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Abstract

This paper deals with a new distance measure for genes
using their microarray expressions. The distance measure is
called, “Maxrange distance”, where an experiment specific
normalization factor is incorporated in the computation of
the distance. The normalization factor is dependent on the
linear dynamic range of the photo multiplier tube (PMT)
for scanning fluorescence intensities of the gene expression
values. Superiority of this distance measure in the microar-
ray gene ordering problem has been extensively established
on widely studied microarray data sets by performing sta-
tistical tests.

1 Introduction

The recent advances in DNA array technologies have re-
sulted in a significant increase in the amount of genomic
data [3, 2]. The most powerful and commonly used tech-
nique is that involving microarray, which has enabled the
monitoring of the expression levels of more than thousands
of genes simultaneously. Due to the large quantity of in-
formation available from microarray it is necessary to find
an appropriate distance measure for genes and to employ a
process of classification of the data in order to obtain initial
conclusions about the genes.

The present article deals with the tasks of measuring the
distance between genes and evaluating their biological or-
dering in clustering framework. The widely used measures
for finding the global similarity (where all the gene expres-
sion values present in the gene are taken into considera-
tion) between genes are the Pearson correlation [3, 2] and
the Euclidean distance [8]. In computing the similarity, all
the above mentioned measures do not assign appropriate
weights to gene expressions obtained from different types
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of experiments, where the expressions differ by orders of
magnitude from one type to another. Consequently, gene
expression values in lower dynamic range do get dominated
by those with higher dynamic range. A new similarity mea-
sure between genes, called “Maxrange distance” is defined
in this article, where gene expression (for a particular type
of experiment) distance between two genes are first normal-
ized with a factor dependent on the linear dynamic range of
photo multiplier tube (used for scanning fluorescence inten-
sities of that experiment), and then summed to find a global
distance.

Superiority of the proposed Maxrange distance measure
over the related measures is established by using them on
four different algorithms.

2 Gene Ordering Methods

Cluster analysis, ordering, and display of gene expres-
sion patterns are considered to be useful tools to detect
genes that are co-expressed or implicated in similar cellular
functions [3, 2]. Hierarchical clustering approaches (single,
complete and average linkage) [3, 1] group gene expres-
sions into trees of clusters. They start with singleton sets
and merge all genes until all nodes belong to only one set.
Hierarchical clustering does not determine unique clusters.
Thus the user has to determine which of the subtrees are
clusters and which subtrees are only a part of a bigger clus-
ter. So in the framework of hierarchical clustering a gene
ordering algorithm helps the user to identify clusters, and
subclusters in big clusters, by means of visual inspection
of the clustered gene expression data [1]. Moreover, genes
that are adjacent in a linear ordering are often functionally
co-regulated and involved in the same cellular process [2, 3]
and biological analysis is often done in the context of this
linear ordering [1].

Ideally, one would like to obtain a linear order of all
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genes that puts similar genes close to each other; such that
for any two consecutive genes the distance between them is
small. An optimal gene order can be obtained by minimiz-
ing the summation of gene expression distances (or maxi-
mizing summation of gene expression similarities) between
pairs of adjacent genes in a linear ordering 1, 2, - - -, n. This
can be formulated as [2]

n—1
F(n) = Z Ciit1, (1
i=1

where n is the number of genes and Cj ;11 is the dis-
tance/similarity between two genes ¢ and ¢+ 1 obtained from
distance/similarity matrix.

Though hierarchical clustering provides good gene order
[3] by grouping co-regulated genes, there is still much room
in improving gene order. A hybrid method (first clustering
then ordering) for ordering genes for a hierarchical cluster-
ing solution is proposed in [1] where dynamic programming
is applied to flip internal nodes to reorder the leaves in a hi-
erarchical solution.

3 Materials and Methods
3.1 Preliminaries of Microarray Technology

In general, microarray data can be represented by a real
valued matrix; each row represents a gene and each col-
umn (or a set of columns) represents a condition, or exper-
iment. In cDNA (clone DNA) microarray-based investiga-
tions, RNA from experimental samples (taken at selected
times during the process) is labeled during reverse tran-
scription with the red-fluorescent dye Cy5 and is mixed
with a reference sample labeled in parallel with the green-
fluorescent dye Cy3 [3]. After hybridization and appropri-
ate washing steps, separate images/spots are acquired for
each fluor, and fluorescence intensity ratios are obtained for
all target elements. If R (red) and G (green) are the spot-
specific, quantitated, fluorescent intensities of the target and
reference expression signals respectively, relative gene ex-
pression is defined as the log ratio M = 1092%. For mi-
croarray data table each cell represents the M value at the
corresponding target element [3] obtained from the gene un-
der that experimental condition.

Fluorescence is currently the predominant method for
microarray signal detection [5]. A critical component of a
fluorescence scanner is the photomultiplier tube (PMT), in
which fluorescent photons produce electrons that are am-
plified by the PMT voltage, also referred to as the PMT
gain. For many microarray scanners, the PMT gain is an
easily adjustable parameter, and the calibration curve (i.e.,
the curve showing the relationship between dye concentra-
tion and fluorescence intensity) depends on the gain setting

[5]. This PMT gain is also varied for different types of
experiments of different biological origin. DNA microar-
ray measurements normally assume a linear relationship be-
tween detected fluorescent signal and the concentration of
the fluorescent dye. Each PMT has its own linear dynamic
range within which signal intensity increases linearly with
the increase of fluorescent dye concentration [5]. This linear
dynamic range also fixes the dynamic range of the recorded
microarray data (log ratio values) within which the data val-
ues are most reliable and used as the normalization factor
in the proposed distance measure to remove variations of
biological origin. For example, in Cell Cycle related ex-
periments, for dye Cy5, PMT gain at 960 volts fixes the
intensity range from x1 to x2, and for dye Cy3, PMT gain
at 760 volts fixes the intensity range from y1 to y2. So the
linear dynamic range of PMT fixes the linear dynamic range
of the data from 1092% to Zoggj;%. Note that, this dynamic
range is available either from the supplementary informa-
tion (website) of the article/data (Yeast datas), or upon re-
quest to the authors (Herpes data) and not from the datasets,
and hence is not sensitive to outliers. The proposed dy-
namic range based normalization belongs to the category
of between-slide or multiple-slide normalization with two
other members median absolute deviation (MAD) and vari-
ance regularization. The MAD and variance regularization
are dynamic range estimators (not the real one) and are also
implemented for the purpose of comparison. However, the
results obtained were similar to without any normalization.

3.2 Description of Data Sets

For gene ordering, data sets like Cell Cycle [4], Yeast
Complex [3, 1], All Yeast [3], and Herpes [7] are chosen.
Table 1 shows the name of the data sets, number of genes
in each dataset, number of gene categories, name of exper-
iment types and number of experiments performed under
each type, and finally the total number of experiments per-
formed for a particular dataset. The dynamic range of ex-
pression values of each experiment is shown within paren-
thesis. The dynamic range of available data represents log
ratios of -1.2 to 1.2 for the cell-cycle experiments, -3.0 to
3.0 for sporulation, -1.5 to 1.5 for the shock experiments,
-2.0 to 2.0 for the diauxic shift, and -13.0 to 13.0 for Herpes
data. The first three data sets of Saccharomyces cerevisiae
consists of about 652, 979 and 6221 genes, and 184, 79 and
80 microarray experiments respectively. The genes in the
three data sets are classified according to MIPS [6] cate-
gorization into 16, 16, and 18 groups respectively. Herpes
virus genes are broadly assigned to five functional groups
and available in [7].



Table 1. Summary for different microarray data sets

Dataset No. of genes | Category Experiments performed Total
Cell Cycle sporulation shock diauxic shift
Cell Cycle 652 MIPS (-1.2t0 1.2) (-3.0t0 3.0) (-1.5t0 1.5) | (-2.0t02.0)
16 93 9 56 26 184
Cell Cycle sporulation shock diauxic shift
Yeast Complex 979 MIPS (-1.2t0 1.2) (-3.0t0 3.0) (-1.5t0 1.5) (-2.0t0 2.0)
16 18+14+15 7+4 6+4+4 7 79
Cell Cycle sporulation diauxic shift
All Yeast 6221 MIPS (-1.2t0 1.2) (-3.0t0 3.0) (-2.0t0 2.0)
18 60 13 7 80
No KSHV -TPA TPA
Herpes 106 GeneBank | (-13.0t0 13.0) | (-13.0to 13.0) | (-13.0to 13.0)
5 1 7 13 21

3.3 New Distance Measure

A natural basis for organizing gene expression data is

types. The normalization factor is chosen as the linear dy-
namic range of data values obtained from photo multiplier
tube, for a particular type of experiment.

to group together genes with similar patterns of expression. Let . o . . .
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behavior of two genes can be used, such as the Manhat-
tan distance [8], Euclidean distance [8], Pearson Correla-
tion distance [2]. These distance measures usually take the
same normalization factor (like standard deviation for Pear-
son correlation) for a gene. This normalization factor is in-
dependent of the type of experiment and performs global
normalization to all the expression values for a particular
gene; thus loosing useful local information. But, a closer
look at the gene expression data reveals that the dynamic
range of expression values differs with the type of experi-
ment, and remains the same for all the genes in the dataset.
So, using the same normalization factor is undesirable for
all types of experiments, where expression values differ by
orders of magnitude from one kind of experiment to an-
other. Consequently, it may be appropriate and better if the
normalization is performed

e separately for the different types of experiment with
different normalizing factors; thereby preserving the
local information

e keeping the same set of normalization factors for all
the genes in the dataset.

Such an attempt is made in this article where two new
distance measures are developed using Manhattan distance
and Euclidean distance respectively (to avoid over sensitiv-
ity to three fold changes), in which the normalization is de-
pendent on the type of experiment. This, in turn, results in
equal weighting of distance values for different experiment

be the expression levels of the two genes in terms of log-
transformed microarray gene expression data obtained over
a series of m different types of experiment (eq, ea, - - - €;,)
consisting of 41 + 22 + - - - 4 %, €xperiments in total. Using
Manhattan distance the Maxrange distance between X and
Y is defined as

m

1
Maxrange-M  y, = — Z
’ m

r=1

1 Sl -l
i, Maz., — Min,,

where, Max,, and Min,, are the maximum and mini-
mum log2(R/G) values obtained from the linear dynamic
range of the photo multiplier tube (or radioactive probe) for
an experiment of type e,.

Using the Euclidean distance the Maxrange distance be-
tween X and Y is defined as

1 m 1 \/Z;T:l(x? _ y]e_r)2
Maxrange-Ex y = ooy > o X Maz. — Min..
3)
Throughout the literature we have used Maxrange-M and
Maxrange-E for representing Maxrange distance measure
using Manhattan and Euclidean distance respectively.

4 Biological Interpretation

A biological score, that is different from the similar-
ity/distance measures, is used to evaluate the final gene



ordering. Each gene that has undergone MIPS catego-
rization can belong to one or more category, while there
are many unclassified genes also (no category). A vector
V(g) = (v1,ve,---,v;) is used to represent the category
status of each gene g, where j is the number of categories.
The value of v; is 1 if gene g is in the jth category; other-
wise is zero. Based on the information about categorization,
the score of a gene order for multiple class genes is defined
as [9]

N-1
= G(gi,9i+1) “)
i=1

where NNV is the number of genes, g; and g;41 are the adja-
cent genes and G (g;, gi+1) is defined as

J
G (9i9i11) = Y _ V(9)kV (gis1)k (5)
k=1

where V' (g;)y represents the k' entry of vector V(g;).
Note that, S(n) can also be used as scoring function for
single class genes like Herpes genes. Using scoring func-
tion S(n), a gene ordering would have a higher score when
more genes within the same group are aligned next to each
other. So higher values of S(n) are better and can be used
to evaluate the goodness of a particular gene order. Note
that, although these scoring functions provide a good quan-
titative index for gene ordering, using S(n) as the similarity
measure in ordering is not practical, since the information
about gene categories is unknown for most of the genes in
the real world.

S Experimental Results

Algorithms of gene ordering and clustering are imple-
mented using mex files in Matlab 7 on Sun Fire V 890
(1.2 GHz and 8 GB RAM). The codes for single, average
and complete linkage and Bar-Joseph et al.’s [1] method
are downloaded from [10]. Performance of the proposed
Maxrange-M and Maxrange-E distance are compared with
Pearson correlation, Euclidean distance, and Manhattan dis-
tance.

5.1 Comparative Performance of Distance Mea-
sures

Table 2 compares the performance of our proposed mea-
sure with those of the other measures in terms of the S1
value (Eq. 4). Three distance measures are considered,
namely, Maxrange-M, Pearson and Euclidean. The biolog-
ical scores corresponding to Manhattan Distance are found
to be comparable to those for Pearson Correlation, and
hence omitted here. The percentages of improvement over

the lowest biological score (in terms of S1 value) in a par-
ticular data set are shown within parenthesis, and defined
as:
p1,, = dia = minildiy) | 0, 6)
mmi(di_j)

where, d; ; indicates the biological score (S1 value) in
ith row and jth column of the result matrix in Table 2, and
min;(d; ;) indicates the minimum biological score in col-
umn j for all 7. These PI values in Table 2 are used in the
next section for conducting t-tests.

Though in most of the cases Maxrange-E distance is
found to be superior to Euclidian distance and inferior
to Maxrange-M, for All Yeast data, it performs better
(S(n)=2441) than Maxrange-M (S(n)=2341) for average
linkage algorithm. When the microarray data sets con-
tain experiments with data value of same dynamic range,
like Herpes, then Maxrange-M provides identical results
with Manhattan distance for all widely used ordering algo-
rithms. However the superiority of Maxrange-M is evident
when different types of experiments are present in a par-
ticular microarray data. For example, superior results are
obtained with Maxrange-M for most of the available algo-
rithms for the Cell Cycle, Yeast complex and All Yeast data
sets (shown in first row for each algorithm in Table 2).

5.2 Statistical Analysis of Maxrange-M Distance
Measure

To statistically compare the performance of Maxrange-
M distance with Pearson Correlation in case of ordering al-
gorithms, t-tests are performed with the PI ( Eq. 6) values
shown within parenthesis in Table 2, using the equation

PI, - PL,

t= (7
\/V(lT?(l’fL(f Pl 4 Va'rza'nccPIz

ni n2

where, PI; and VariancePI; are the mean and the vari-
ance of all the available PI values for Maxrange-M dis-
tance in Table 2. P15 is used for Pearson Correlation and
ni1 = ng = 16, as there are 16 PI values available in to-
tal from Table 2 for each of the distance measures with 4
datasets and 4 algorithm. So, the degrees of freedom for t-
test are 16 x 2 — 2 = 30. Similarly, t-test is also performed
for Maxrange-M distance and Euclidean distance. The two
t values and related p values are shown in Table 3. The al-
ternative hypothesis (1), that the average of ‘percentages
of improvement over the lowest biological score’ for the
Maxrange-M distance is better than the related one (Pear-
son or Euclidean), is used in the calculation of t-statistics.
The final conclusion, once the test has been carried out, is
always given in terms of the null hypothesis (Hy), that there
is no difference between the averages of ‘percentages of im-
provement over the lowest biological score’ for the two dis-
tance measures. After finding the p values (from t-table)



Table 2. Biological Score (S(n)) and Percentage of Improvement (PI) value (within parenthesis) for
different distance measures and algorithms

Data Sets
Distance Algorithm Cell Yeast All Herpes
cycle complexes Yeast

Maxrange-M Bar-Joseph 423 (17.83) | 1074 (26.50) | 2371 (22.85) | 43 (19.44)
Average Linkage | 415 (15.60) | 1040 (22.50) | 2341 (21.30) | 39 (8.33)
Complete Linkage | 407 (13.37) | 1043 (22.85) | 2305 (19.43) | 38 (5.56)
Single Linkage 382 (6.41) 903 (6.36) 1970 (2.07) | 41 (13.89)
Pearson Bar-Joseph 381 (6.13) | 1024 (20.61) | 2350 (21.76) | 38(5.56)
Average Linkage | 385(7.24) | 987 (16.25) | 2292 (18.76) | 38 (5.56)
Complete Linkage | 393 (9.47) | 955(12.49) | 2301 (19.22) | 36 (0.00)
Single Linkage 359 (0.00) 902 (6.24) 1973 (2.23) | 39(8.33)
Euclidean Bar-Joseph 421 (17.27) | 1013 (19.32) | 2346 (21.55) | 40 (11.11)
Average Linkage | 403 (12.26) | 1011 (19.08) | 2431 (25.96) | 39(8.33)
Complete Linkage | 403 (12.26) | 999 (17.67) | 2269 (17.56) | 37 (2.78)
Single Linkage 361 (0.56) 849 (0.00) 1930 (0.00) | 36 (0.00)

Table 3. Results of t-test for different pairs of

distance measures
Pairs of distance measure
Maxrange-M | Maxrange-M
& Pearson & Euclidean
2.0134 1.2709
0.027 > p 0.107 > p

for corresponding t values, we reject the null hypothesis
for both the cases with significance level 0.027 and 0.107
respectively, which suggests that there is strong evidence
against the null hypothesis in favor of the alternative.

6 Conclusion

A new measure called Maxrange, for evaluating the dis-
tance between genes, is used for efficiently ordering the
genes in terms of their expression values for microarray
datasets. The available measures for gene distance, like
Manhattan Distance, Euclidean distance, and Pearson cor-
relation, use only one normalization factor (1, 1, and stan-
dard deviation respectively) for all types of experiments, al-
though the expression values may differ by orders of mag-
nitude from one kind of experiment to another. As a con-
sequence, the distance between genes may not be properly
reflected in these measures for microarray data having dif-
ferent types of experiments. In contrast, normalization is
performed separately with different normalizing factors for
the different types of experiment in our Maxrange-M and
Maxrange-E distance. This makes it, suitable for both sin-

gle type and multiple type of experiments and, promising
for microarray gene expression related experiments.
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