _dn+1) 3
E{th) =0 and Var(lh) = m#’“ L8
Note that EI/,} = ¢ under M. From the results on U-statistics it follows that &/ has an
asymptatic normal distribution for large & (Serfling, 1980j.

Theorem 4

As n tends 10 o, wnder My, n'7U, comverges In distriburion to NG, ¢7) where of =
(43581 - ¢).

A consistent estimatnr of variance is 47 = {4/3)6i(1 - $). A test procedure for testing Hy
against 1, is then: reject My at 100u% level of significance if |n'/204) /|| is larger thun z; _ s
the cul-off point of standard narmal distribution.

3.2, Tesring Hy against H;

Recall that My : @,(¢) = ¢ which i equivalent to &) = 1 — ¢. It is clear that a one-sided
test based on D'y can be used for testing M apainst M as it is based on concordance and
discordance principle and the oumber of cuncerdances are expected 1o be Jarger than the
number of dkscordances under 5. A test procedure for testing Ho against A is then: reject Hp
at 100u% level of significancs if n'/27} /4, is larger thun ; _ ,, the cut-pil point of standard
normal distribution. Two more lests are given below using &,(f) and &f{r) for westing Ho
against i,
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3.2.1, Teat based on B(¥)
Congider

8e(518) = [ 16v) — #SLOldFC) = Ty > 132 = 1) - 5.

Under Hy, S1(0{¥f) = ¢ = pr{§ = 1}. This implics that A;(S,, S} = 0. Under Hy, 5:() 2
$S(e) and hence 4308, S) 2 0. Dafine the symmetric kernel

| T >T.8=1
*2[1}1 5|'|i}|‘5j:' = or if T,:l = 1}.{5; =1

0 otherwise.
The corresponding {-statistic estimator is ghven by
Hy —1|
Ur=(5) ¥ w(h&.5.5) (2)
I5ici%n

It can be shown that

(;}Uz = 2(-‘!; —1)4, = ill'.ﬁ — 1)1 (3

The above stalistic is proposed in equation (2.6) by Bagai et of, (1989) for testing the equality
of failure rates of two independent compating risks.

Theoyem 5
As n tends to oo, under Ho, 8V (Us — 4) ronverges in distribution iz N(0, o2}, where 6% =
(4/¢(1 — ¢).

3.2.2. Tesr based on ¥t}
H; is also equivalent 1o Hy @ @(#) = ¢y for all ¢ wath strct inequality for some f, where
do = I — ¢. As in thr carlier section, we have

Theorem 6
As n rends to bo, sV — &) corverges in distribution 10 N{O, 7%, where
my o, e =11 & .
(Hu === > n =¥, 4)

and a3* = (4/3)dy(1 — dy).
‘The consistent estimators of variances of and o3° can be found by replacing ¢ by §. We reject

the null hypothesis for large values of the stendardised versions of the statistics. From
equations (1), (3) and {4), it follows that T = & + £F — 1.

F33. Testing My agpainst Hy

Recall that Hy : B(1) ~ ¢ Note that I(f) T ris equivalent ta @1} & O(t;), whenever r; < ¢o.
This gives y(7), {5 = 5()84) — 503502 20, 1 = with striel inequality for some
{(?1, ). Define
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An(S,,5) = _[ [ s ane)

]

= [ S() — 6425 2). (5)
LH
Under Hy, Si(0/5(} = ¢. This mmplies that As(§, 5) = 0. Under &5, &S, 5> D

Define the kertinl
| fHG>ne=nh>T
EI=EJ:$1=1,15';=0

(T8 T, B8 Tl = ~1 H0>L>N>T,
d=8=54=10=10
0 otherwise.

Then the G-statistic corresponding to 4;(5, S} is given by
Ui-w Z i’s(fé‘u'ﬁh:i}nﬁrz:ﬂ,-ﬁrnfmﬁu}.-
igh Tl
where y, is the symmetric version corresponding to v,

Nate that E(¥3{7, &, Ty, &, Te, i, Tr, 81)) — A3(5,,5) and the expectation of the sym-
metric kemed is 24A:{8,, 5) due to the possible combinations requited to obtain the symoerrie
irernel. Hence, E(T75:) = 24A:(S.. 5). Under Hy, E(¥5) = 0 and under H,, KLy} 20. Let T's
corresponding to 1's be called X"s and those corresponding to O°s be called ¥'x. Then the
oumber of X's is r, = S5, &, and thers are a; = 1 — A, Fs. Let Ry(Sin) be the runk of
Xyl Y1) be the ith [jth) ordered statistic in the X(¥} sampie in the combined arrangement of
mXx's and r.!;l""a fm fact nT"8). Hence

(")U:— (-‘:'m JJ(H'+J Sm) i(sm;j).

J=1
it s mu:restmg to note that in terms of X's and Y's the above slatistic i1s the same as that
proposed by Kochar (1979) for testing equality of failure rates, the only difference being that
the number of A™s and Y's 15 random.

Thesrem 7
Ar n fends to oc, under Ho, n'*U; comverges in divtribution to N[0, o3), where ol =

{56/33}6°(1 — ¢).

The null hypothesis is rejected for large valoes of n'20h /d; where 62 = (96/3316°(1 — @).

Tests propoged in this section will help in discriminating beiween the constanl or propor-
tional warning-constant inspection and random signs censunng models and also 10 detarmine
whether 1be corresponding mixde of [wilure becomes more bikely with increasing age.

34, Testiig Hy apainst

Racall that Hy: ®3(r) | 2 @[} | tis equivalent to $}(n) > ®){i;), whenever f, < 5. This
gives Folt )} — Fle)f(n) 2 0, 1) < & with strict inequality for some (2, £). Define

Au(F, Fo) = f j [Roler JF () — Folta b (r ot JdFti)

n i

- [ w0 - 2. 0
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Under Hp, Fol6)/Ft} = ¢y, This implies that AF, Fo) = 0. Under H,, AJF, Fy) 2 0.
Define the kemeal

| LR << <T,
P 5;=5;=15.—=U,&f=1
We(Ti 8, T 8y, T 8, TS = ¢ G <T<T<T,
=0 =0=0d4=1
(H otherwise.

Ther the Usstatistic corresponding to A,(F,, F} it given by

—1
Ul' B (D Z *4{1}1151'.11}“65,11'31 &'F;:-T:‘uﬁfq}s
S iy iy
where 1, iz the symmetric version comesponding to ¢, Note that E(@i(T. 5,7 &, &,
8, Th, &1)) = A(F, Fy) and the expectation of the symmetric kernel is 20A4(5;, 5) due to the
possible combinations required to obtain the symmetric kernel. Hence, (1) = 24A,(F, Fy).
Under fio, £(Us) = 0 and under #4.E(Lq) 2 0. A rank representation of U is

W i (ﬁmi- J) (oe 44— Ry} — g (M iiw H)'

=

Theorem &
As n tends ta oo, under Hy n'2Uy converges In disiribution to N{D, o3}, where L
= (96/35)3(1 — o) = (967353 (1 — ¢)°.

Wo rejecl the oull hypothesis for large values of w2 fE,, where &)=
(96/35)¢5(1 = dy) = (96/35)(1 — §)’.

4, Asymptotic relative efficlency

To compare alternative tests proposed in this paper for testing X, apainst B, A, against Hy
and Hj againsl Hy, we compule avymptolic relative elficicncy of the tesls for a semiparametnc
family of distrtbutions proposed in Deshpande (19%)). The semiparametric family considered
here i3 Fi(t) = pFoi), Fl) = Ki) — pF (), where |l = ¢ =2, 05 p =< 0.5 and F¢) is a proper
distribution function. Note that ¢ = p and

L= F°))
0O ="r—Fm

which 1 an imcreasing function of v. Also,

() =1 - o'

which i a decreasing function of r. Hy comesponds 1o g = |, and ather alternavive hypotheses
correspond to 1 < g < 2. By the limiting theorem of U-statistics, all the [f-statistics proposed
here have asymplotic normal distnibutions under both aull and the akernative hypothesis {see
3criting, 1980).

The asymptotic relative efficiency of test If with respecl to test L& is then defined as
et 1) = ol el s} where £{U) = ;:’z{l}funr(U | Hy) and (1) is the derivative of expected
value of [ with raspect to ¢ evalvated al a — 1, and var(i7 | fy) is the asymptolic variance of
n'" ¢ under I,
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The tests L'z and {7} are squadly efficient but the general iest L7, 1s four times more efficient
compared with these tests for the alternatives considered. Tius mdicates the superionty of I,
as it is consistent for the alternative ;. For this particular family of distnbutions, the other
alternative testa are equally sfficient. It need not be trus m general.

5. Rhetrations

We consider wo roal data sets hers, one whete the empirical &,(r) is non-decreasing and the
empirical (7) it non-increasing. In the other example, both of these seem to be fairly con-

stant.

Exampie ]. Consider the data on the times to faiture, in millions of operations, and modes
of failure of 37 switches, obtamed from n reliability study conducted at AT&T, given in Nair
(1993). There ars two possible mades ot failure, denoted by A (8 = V) and B (3 = 0), lor these
swilches.

Figure 1 shows the empirical sstimates of the conditional probabilities corvesponding te
failure modes A and B, respectively. The ampirical &, functioa corresponding to failure mode
A is ciearly increasing and the empirical @ function cotresponding to B is decreasing, indi-
cating that the failure mode A hecomes more likely with increase in the age of the switch.
Table | gives the values of the test statistics. The value of Z corresponding to U/ is 2,76 and
hence we may conchide 1hat the failure time and the type of failore are deprmdent. The non-
constancy of the plot in Fig. 1 supports this conclusion, The one-sided test wsing &y for Hy

b -
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Fig. . Tinc verses empirical & (¢}, B, {0}, B5(7] and ®(no) for the data given in Nair {i993), Solid
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Table L. Values of the texr statisrics for Naiw's { 1993) dota

U-Hatistica Expectation Variance z Conclusion
U =026 0 0.33 299 Reject By
I = 004 )} 003 145 Accept Hy
{7, m 006 0 .06 229 Raject Hy

against Ip rejects the null hypothesis of independence of Tand 8. 11 may be comcuded that
i) 2 ¢ and alsa ®G(r) > ¢, for all r. Furiber, the valee of ff; given in Table ! is not
statistically significant and hence it may be concluded that ®(2} i5 not increasing in ¢. The fes
for checking whether O (r) is decreusing, rejects the null hypothesis and hence we may con-
clude that (#) is a non-increasing function of . A final conclusion aftar the application of
proposed 1esty is that ©4{r) 2 ¢ for all ¥ and that Dy(¢) is 2 non-increasing function of 7.

Example 2. Consider the data set obtained from a laboratery experiment on rmale mice
which bad received a radiation deose of 300 rads at an age of 5- § weeks given in Hoel {1572). The
death occurred due 1o cancer (3 = 1), or other causes (¢ = 0). In Heel (1972), the main interest
was 1 judging the cquabity of the survival functions of the independent latzot lifetimes. We
have brought out another uspect of the swme data without going into the guestion of inde-
pendence. Figure 2 shows the empirical conditional probamlities and in this case, the empirical
conditional prehability Dy(t) seerms to be almosl Oat and the curve corresponding to D7 (#) is not
50 fat. Table 2 pives the values of the test statistics. Based on the applicalion of the proposed
tests, it may be concluded that the lifetime 7 and the cause of death § are independent for mice
living in conventiona! eevironment, allowing the analysis of lifetimes and the causes separately,
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Fig. 2. Time wersus empirical & (), @, {0}, &[] and Pioo) for the dara given in Hoel (1972). Solid
squares denace €{r), dotied linc denotes (0}, pluses denote ©{f) and solid line denotes (ool
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Table 2. Vaiues of the test slativrics Jor Hoel's {1972) dala

Crstatistcs Expeclation Variance Z Cornclusion
=011 0 13 3 186 Avespt H,
Uiy = 0.60 .51 0.3z 0.3 Accept Ky,
5 = 045 0.3% f.32 0.53 Avepl Hy
Uy m 0.04 G 009 1.50 F— T
Uy = 0.01 a fr02 1.4 Acerpl H;

6, Conchwling remarks

The (T, 5) data arise in several areay, viz., engineering stedies, actuanal studies, unemploy-
ment registers as described in Crowder (2001). These 1ests would be appiicable in 2! such
situations. The trsts can also he used to test for the departurss from the independence in a
maore general case when one random variable is continuous and the odher bmary, A limitation
of the proposed tests is that they cun be applied only in the situations where there is no
additionel censoring imposed ot (o the competing nisks. Corrently, we are working towards
the extension of the Lests (o incorporale Sensorng,

For modelling the competing risks data in terms of (T, §), it is of prime imporiance to chuck
whether T and 4 acs independent. We have proposed tests based on [i-statistics to check
whether T and & are independent against four different kinds ol alternative hypotheses rep-
resénting various intcresting departures from mdependence. These tests are simiple and scem to
be useful to distinguish between the possible types of dependence between the canses of failure,
Tt iz clear that the tests perform satisfactorily in distinguishing between the hypotheses. All
tests are typically congistent against larger alternatives than the one for which they are pro-
posed. The tests are ‘almost” distribution free in the sensc that their null distribution depends
caly oo the paraineter ¢ = pr{d = 1) which can be estimated consisteatly. 1f the bypothesis of
independence is accepted then one can simplify the model and study the failure time and cawse
of failure, separately. If the hypothesis is rejected then 3 suitable mode! wnder specific
dependence between T and § in terms of the incidence funclions is needed.

We susrpest to Bse the test based on LY, for the general dependence frst. IF the nuli hypothesis
of independence of Tanrd 3 is rejected, then only other tests should be vsed. The choiee of the
test for further inference should be based on the plots of the empincal ®,(¢) function agains! ¢
and the empirical 95(¢) function against ¢. Because of hierarchy in the hypotheses A; and Hy,
we recommend o use the one-sided test based on TF) to test By against M first and iF A 03
rejected then carmy cut the test for tesling Ay againyt &, based on L5, Similarly, the tests for
checking the monotonicity of (¢} could be used.
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