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ON A DECOMPOSITION OF THE LIMIT DISTRIBUTION
OF A SEQUENCE OF ESTIMATORS

By P. JEGANATHAN
Indian Statistical Institule

SUMMARY. Whon the likelihood function is locally uymploh:nllv normsl it is showm
that tho (possibily sub.stochastic) limiting kernel of a q1 of o seq
of ot can be i 6a o ion for all pmnla of !.hn Darametor spaco oxcopt
porhops for a aubsot of Lobesgue measuro zoro. An il ion result
ia obtained whon the likelihood function is locally ssymptotically mixed nomml By applying
theso results, cortain globul usymptotic lower hounda for risk functious of oro obtained.
A rosull on the invariance of limit distributions i3 also obtained.

1. INTRODDOTION

When the log likelihood function is locally asymptotically normal (LAN)Y,
Hajok (1970) has cstablished a basic result that limit distribution of a rogular
sequence of estimators can be decomposed as a convolution for all points of
the paramoter space. Indopendontly, this result was also obtained by
Inagaki (1970) under moro restrictive assumptions. LeCam (1972) has
extended this result to a much more gencral family than tho LAN family.
In all the above works rosults werc ohtained under a orucinl restriction that
the sequence of ostimators are asymptotically invariant in some senso.
Usual examples (see o.g. LeCam, 1953) show that this type of invariance
restriction cannct be rolaxed if one tries to ostablish such a decomposition
for all points of tho paramcter space. LeCam (1073) discusses the above
mentioned invariance restriction and obtains some deep results on the invari-
ance of tho limits of exporimonts; further he romarks that, as a consequonce
of his invariance results that the convolution result of Hajok (1970) and
LeCam (1872) can be obtained, without the invariance testriction, for almost
o1l points of the parameter space. Our 2im in this pspsr is to state and prove
a simple invariance lemma and, as a consequence of tlus invariance
lemma, to prove thet the limiting kernel of any convergent subsequenco of
an arbitrary sequence of estimutors can be decomposed as a convolution for
all pointa of the parameter space oxcept perhaps for & subset of Lebasgue
medsure zero.

*In e book undor proparation LoCam gives n vory dotailsd digoussion on the invariance
of ths possiblo limite of exparimants and tho limits of distributions.
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When the obsorvations sre dependent, it has been recsntly observed
(sec o.p. Heyde, 1978) that the log-likelihood function 1s, in genoral, locally
asymptotically mixed normal. We show that in such cases s conditional
convolution result holds; under the usual invariance restriction this convoln-
tion result has beon established in Jeganathan (1979a).

In Ssction 2 wo present notations and tho convolution result; proof of
tho convolution rosult is presented in Section 3. In Seotion 3 we prove a
result on the invarianeo of limit distributions. The conditional convolution
result is statod and & proof is bricfly indicated in Section 4. As an applica-
tion of thosn rosults, in Section 5 we obtain certain global asymptotic lower
bounds for risk functions of estimutors.

2. NOTATIONS AND THE CONVOLUTION RESULT

Let (M,, F,), 2> 1, bo a scquenco of measurable spaces and let © bo
an opon subset of RE. Assume that {P, |F,:060}, n > 1, is 9 saquence
of families of p-monsures (probability moasures) such that the functions
0 > Py (d). A€ F,, n> 1, aro Borel measurable.

If P|F and Q|F aro p-mcasures on a nteasurable space (M, F) then
dP)dQ denotes the Radon-Nykodym dorivative of the @-continuous part
of P with respect to Q. If X :(JI, F)— (R, He), g > 1, is a Borol measur-
able function, where H? boing tho Borol o-field on R?, then (X |P) denotes
tho image of P induced by X on A7. N(a, B) denotes tho normal distribu-
tion with mean a ¢ R and covarianco matrix B. For a vector k¢ Re, b’ denotes
the transpose of h and |A| denotes the Euclidean norm. For a matrix
B, ||Bll donotes tho usual norm. k| H* denotes Lobesgue

Weo shall now stato tho definition of tho local asymptotic mixed normality
(LAMN) condition in sk-measure.

Definition : The sequence {P,,:0¢0)}, n» |, satisfies tho local
asymptotic mixed normality (LAMN)-condition in u*-measure if there exist

(1) & sequence of positive - definito matrices &,, n » 1, such that
1841 =0,

(2) moasurable functions T,(6), n > 1, mapping © X M, to the set of
k Xk symmotrio matricos such that

Py, AT ,(0) is positive definito) = 1 ofor every n > 1 and 08,

(3) messurable functions W,:0 x3,— R¥, n> 1, such that, for
wr—almont all 8¢ @, (T,(0), W,(0)) converges weakly to (7(6), W). whero
T() is, for onch 0¢ @, an nlmost suroly positive definite matrix and W is
a copy of N(0, 1) independent of 7'(6),



28 P. JEGANATHAN
(4) measurable funotions Z,(.,3): O xM, >R, n> 1, heR, satisfying
the following condition :
For pX-almost all 6¢®, Z,(6,h) tends to zoro in P,,,-probability for
every he RF such that
dPprapg

1
—_ LR, [E——
TP = XRTIHOW (0~ BT, (O+2,0,)

for n > 1.

In the specisl case when 7,(8) = T'(f) = & constant matrix for all f¢0
and 7 > 1 wo say that the soquence {P, s :6¢€0), 7 > 1, satisfies the local
asymptotic normality (LAN)—condition in g¥-measuro.

Remarks (1): See o.g. LeCam (1970), Ibragimov and Khasminshii
(1975) and Roussas (1979) for sufficient conditions for the LAN-condition
as defined above.

(2) A dotailed study of the goneral LAMN-condition is presented in
Jeganathan (1979a and 1979b).

Let G(H9) bo the space of all sub-stochastic measures on H¢, H¢ boing tho
Borel o-field on Rv. Let (S, E,v) be a o-finito measuro space. Consider
the (sub-stochastic) kernels P : 8 — G{H?). Let C, be the space of continu-
ous functions on R? vanishing outside compacts. Defino the Ca(R%® Ly(v)
topology of the set of all kernols to be the smallost topology such that all
functions

P [f flz)P(t)(dz)g(t)o(ds),
feCa, geLv), are continuous; this topology was introduced in LeoCem
(1973). It is known that the set of all kernols endowed with this topology
i8 mortrizable and compact.

Let V,:(M,,F,) > (Rt H¥), n > 1, be a saquence of estimators. Lot
{m) C {n} be a sub-soquenco such that (87! (Vm—0) | Pme) is Co(RE) @ Ly(p)
convergent to a kernel @,. Wo now state the convolution result.

Theorem 1: Suppose that the sequence (P,,:06c0}, n > 1 satisfies
the LAN-condition in pk-measure. Let Q, be as above. Then there exisls @
kernel Ky on HE and a Lebesgue null set N such that

Qs = N(0, 77X(6))eK,
Jor every 06 ©—N, where « denotes convolution.



DECOMPOSITION OF THE LIMIT DIBRTRIBUTION 29

3. PROOF OF THEOREM 1
First we shall prove the following lemma

(Invarianco) Lomma 1: Let {Fy }. n > 1, be a sequence of kernels
Fop: R* > G(HY), ¢,k > 1, being Co(RY) @ Ly(¥) convergent to a kernel F,.
Let8,, n > 1, be a sequence of positive definite matrices such that |6, — 0 as
n— 0. Thenthe sequence (FMJ,.A,n}’ n > Visalso Cy(RY) @ Ly(u*) convergent
to Fy for every he RE.

Proof : For every subsequenco {m}(C {n} there oxists a further sub-
sequence {r} C {m} and a kernel Fy» such that the sequence {F‘M'h r") is

Co(RY) @ Ly(p*) convergent to Fy,. For simplicity assume that k =1 and
g=1. Wo then have

L, [’
[ [ S Fordn)i0— | [ ft)Fy(da)d
s R 5§ R

and

1, t,
[ [ S Faupsldeiifo [ [ f@Fya(daidd
6 R & R

as r 00 or every 4y, L, e R and feCop. Now

Y ty+ach
,j' RI j(:)F,M'L'((I:L‘)M = f gf{z\F,,,(dx)dﬂ.
1 [

y+orh

Hence,
1, I N
| [ [ f)Fogpdz)ib— [ f f2)Ftda)it |
6 R 0 R

< Callh, 451A((4, ta]+87h)) (for some C > 0)
< C25,|k] 50 ar r - c0.

Thus we hava

3, z
[ ] fe)fude)dd = | [ floyFonda)ds
H R 4 R

for every ¢, ¢,¢ R avd feCq. This implios
§ fra)Fo(de) == ’J; f(x)Fy p(dz) a.s. [Lobesguo]

for every feC,. This completes the proof.
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Wa ahall prosent the proof of the convolution result for ® = R¥; since
© C Rt is open, the proof for the general case is essentially the same. At
thie point we further noto that the LAMN-condition in uk-measuro implios
that tho sequence (P,Hn.-n) and {P, .}, n > 1, heRE, are contiguous for
pF-almost all 66 @. Honce, without loss of generality, wo can assumo in
what follows, that P“,-A‘" is absolutoly continuous with respect to P,,,
n > 1, he RE, for pk-almost all G¢ ©; sce o.g. Roussas (1972), Chapter ],
The following proof is oased on the idcas of Bickel's simple short proof of
Hajek’s convolution thoorom; se0 Rounssas (1972) for & published version of
Bickol’s proof.

Proof of Theorem 1: Tet {m}( {n) be o sub-sequenco such that
LB Vm—0), Wi(0)| Py m) i3 Co(R¥™)® Ly(p*) convergent to a kernel Q
Lot @, bo & kernel such that (851 Ven—0)| Pym)is Ca(R)YB Ly(nt)convergent
to @,. Then, according Lo temma 1, L& (Vi—0—dmh)| Py, sahm) is also

Cu(REY® Li(ur) convergent to @, Forsimplicity wo shall assume that
the parsmoter epace is of ono-dimension. Let f(u. z) = (e'w'—1)/iz, u,2¢R.

Note that f(u. z) 12123 4 for overy ue R. Henco wo havo, setting 0, = 0438xh,

J JJ 851 (Vin—0m))dPy L a(f)i0 - [ [ flu, 1)Qy(dx)g(0)d0, ... (3.))
R M, - R p

for every g(0) e Ly(p) and u,he R. On tho othor hend the left hand sido of
(3.1) ean be written as

d‘P‘nm
’{ {4 ftu. 8 (Vm—0m)) 5 APy mg (A0
e 0m

m
2
=1 [ Js 57 (Fm—OmDloxuihT 0 Won () — 2 T(0) 4+ B0, 1Py m 9(0)A0
'
and it ia not difficult to roe that this converges to

2
[ j‘(u,(a:—hl)cxp(hT”’(mw—%T(o))Q'(dz,dw)g(o)w
R p

for every g(0) e Ly(y) and u,ne R. Honco wo see that for overy (u,n)e R
there oxists a Lobosgue nuil sot N ), possibly doponding on (u, b), euch
that

;[‘ flu, 2)Q \dx) —= j.f{u, (z-~hioxp (hT"‘(U)w—%IT(O)) Qyldz, dw)
R
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for every 66 ®—Nwm,. Lot D be the set of all rationals in R* aud lot
N= \‘_J Nw ». Thon whenevor 06 ©—N,
(w.h)eD

[ fi Q) = | f(ur(m—Blexp (mew)w—%’m))o;(dx,dw) @)
R I

for every (u,% e D. Now for every (u,h)e R% thore exists a sequence
(%, BVe D, r » 1, vuch thut (v, h,)— (u k) a8 r 0. Clearly, for every
8ec®@—N.

[ Jlur, ©)Qu(dx) > [ flre, 2)Qy(d2).

Wo shall now show that
[H .
I fou, (2~h,))e==p( n T (00— T(f?))Q.\d-'v, dw)
R?

converges for overy ¢ ®@—N, to

[ Jtustz—hyjoxp hT!/e(a)w—'f—'Tw,)Q;ldx. dw) 88 1 > c0.

RY 2
Since

» . B
St 5= hVoxp (b T(Ep—" 70))| < Coxp (WPHOW— 3 70))

(for some C > 0),

it i encugh to shew that for ovory 0e®—N,
oxp h,T"'{IJ)w—%: 7))
converges in the first mean to
oxp (hT”’(O)w—%3 T(B)) a5 r — 0.
This follows at once from the fact thut

oxp (h,T”‘(O)w—%’ 7'(19)) — oxp (hT”'(ﬂ)w—l;: T(t?))
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a3 r — co for every we R and 6¢ @, and
I+ a5
{ oxp (R TxByo—"2 T(6)) G, du) =1
R

for all r > | and 6 ¢ ®—N, whero QZ is the probsbility measure on the com-

pactification RE, induced by Q. (Note that Q'(R,.) = N(0, 1) for g-almost
all 868). Thus we see that whenever ¢ ©®—N,

[ S, 2)Qu(dz) = lim [ flu, 2)Qyldz)
R r—®o R
= lim_ [ fl, ehoxp ( T HOw—"% T(0)) Gytdz, duy
ro e p2
h!
= [ ftu,iz—Roxp ( KTUHOWw—7 T60))Quds, dw) .. 33)
R

for overy (u, k) e R2.  Now (3.3) implies (of. Loeve (1963), p. 189 that when-
ever #6®—N.

2
[ oxplinn)@qdz) = [ oxplin(z—h)+AT0n—" Ti0)Qydz. duw) ... (3.6
R Rt 2

for ovory (u, k)€ R%. It can be shown that the right hand side of (3.4) is
analytic in A for cvory 8¢ © —¥. Honce replecing b by ik in (3.4) we have,
whenever, 0e®—N,
2
[ oxp(iuz)Qy(dz) = oxp(uh) [ exp(iuz-+ikTXO)u-+ o T(6). Qyd, du)
R Rt 2
(3.5)

for every (u,hie R% Setting h = —T-}f)u in (3.5), we have
[ oxp(iuz)Qy(dz) = exp(— 4T YA [ expliu(z—T 2w)) Qpldz, dw)
R R?
(3.6

for every ueR and §6@—N. This proves the result.

4. CONDITIONAL OONVOLUTION RESULT
Lot V,: (Mg, Fp)— (RE, H¥), 3> 1, bo u soquence of ostimutors. Lot
{m} C {n} be a subsequonco snd @, bo o kernel such that

(LB Vi —0), Tm(6) | Pa,m)}
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is Ca (R***) @ Ly(up)-convergent to Q. Lat G, be the probability messure
on B x &** induced by @, whoro R¥ is tho compectification of RE. Lot Q% be
a kernel (on R¥) suoh that

QlC) = | I(C)@Hd=) Lyd)

for overy Borer set C RE xR* whore £ is the lew of T(6). Let {r} C {m)
be a furthor subsoquonce und @, be & kornel such that

(LB, (Ve —0), Wy(0), Tel8)] Py, 1)}

is C’.(R"“kz)@Ll(/tg)monvorgent to @, Noto that @, end tho law of

(17, T(0)) aro the marginals of Qj for the s¥-almost 2l 0.

Theorom 2: Suppose that the sequence {Pyn:0¢€(h)), n> ), satisfies
the LAMN-condition in pk-measure. Let Q% be as above and let Q% be the
resiriction of Qf lo R¥. Then there exists a Lebesque null set NC 0 and o
kernel Ky such that

Qf = N(0, T-16))eK,
Jor every 0 ¢ @—N.

Tbe following Lemms is implicit m LeCam {1974, Ch. 12).

Lemme 2: Suppose that the sequence (P, ,: 060}, n > 1, salisfies
the LAMN-condition in pk-measure. Then there are measurable functions
Ta(0), n 3 1, mapping @ XM, lo the sel of kxk symmelric malrices such
that, for pk-almost all 0 ¢ ©,

(i) The difference To(8)—T,(6) tends to zero in PN‘"M‘ probabilily for

every he R¥, and

(li) the difference To(0-+8,h)—Ta(0) tends to zero in P,, probability

Jor every k¢ RE.

Proof: For simplicity assumo that the parameter space is of one-

dimension. First note that
T,(6) = —4[Ap(0, N—2A%6, 1/2)]
where

A6, B = IO W (0) "% 70).
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Now set
R(O) = —4[A (0, ))—2A (6, 1/2)]
where
dP, 8+4, 0.0
A6, k) = log >,

The first part of the lemma follows from the fact that the difference
A0, BY— A6, b tonds to zero in P8+6,.|-n probability for overy 8,ke¢ R.
Next observe that
An(6+8,k, 8) = Ag(f, ht-5)—A (6, B).

Honce the socond part of tho lemma follows from the fact that

[ 430, b4 1= 1206, =202 (0,341 ) 42850, B] = — 7,000

This proves the lemma,

Proof of the Theorem 2 : Fer simplicity wo assumo that the paramoter
space is of ouc-dimension. In view of lemma ! and lemma 2 it easily follows
that the sequences

LT n(0), 8 (Vm—0) | Py ) a0d L(T3(0), 8\ Vin—6m) | Py )

are Cu(R)® I'y(x) convorgent to the samo kernol Q. Hence procceding
as in the proof of Theorem 1, it is oasily seen that there exists a Lebesgue null
set N, such that

I c-xp(iu:c+ivt)6;(dx, 1_2, dt)
R?

= | oxpf ulz— ) vt ey — 2 t) Gyde du, do
R

for overy 8¢ @®—N and h,u,veR. This implies that the corresponding
conditional cheracteristics aro also oqual almos surely i.e.

Rjoxpuux)@,f(dz) = R;. oxp (iu(z_hum'm(onu—%' T(o)) 0;(dx, dw)

for ovory 6 & @—N und =, k¢ R, where 6;" denotes a regular conditional pro-

bability measure of @ given T'(8). Now using a simple continuity argument
and then proceoding as in the proof of the Theorom 1, we obtain the dosired
conolusion.
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6. SOME APPLICATIONS
Let L bo tho olass of all Joss functions I: R¥ — R of the form /(0) = 0,
I(y) = (Jy!1) and i) < h2) if [y| < |z]). Let A be a o-dfinite measur: on
(RE, H¥) such that A € g, and lot L*(Q) be the class of all positive intograble
functiong on (R¥, H%, A). The distribution of T'-1 (8)W will be donoted by ¢,.

Proposilion 1 : Suppose that the soquence (P ,: 8¢ 0}, » > 1, satisfios
tho LAN condition in pX-moesure. Let {V,}, = 1, be o eoquence of exti-
mators. Then

liminf | [ U87Y Y, ~60)b(6)dP, hA(dO) > £ Ji Uz)b(O)Po(dx)AEE) ... (5.)
k

e 9 M,

for overy le L and be LH(A).
Proof : Tho proof is an easy conssquence of Theorem 1.

Proposition 2 ; Suppose that the soquence (P, ,:8¢0), n > 1, satisfies
tho LAMN-condition in g¥-mcasure. Let {V,}, n 31, bo a soquenco of
ostimators. Then
lim inf [ [ U8V, —0)b(8)dPynA(d6) > [ | Uz)b(B)Peldz)A(d6) ... (5.2)
nIwo @ M, o Ry

for every le L and be L ().
Proof :  The proof is an oasy consequence of Theorem 2.

Remarks (1) : Proposition 1 ocour explicitly in the form givan here
in Strassor (1978) for the LAN case; this result seems to be implicit for the
LAN-caso in, for oxample, LeCam (1973) also sinco Thcorem 1 was essentislly
montioned in this papor for the LAN case.

(2) In connection with tho results of the present paper, it should be
wentioned here that when tho sequence of estimators are ssymptotically
normal, LeCam (1963) snd Bahadur (1964) have showr that tho variance of
tho Limit distribution is greater then or oqual to the reciprocal of the Fisher
information number for almost all points of the parameter space; this result
can bo easily deducod from Theorem 1. A more general result of Pfanzazgl
(1970, Theorom 2) can also be deduced from Theorem 1; an analogous result
under the LAMN-condition can be deduced from Theorem 2.
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encoursging comments and tho trouble ne took in correcting the manuscript.
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