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ADBSTRACT

A modilied version of the Bezier-Bernstein polynomial approximation tech-
nigue has been developed which gives local control of data points depending on
an ahsolule error criterion. Based on this concept, two algorithms for coding a
aray-tone image have been formulated. Error bounds have been developed which
are used to approximate pray segments of pixels. These bounds are determined
v the desired error in approximation. Effectiveness ol the algorithms has been
demnonstraled on a get of imagoes.

. INTRODUCTION

Bezier approximation technique [1] which uses the Bernstein polynomial
as the blending function is well known in the field of computer graphics for
ils speed of computation and axis independence property. It has recently
been used successfully in contour coding of binary images [2, 3|.

The present work is an attempt to investigate an application of the
Bezier-Bernstein polynomial in gray-tone image data compression. First of
all, we have investigated if the conventional way of approximating an mage
by the Bezier-Bernstein polynomial provides any advantage from the data
compression standpoint. For this, an entire row (or column) of an image
has been considered as a single segiment for its approximation. From the
approximation theorem of Bernstein [4], it is evident that, for a given error
term, the order of the polynomial increases with the maximum gray value
present in the segment. Therefore, if the maximum gray value in an image
is very large, the order of the polynomial becomes large. Consequently,
it introduces a large number of contrel points and the generation then
hecomes slow. This makes inconvenience in using the conventional way of
approximating an image for its compression.

A modified version of the approximation technigue is then developed
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to scrve the purpose. Here, we have emphasized the local control of data
points instead of minimizing the global squared-error sum. An absolute
error criterion has been chosen to keep the absolute error within a bound.
Also, for the sake of data compression, we have chosen a second-order
polynomial,

Based on the modified concept of approximation, two algorithms are pro-
posed. The first algorithm uses the error bound to segment rows (columns)
into lines and arcs which are coded in the subsequent stage. The second
algorithm, on the other hand, considers a row {or column) as a space curve
on intensity surface and separates out the small deflection curve segments
on the basis of a homogeneity criterion. These segments arc then approxi-
mated and coded. The performance of the algorithms is tested on a set of
input images. Their discriminating features are also provided.

2. SHORTCOMINGS OF THE BERNSTEIN POLYNOMIAL AND
ERROR OF APPROXIMATION

The Bernstein polynomial is a powerful tool to approximate a continuous
function within any degree of accuracy. It uses the global information while
approximating a function, and the order of the polynomial increases with
accuracy in approximation. Let us consider the Bernstein polynomial of

degree m,
Bty = Zf( ) Pim (t (1)

for approximating a function f(t). Here f({) is defined and finite on the
closed interval {0, 1]. Also,

ot = (T)ea- 0

withiga=] i dis 1.
It can be shown that the order m of the Bernstein polynomial B, (t)
satisfies the inequality [4]

£§ < n (2)

in order to have an error of approximation less than e, where & is the
maximum value of the approximating function f(¢) in the interval [0, 1]. &
is a positive number such that, for points t,,t3 {0, 1),

F0) - f(ta)] < 3,
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=1

whenever [£) — £s| < 4.

Since a gray-level image can be approximated either row wise or column
wisc, it appears from the above inequality that the order of the approximal.-
ing polynomial may be different for different rows (or columns) depending
on the value of £, Let us consider the case of approximating a 32 x 32
grav-level image row wise. If a row has its maximum value £ — 32, then.
for e = 1, (i.e., one unit error in gray value), m > {32 x 32 % 32)/31 = 31 =
34.09, since § = 31/32. Therefore, for & = 32, one can choose mi to be equal
1o 30,

On the other hand, if £ = 1, then m = 1.06, i.e.,1n = 2. k£ = 1 means ali
the gray-level values in a row are the same and are equal to 1. Since in a
gray image, it 15 very likely to have the maximmn value anywhere in ecach
row, the order may be as high as the maximun gray level in the image.
This makes the method meffective.

3. PROPOSED APPROXIMATION TECHNIQUE

[t iz seen in the previous section that, to approximate a gray-tone image
row wise (or column wise), the order of the Bernstein polynomial varies
from row to row (or column to column), and for a high-resolution image
(small 4} with one unit error in approximation (¢}, this order becomes close
to Lthe maximum value present in each row {or colmnn}. The large order of
the polynomial, in turn, makes the time of approximation also high. Again,
the variation of the order of the polynomial from row to row (or column to
colutun) makes the coding scheme complicated.

An attempt is made in this section to describe an approximation scheme
keeping the order of the polynomial equal vo 2. Tor this purpose, let us
consider the Bezier—Bernstein (B-B) polyouomial which incorporates the
Bernstein polynomial as the blending function. Since the order is cho-
sen to be 2, the amount of error e, as expected, will be significantly high.
Furthermore, unlike the case of two-tone contour coding [2, the straighr-
forward application of a guadratic B-B polynomial to image data 15 not
able to segment a row (or column) for their proper approximation. Tn or-
der to circumvent this, a modification of the B-B polynomial is proposed
here. This leads us to formulate a scheme by which it is possible to obtain
any degree of accuracy in approximation.

Ciiven n points, the approximation algorithm requires (n — 2} unique
quadratic B-B polynomials for their representation. Unlike the method de-
seribed in Section 2, the scheme proposed here decomposes a row {columnn)
either into a single gray segment or into a number of segments so as to en-
able them to be approximated properly. An error bound has been defined
which guides the process of segmentation.
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3.1, BEZIER-BERNSTEIN POLYNOMIAL

Equation (1), which represents an mth degree Bernstein polynomial for
approximating a function f(#),0 <t < 1, can be written as

Bm{t} = ¢Um{t}f{[]J + ﬁfl"lml:f] f(i) *Qﬁ?n(f}f(z) 3 i 1 ﬁbmm“}f{]]-

I TrL

By, (t) is seen to consider a set of weights ¢y, (f) (0 < ¢ < 1), along with
some fixed points of function f(#) in [0, 1] for its approximation. With the
choice of some arbitrary points for (%), one can determine By, () for each
value of 1.

Let u; represent a point in a multidimensional space and that v, = f{ ;—1 1
Thus, B,,(t) becomes

Bu(t) = Y Gir{t) vs. (3)
i=0

Equation (3) cau be viewed as a vector-valued Bernstein polynomial, and it
approximates a polygon with vertices v, with £ in [0, 1]. B, (¢) is thus seen
Lo generate a space curve. Equation (3} is known as an mth degree Bezier-
Bernstein (B-B) polynomial. For m = 2, the guadratic B-B polynomial

is

2
Ba(t) =Y gult)y
1=

= goa(t)vo + @ralt)vr + daalt)vs
= (1= )% k- 2¢{1 - Loy + 70, (4)

9.2, APPROXIMATION CRITERIA OF f(t)
I order to develop an approximation techuique, let us first of all for-
mulate the key criteria associated with this technigue. Let us assume
(N — 2} quadratic B-B polynomials for the representation of N data points,
such that
f(ty) = By(t), i—1,2,3,....N -2,

where Bj(t;) is the value of the ith quadratic B-B polynomial at the point
t; and is given by

Bé{t%} = {1l — f:z:lz?,-‘n + 28,1 — 400 + tffvg. (5)
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et
B0y = B3(0) — - = BY 2 (0) = 1y
ancl

In other words, the end supports of all the quadratic B-B polynomials
are assumed to be identical. This is shown in Figure 1, where the second
supports v} of all the polynomials are shown to be different. From (5). the
sccond support of the ith polynomial is obtained as

o Bit) — (Lt v, )
B 2001 — 1, ' e

Let ¢4 = ¥, when t; = 5 and let the corresponding B-B polynomial with
support vy, 1, and vy be By(t;). Note that Bj (data points) at {; — %
may not always be available (e.g., for even number of data points). In this

case, we consider two data points in the neighborhood of t, = 1 (¢, < 1,

nd £y T %} to calculate the corresponding v values and take their average
to find 7. The discrete form of By(t,} ean be expressed as

Ba(t) = (1~ )% + 24:(1 — 1T + Lva. (7}

So, | |
|Ba(t,) — Bi(t,)| = |00 — vi| x 26:(1 ~ ;).

This expression denotes the absolute difference between the polynomial
B,(t;) and an arbitrary ith quadratic B-B polynomial Bi(t;) at an instant
£,
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IFig. 2. Annular wone indicates space for 7,

can be approximated by Ba(t) with an crror inequality expressed in (12).
v} values thus form an annular ring with center at vy, The inner and outer
radii vy and ro are, respectively, (N - 1)2/[2{N ~ 2)|e,in and 2e,,.x. € and
en, may lie either outside or on this annular ring. This is shown in Figure 2.

inequality (11} tells us that the function f(t,) = By(t,), i = 1,2,... . N -2

g4 WORST-CASKE APPROXIMATION

It 35 seen from the previous section that the inequalities {11) and {12)
can be used to approximate a gray-tone image row wise (or column wisc),
During approximation, it may be the case that the inequality (11) does not
hold good for all values of 1 associated with the dimension of the imago.
Let us consider that the inequality is true for n pixels out of N in each
row {(or column). Thus the remaining (N - 1 1} pixels can again be
approximated over the interval (0, 1]. Approximation technique thus may
involve decomposition of the entire row {or column) into a number of gray
segrnents. It is to be noted that the inequality (11) is alwavs true for
all interval having three pixels irrespective of the incquality (12). This
situation is referred as worst-case approximation in the sense of coding
because it generates a maximum number of gray segments while doing the
approximation. Finally, the end pixel of the row {or column} may remain
free. In this case, the same pixel may be considercd twice for the worst-case
Approximation.
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TABLE 1
Nlustration of Approximation Technigues

Interval Original Data Points Approximated Values Error in Approximation
24 24.00000000 0.00000000
2T 2668610137 1.313598613
1 24 2872960251 (0.27039710
30 3012960052 [, 12960052
31 S0 86402134 0.1 L3597THT
31 A1, 00000008 0. 00000000
31 3100800000 (.0D000a00
32 3152610343 047359657
2 32 41 84860266 (0.1 10539734
a2 3208959961 {LOH959961
32 32.12639999 (0. 12630999
32 32.00000000 (1.000300000
32 42:00000000 LA0E00000
1 31 31.01000023 (0.01000023
31 4100000008 0.00000000

EXAMPLE. In order to explain the method of approximation, let us
consider a sequence of 13 data points. The sequence is 24, 27, 29, 30, 31,
31, 32, 32, 32, 32, 32, 31, 31. Let the maximum and minimum supplied
BITOrS €qax and €, be, respectively, 1.0 and 0.01. It is seen that the
approximation can be done over three intervals, The approximated values
in the three intervals, along with the original data points and errors in
approximation, are shown in Table 1. [t is also seen from the table that
the data point at the beginning of one interval is exactly the same as the
end point of the previous interval.

The partition of data points into three intervals is controlled by {11).
The values of 7y for the three intervals are, respectively, 31.52000040,
32.52000046, and 30.52000046. The lower bounds for the absolute value
of (7, —v}) as indicated in (11) are found to be 0.03125, 0.03125, and 0.02
in the three intervals, whereas their upper bounds were found to be the
same and equal to 2.0,

4. IMAGE DATA COMPRESSION ALGORITHM

Based on the modified version of the B-B polynomial, we have devel-
oped here two algorithms for image data compression. Both the algorithims
involve scanning in the horizontal {or vertical) and encode line and arc seg-
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ments present in iimages. Algorithm 1 uses the absolute error criterion of
the approximation scheme for a specified error hound while segmenting a
row {or a column}. Algorithm 2, on the other hand, uses a homogeneous
criterion (hased on analogy between the small deformation cubic splines
and image space curves) to segment rows [columns). These segments are
then approximated using the quadratic B-B polynomial and coded suitably,

4.0 ALCGORITIM |
{41, Coding Scheme

An image can be approximated either row wise or column wise. The
one which needs fewer number of segments is selected for coding. In the
following section, we will explain the bit requiremnent for the proposed
method of coding.

4.1.2. Bl Requivements

Let us consider an image of size M x N with L number of gray levels.
Since there may be a number of gray segments resulting in the process
of approximation, cach of them can be coded by their corresponding two
supports (the starting pixel being known}). If the image is coded row wise,
then the starting pixels will be the first column, while for column-wise
coding, the fArst row pixels will be the starting pixels.

Since the positional information of the B-B supports is not taken into
account for coding, the size of the gray segments becomes important for
revencration of the Iimage. Since the maximum possible size of a seunent
is NV (or M), the bit required for coding a segment is log, N{orlog, M) if
coded row wise (or column wise).

It should he noted that cach of the gray scomoents represents a Bevier arc
having three supports of approximation, namely, g, v, v (guiding pixels).
(M them, 1, may not be integer. So we store wuy,, the integer part of the
data point o) (say) at £ = -}; of the seoment and . The bit required for
cach of them is log, L.

Furthermore, we notice that when vy + 1o — 2ua, the Bezier arc reduces
to o straipht line segment, and under this situation. we need to store only
arp. I practice, we consider a Bezier arc to be a line segment when vy -+ vy =
20 L) 1s observed, where 81 is a small positive integer. Also. ifvs = vt b,
then only a single check bit and a sign bit are sufficient to recover the line
segmient (provided the starting point is known). Two such lines are alzo
merged together to make a single line segment if

I::'E'f'LI]'l.*.at. seg T (’Uz}znd sep 2("’--'].}1:omhim~c] SO 2 iy
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Fig. 3. Coded binary string for Algorithm 1.

Finally, if the end pixel of the row {or column} remains free, then we neither
consider it for worst-case approximation nor consider it for coding. During
regeneration of this pixel, we simply consider the previous pixel.

Let n;, v; be the number of line sezments with or without the replace-
ability condition satisfied, and m; the number of arcs present in the ith
row of the image. If ay, 3, and ~; are the amount of bits required in each
of the above respective cases, then,

a, = ni(logy N (or log, M) + 3},
3, = rillogy N (or log, M) + 2 + log, L},
v, = my{log, N {or logs M)+ 1+ 2log, L].

It s is the bits required for the starting pixels. then the total number of
bits for an M » N immage for row-wise approximation is

AL
FT=1+s5+ L‘f}:i + _.l':it' - ¥i-

i=1

4.1.3.  Decoding

The coded binary string for the image is as shown in Figure 3. Decoding
of the string uses the following notations.

"The first bit (I, ) denotes the mode of approximation. {; = 0 for row-wisc
and 1 for column-wise approximation. The next sequence Iz of log, L bits
represents the gray value of the starting pixel, which is the frst entry of
the lmage M x N. The length of {3 is either log, N or log, M, depending
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on {{; — 0 or 1}. The bit {{4} indicates the type of the segment. I, == 0 for
straight line segment and for arc.

If iy = 0, then the subsequent bit {5 denotes the replaceability of the end
pixel of the line segment. {; = 0 indicates that the end pixel is replaceable
bv the bepinning pixel of the line segment. {; also is 1 hit long and pgives
the sign for &;, and the next sequence in the decoded string is ;. On
the other hand, if {5 = 1, then {z is absent and the sequence 15 gives the
vray vatue of the end pixel of the line segment. {; has lenpth log, L. For
{1 — 1 {le., the segment is an arc), {5, g, and-l; are all absent, and g,/
are the two pixels of the are. Each of them is log, L bits long. Finally,
is identical to §y for the next row. The same process is then repeated for
the entire image.

4.2, ALGORITHM 2

Here each row (column) of pixels has been viewed as a space curve and is
segmented depending on the homogeneity among the pixels. Tlach segment
is then approximated by the maodified B-B polynomial with a variable error
criterion. Since the segments are all homogeneous, approximation for cod-
ing can he done with small error. This will, in turn, reduce the smearing
sipnificantly. Tt also makes the approximation faster, and the algorithm
hecomes paramoeter independent. Further, unlike algorithm 1, where we
considered T = v} at # = 0.5, the present approximation scheme incorpo-

rates
_ 1 : 13)
U]_ — [AEE8 g
o E r 1 {

This, in turn, introduces Hexibility in approximating larger segments as
compared to algorithm 1.

4.2.1. Small Deformation Space Curve and the Concept of
Homogenetty
An image may be considered to be an intensity surface with surface
contours representing the space curves along the rows and columns of the
itnage. Note that for any curve I, the amount of mformation contained
i it can be represented by s curvature vector k or by any other related
cuantity. The curvature vector k i defined as

o

s’

{ being the tangent vector and s being the arc length.
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For a curve [', with given end points, its bending cnergy B, can be

written as
{0 o= / k2 ds.
T

Here the deformation of the curve is in the direction normal to the axis
of the equilibrium position. Therefore, when the x-axis is along the axis
of equilibrium position, the deformation may be represented by z{x) and,
consequently, we have

B, = [R:E dr
Jr

— 2 x))? =
= L TP e

For small deformation, z'(z) = 0 and B, =~ [.[z"(z)!*dz. Sincc B.
represents the total energy of the curve, &2 or (2" }12 represents the energy
of the curve at an arbitrary point. Therefore, in an image plane, &? will
represent the energy of the image space curve at a pixel position.

With the above principle, a curve {a set of pixels along a row or a column)
can be considered to be perfectly homogencous if the bending energy is zero
at every pixel position. This is obviously the most stable state of the curve
(i.e., without any deformation). Homogeneity decreases with the increase
of deformation.

For the purpose of image compression, we are interested in finding the
homogeneous segments of pixels in an image, because such segments can be
approximated with small amount of error and they do not produce signif-
icantly any smearing effect. From the space curve analogy, homogeneous
segments of pixels are segments with z'(x) = (. However, in practice,
it 15 very difficult to obtain long segments of pixels with zero gradient
everywhere. On the other hand, we can find a threshold € and accept those
segments with z'(x) < @ as the allowable deformation space curves.

In order to determine §, we consider an analogy between a space curve
and a thin elastic physical spline, resting on two simple supports. Without
any loss of generality, a physical spline can also be viewed as a thin elastic
heam. It is shown in the Appendix that, in order to have a corner-free
small deformation cubic spline sepment {i.e.. homogeneous space curve),
one should have

a denoting the direction of tangent vectors at the ends of the segment. The
segments of pixcls thus obtained with this @ are then approximated by the
madified B-B polynomial.
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Fig. 4. 'U'vpical {connected and nonconnected) homogeneous scgments,

4.2.2 Segment Geometry and Dit Reguirements

Each row {or column) of pixels in the image is a collection of homo-
oeneons segments. The homogeneous segments obtained in the previous
section are either strajght line segments or arcs, or a commbination of them.
Further, the pixel segments in a particular row may or may not be con-
nected to the segments in the just preceding row. Two segments in two
successive rows are conniected in the x-y projection plane if their end points
arc connected. This means that only three different connections are possi-
hle. The end of a segment s; with position vector (7. j) in the ith row is
connected to a segment 5; ¢ in the preceding row if

Two individually homogencous scgments in two successive rows together
arc called homogeneous if the columu-wise differences between successive
pixels are all less than #. Shmilar definition holds for two successive ho-
mogeneous columns. We consider those homogeneous segments for which
their end point difference also 15 less than #. With this principle, we get
the following four different kinds of segments in a row (or a column):

connected and homogencous segment (CH)

connected and not homogencous scgment (C-NIH)
nonconnected and homogeneons segment (NC-H)
nonconnected and not homogeneous segment (NC-NH)

Figure 4 shows the nature of typical homogencous {connected and non-
connected) segiments.

Sinee the approximation scheme is restricted to the scan direction {either
horizontal or vertical), a connected vertical line of one or two pixel widch
will produce a single-pixel- (SP) or two-pixel- ('I'P) long segment, and they
arc also taken as valid segments in the coding algorithm. Successive three
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scgments of one pixel length or a single pixel followed by a two-pixel-long
segment, or vice versa, is replaced by an are segment. In all other cases,
single-pixel or two-pixel-long segments are merged to the nearest segment.
Note further that a (SP) or a (TP} segment may or may not be connected,
and they can also maintain a colunn-wise difference less than € in its
value from the preceding one. Therefore, for a single-pixel scgment from
the above nomenclature we get CHSP, C-NHSP, NC-HSP, NC-NHSP type
of segments, and for a two-pixel-long scgment we get CHTP, C-NHTP,
NC-HTI, and NC-NHTP type of segments. With the above geometry
of segments, it is clear that a CHSP segment requires minimum bits of
information, while NC-NH are requires maximum bits of information. For
two homogeneous arc segments {connected or nonconnected), one arc can
always be found from the other provided we know one of the arcs and
a difference vector with the differences at known points. This difference
vector & can be taken as

11 — hl
A= fin — Eig
az -~ ba

where aq, a2, and a3 are the known points on an arc, and 6y, b2, and by are
the points on an unknown are, where the differences are considered.

Figure 4 shows two such arcs. For a CH arc, we therefore need 2 bits
for the end connection, 3 x 3. L.e., 9 bits for the pixel intensity differences,
and 3 more bits for its identity, so altogether 14 bits. For a NC-NH arc,
the number of bits is log, V + 3 log, L F3 for an M x V and L-level image,
where log, N bits of information are required for the length of the segment,
and 3log, L bits for pixel intensities of the three points of the arc. For all
other segments, bit requirements are given in Table 2.

4.3, DISCRIMINATING FEATURES OF THE ALGORITHMS
For Algorithm 1:

e Segmentation of pixels in row {or column} does not need any sepa-
rate algorithm. The approximation scheme itself sclects the specific
segments.

e The method of approximation depends on the selection of e,y and
Cmin. Lhe values of these parameters are the same for all segments in
the image. The resulting performance ip reconstruction, therefore, is
paramecter dependent.

e For large ¢y, the possibility of the long homogeneous segments of
pixels for satisfying the approximation criterion increases. This may
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TARLE 2
Bil. Requirements for Different Segments

Segment Nature Bit Requirement Seginent Naturo Bil Hequircment
-H line segments 11 {O-NH line segment, a4 2oy,

C-TT e segmennt 14 C-NH are segmend 4 dlog, I
CoHEP i C-NIISE 4+ log, L
C-TITE L0} C-NHTT = dlogy
NO-H fine segment d 4 log, N NC-NH line segment 34 logs N 4 Xog, L
N-H are scgment 12 + lop, ¥ MO-NH arc scgment, 3o log, N + 3lop, L
NL_I—['].L_;}) A + I.'Dg-z N \(_1—[\H'.'-";--|:J ) + ]ﬂg}_ J'Rfl I' |[:}R;2 f.

MNC-HTP 8+ log, N NC-NHTH

|

tliogy IV + 2logy /.

introduce visual disparity between the original and the reconstructed
segments. This, in turn, may affect the overall picture quality.

For Algorithm 2:

e A separate algorithm selects only those segments which are homoge-
neous in some cases. For this, an image has been considered as an
intensity surface and the homogencity concept of pixel segments has
been viewed as a small segment space curve on this intensity surface.

e Different homogencous segments in an image are approximated with
different values of €., which are determined automatically in the
process of approximation. The performance of the algorithm, there-
fore. does not depend on €., as in Algorithm 1.

e Since the approximation is done over the homogeneous seginents of
pixcls, low values of €., are able to approximate all the segments.
This, in turn, significantly reduces the smearing effect.

5. REGENERATION

Reconstruction of the image during decoding is done using the quadratic
B-B polynomial. We use here the recursive computation algorithm based
on Newton's forward difference scheme as described in [2]. Let y = at? +
bi -+ ¢ be a polynomial representation of (4), where the constant parameters
a, b, and ¢ are determined by the three pixels [two end pixels and one
mid pixel) of the arc segment. The usual Newton's method of evaluating
the polynomial results in multiplications and does not make use of the
previously computed values to compute new values.

Assume the parameter t ranges from 0 Lo 1. Let the incremental value
he g. Then the corresponding y values will be ¢, ug® +hg + ¢, dagq® + 2bg + ¢,
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9ag” + 3ag + ¢, .... It can be observed from [2] that

fi\.zyj =2aq® and Yiga — 2451 iy = Qa4 7= 0.
This leads to the recurrence formula
y2 =2y - yo + 2ag° (15)

that involves just three additions to get the next value from the two pre-
ceding values at hand.
Since the gray segment size is known, the increment g can be obtained
from
1
 segment size - 1

The regenerated gray value g2 can therefore be determined from {15}.

6. RESULTS AND DISCUSSION

An attempt is made here to demonstrate an application of one-dimensional
quadratic Bezicr—Bernstein polynomial approximation in coding gray-tonc
images. Drawbacks in using the conventional way of approximation have
been examined and a modification is then introduced in order to make
it. useful in image data compression. Based on the modified concept, two
different algorithms have been formulated.

Note that Algorithm 1 may produce smearing for large values of €,,...
because with the increase in the value of €4, the possibility of the long
homogencous segments of pixels for satisfying the approximation criterion
increases. As a result, visual disparity may arise. However, this siearing
is almost absent in Alporithm 2. Also, the picture quality and the com-
pression ratio are better compared to those in Algorithm 1. Tt is seen from
Table 3 that the compression ratio iz of the order of 0.8 bit /pixel.

The approximation technique deseribed here is different from the con-
ventional least-square method of approximation. Instead of minimizing
the global squared sum of errors, it controls an absolute maximuim error
for each data point. It should be noticed in this context that if the pix-
els of a segment have low intensity variation, then the techniques based
on conventional quadratic least-square and the quadratic B-B polynomial
approximation will produce the same result. Since the proposed method
of approximation controls an absolute local error instead of global sum of
errors, it is expected that even for moderate variation of intensity within
data points, the proposed method will produce better resulis. Also, given
an error term, the conventional least-square technique does not ensure that
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TABLE 3
Results
Algorithm 1 Algorithm 2
Mode of Compression Mode of  Compression
Images Approx, Crnax atin Images Approx, tio
Fig, Th  row-wise G 1.87
i, T i 10} .04 Fig. [0a row-wise £33
Fig. Td " 14 7.32
Fig. b row-wise 4 3.80
Fig = - ti 4.44 Fig. 10b  row-wige £.58
Fig. sd = H 4.76
Fig, 4l row-wise 4 234
Fig i = 5 251 Fig 10c row-wise 380
Fig. 4 . 3] 2.82

Fig. 5. Behavior of weighting (blending) functions for a cubic spline.

all the data points will satisfy the error criterion, whereas in the proposed
method this is not the case. Furthermore, it is not necessary to compute
any functional distance (unlike the least-square technique [5]) to justify
the poodness of approximation because the error term itself quantifies this.

Note further that our intention here is to demonstrate an application
of one-dimensional B-B polynomial in the scan direction for image data
compression. Since the algorithms consider scanning in only one direction,
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Saturh toriginall (a) thi

fc) id}

IFip. 7. (a) [nput saturn image. (b)-(d} Regencrated output images with (b} £5.. = .
i) Cngx = 10, and (@) cmax = 14 by Algorithm 1

the scheme is fast and simple in hardware implementation. However, it is
needless to mention that the two-dimensional approximation always pro-
vides a better compression ratio than the corresponding one-dimensional
approximation.
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Fig. & {a) Input biplane image. {b)—{d)} Hegenerated output images with {b) €mux = -,
fe) emux = 6, and {d) emax = 8 by Algorithm 1.

APPENDIX

We know that for small deformation, the Euler equation for bending
moment M (z) of a beam can be written as
Vi
M(z) = —,
M=) =z

where 1/R(x) = k{x) = z"(x) [from (14)]. Y is the Young’s modulus
depending on the material of the beam, [ is the moment of inertia for the

cross section of the beam, and R(x) is the radius of curvature of the beamn.
Assuming simple supports, the bending moment is known to vary linearly
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I“ig. 4. (a) Input Lineoln image. (b)-{d} Regencrated oolput images with (b} fpee = 4
{0) emax = 3. amtl gmax = 6 by Algorithn L.

[G]. and we therefore put M(z) = ax + h. With this, z"(z} = {az - b}/ YT,

which yields
R
z(x) -:f / ﬂ}f—z dr

=gy + asx + ayr | g (16}

This equation indicates that a small deformation eurve can always be repre-
sented by a cubic spline curve. In the image plance, a homogeneous sepment
of pixels cau therefore be viewed as a cubic spline segment, and therefore it
can be extracted based on the properties of the cubic spline function, As the
axiz of the stahle position of all such segments may not always correspond
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(a) (b}

fe)

Fig. 10. {a)-{c) Regenerated output images by Algorithm 2.

to the z-axis, it is wise to consider an axis-independent representation. For
this, we write

4
)= Bt ti<t<ty
=1

where t; and t, are the parameter values at the end positions of a scgment
and B;'s are the coefficients. Using the boundary conditions, this can be
written as
™
z{1) = (w) ws ws 1wy pf
?'3'}

D
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P, p2 and p, ph are the end positions of the curve and their derivatives
{tangent vectors) at these positions, respectively, whereas 1w,’s are the
weighting functions.

Figure 5 shows the behavior of these weighting tunctions. Since the
difference in magnitudes of wy and we 1s more than that of wy and wy, we
can say that the end position vectors have more influence than the tangent
vectors on the value of z(f).

Although the tangent vectors have less influence on the value of z{1).
thev have a strong impact, as described below, on the smoothness of z(t)
[7]. Figure 6 shows a single plane symmetric spline segment with constant
tangent. vector direction (ag) and varying magnitudes {represented by the
length of the tangent vector). When the magnitude is a small fraction of the
chord length . the curve is convex at the ends and lies inside the triangle
formed by the chord and the tangent vectors, as shown in Figure 6{d).
With the incerease of magnmitude, the curve eventually becomnes concave at
the ends and lies outside the triangle. A corner is developed in the enrve
when the tangent vector magnitude is 3/cosa 7. For magnitudes larger
than this, a loop is formed. This is shown in Figure 6{e).

From the above behavior, it is evident that a symmetric cubic spline
curve is distortion- (corner or loop) free or, in other words, smoothness of
such curves is preserved when the tangent vector magnitude is kept below
iy < A/ cosa. This feature of Ltangent vector magnitude can therefore be
used to segment an arbitrary space curve in the image plane,
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