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Target detection of ISAR data by principal component transform
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Issue of automated target detection in 15AR can be stated as what leatures enhance objects of interest
from the rest of the data. Much experimentation done in this area have used Fourier transforms for pre-
processing the raw signal data. Generally the ISAR data are comes with a matrix of complex number val-
ues and therefore intuitive logic appears to favor a Founer transform, A hypothesis was made that a
Fourier transform in preprocessing may mask some data that could be part of feature used to threshold
the object from background. Thus a trial was dene on MATLAE simulated 1SAR data to see if such data can
be rransformed into a matrix to visualize objects by preprocessing with principle component transform
followed by some modification conventional thresholding technigues i.e. gray level co-occurrence matris.
Since it would be difficult to do 50 in complex valued matrices, these matrices had been decomposed to
real valued and the imaginary valued matrices separately. Advantages of simulated data were that vari-
ables could be defined and changes in preprocessing transform and thresholding result could be com-
pared with significant accuracy before a trial with actual performance of [SAR imagery. The
preliminary result in this paper does show that preprocessing transform need not be Fourier. Principle
component transform may bring about features that enhance thresholding values for Automatic target
detection, Thresholding in conventional methods is done by finding a fixed value to create a binary image
highlighting the object. In the modification proposed here single value thresholding ohjects and then spa-

tially lecating the object in a binary matriz may circumvented.

@ 2012 Elsevier BV, All rights reserved.

1. Introduction

Target detection is essential for target interpretation and analysis
in Inverse Synthetic Aperture Radar (ISAR) imaging system. In 1SAR,
the target rotates and the radar is stationary and the target images
can be obtained by transmitting wideband signals, and high cross
range resolution is obtained by coherently accumulating number
of echoes from different aspect angles. The goal of ISAR imaging sys-
tem is to detect the targets particularly for surveillance, The conven-
tional target detection system for I1SAR images consists of the
following stages: fast time filtering, slow time filtering, compression
and decompression for focused FFT and IFFT response, Anti-aliasing
and Matched Filtering. This paper proposed an algorithm for target
detection for ISAR images which is based on co-occurrence matrix.
Co-occurrence matrix is the statistical approach for texture repre-
sentation and first introduced by Haralick et al. using the grey level
co-occurrence matrix (GLCM) (Haralick et al., 1973). Co-occurrence
matrix has been used to extract structural similarities between the
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objects (Mita et al., 2008; Jing ¥i Tou et al,, 2009}, for classification
(ZHU Le-Qing, 20107 and for segmentation [Corneloup, 1996).
Co-occurrence matrix method alse used by Clausi and Jerniganl
(1998}, where they proposed an improvement on the GLCM by pre-
senting a grey level co-occurrence linked list (GLCLL) structure that
stores the non-zero co-occurring probabilities in a sorted linked list.
Rignot and Kwok (1990] have analyzed SAR images using texture
features computed from gray level co-occurrence matrices. Thresh-
old has been determined by using entropies, global, local and joint
from co-occurrence matrix (Park et al., 2011; Mark et al, 1995;
Chang et al., 1994),

A co-occurrence matrix captures the spatial dependence of
contrast values, depending on different directions and distances
specified. For a given matrix A with spatial dimension m = n with
L gray levels G=1,2.3,.. .. L The gray levels of co ordinate (x,v) is
denoted by A(x,y) £ G, the co-occurrence C of A is an L = L matrix

C= Lﬁiln[ [l]

which contains the transition of gray levels with its adjacent gray
levels, For the gray levels (i) the (ij)th entry of the co-occurrence
matrix C, f; is defined as



M. Gupra et al. f Pattern Recagnition Letbers 33 (2012} 1682- 1688 1683

fi=3_% a(m,n) (2)
i1 -1
agimn) =1 if {fim,n) =i f(mn+1)=jand/or fim n) =i fim+
1,m) =j aim,n) =0 atherwise
The probability of the occurrence is defined as
o T
piiLg) = [T (3}
>

As such, the co-occurrence matrix can better expose the under-
Iving nature of texture than can a Fourier description. This is be-
cause the co-occurrence measures spatial relationships between
brightness, as opposed to frequency content. This clearly gives
alternative results.

Many feature vectors has been computed from GLCM (Haralick
et al., 1973; Tuceryan and Jain, 1998). Falconer et al. {2006]
measured the power spectral density (PSD) of a variety of objects
and vsed the differences in the shaping of the PSD {kurtosis and en-
ergy band] to differentiate between targets and infer the activity le-
vel (i.e, resting versus moving) of human targets. Sabatini and Calla
(1998 ) used wavelet transforms to remove the high-frequency com-
ponents and reconstruct the signal; the error between the original
and reconstructed signals was then used to compute a threshold
for discriminating between targets, Lopez-Estrada and Cumplido
(2009) used co occurrence matrix to evaluate the cluttered environ-
ment in a given image,

In detection module, firstly the raw data are processed for
target detection by using co-occurrence matrix of the gray scale
image. Principal component transform (PCT) using covariance has
been done by taking co-occurrence matrix as input, Furthermore,it
has been noticed that after applying the proposed method number
of targets presents in the environment are clearly identified.

The paper is organized as follows; In Section 2 Methodology for
capturing and preprocessing of 15AR data and algorithm for target
detection has been given. Section 3 represents with all the results
and discussion. Finally, conclusions are included in Section 4.

2. Methodology

In I1SAR the target motion provides the changes in relative veloc-
ity that cause different Doppler shifts to occur across the target
Skolnik, 2001, The images in I1SAR are generally obtained by the
range-Doppler algorithm based on the 2-D Fourier transform
(Fig_ 1). The received RADAR signals from targets are always super-
posed with the receiver noise and other disturbing signals. These
disturbing signals are always randomly fluctuating due to the nat-
ure of their origin. RADAR targets are very complex and composed
of multiple single reflection centers. The movement of the targets
results in varying phase relationships of the partial echoes from
the multiple complex reflection elements. The superposition of
all these partial echoes yields therefore a fluctuating resultant tar-
get echo.

The main task of the RADAR system is the detection of targets,
That is for each resolution cell in space we have to decide whether
a target is present or not, This task cannot be performed with abso-
lute certainty because of the fluctuating nature of the signal. We
want o reduce the false positivity, In this paper we provide a
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methodology where the targets are recognized after principal com-
ponent transform on cooccurrence matrix, The raw data captured
by the RADAR are preprocessed, The principal features after Princi-
pal Component Transform on co-occurrence matrix gives some
information of the targets present in the given RADAR data. If we
do directly Principal Component Transform on the raw data cap-
tured by the RADAR sometimes it does not works well. The vari-
ables which are not correlated are those that are commonly
neglected, So to extract target information correctly we first eval-
uated co-occurrence matrix which will correlate the data. To get
individual target information it is required to determine the uncor-
related data. So at second stage we have done Principal Component
Transformation to determine the uncorrelated data on that co-
occurrence matrix. Fig. 2 shows the steps for this proposed
methodology.

2.1, Capturing and preprocessing of I1SAR data

Cross range resolution considered for experimentation is 90 cm
1.8, AR,,=90 cm. Two flat plates P1 and P2 has been taken where
P1 has the dimension (1m = 1m} and P2 has the dimension
(56 cm = 56 cm) and the step of angular rotation evaluated from
the relation 5 =r = A, Where r (in meter] = radial distance of
the Hotspot from the central axis of rotation, A¢ = Step of angular
rotation {in Degree) and 5= Arc Length for a very small Aif, This
length is equivalently the translated distance along the cross-range
for the small angular rotation of Ar,

To get the output image, flat plates are placed at cross-range
90 cm apart from each other, the rotation has been made in such
a way so that after each rotation, RADAR can apparently see the
target.5 has been made in such a way, so that it can be comparable
comparable to 4. So, the relation 5=r = A =/ has been taken into
consideration.

In our case,
3210 biim (4]
Aoy = —mm—————— = LI
M S Ex 100
3 = 10%
i = _m=0.17 (5
e T 10P - )
Al = “ri*‘ Degree = 0.22 (6)
Ay = ”f‘“‘ Degree = 0.34 (7)
] =+
Wl ii-‘-:?ﬂ'!-.i-".".‘-‘-"!"ﬂ'- Degree = 0.28° = 0.3° (8)

Each rotation for the flat plate (1 m = 1 m) has been taken by the
step of 0,37,

Total angular span of rotation @ has been evaluated by the
relation ARue = 5

1 i

T radians = 3.67° (9)

i = SiN

Tarmet
Detection

CFAR

Fig. 1. Conventional approach for RADAR signal processing.
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Fig. 2. Proposed methodology for 15AR RADAR target derection.

P | Aoy . & 1
iy = 50 mmdians = 6.0 (10)

The (56 cm =« 56 cm) plate is lkept fixed and the (1 m =« 1 m) Flat
plate is rotated starting from 23.5° to 29.5° with a step of 0.3 so
that the total angular span remains 6.0°,

The flat plate {1m = 1 m) is placed on position and rotated
through its Azimuth through Midas Software; thereby observing
the return power variation in 5{A Mode of RTSA. At a certain Azi-
muth, the Elevation adjusted to observe the variation of Rx power
[in dBm). Thus after each operation of orienting Azimuth and Ele-
vation, the maximum Rx Power is taken. The position has been
fixed which is at the Boresight of the (1 m = 1 m) Flat Plate.

For this (1 m = 1 m) flat plate Boresight Azimuth = 26.5* and
Elevation = —5.29°, Keeping this flat plate at Boresight, the second
target of dimension (56 cm = 56 cm) has been taken. which is at a
cross Range distance of 90 cm but at a down range distance of
70 cm with respect to the (1 m = 1 m) Flat Plate. For the 15t angu-
lar orientation ¢ (=23.57), we make a RF Carrier frequency sweep
(1.7 GHz to 2.6 GHz) and capturing the 181 csv data for that partic-
ular orientation. Similarly, for 2nd angular orientation ¢ [=23.87),
we make a frequency sweep (1.7 GHz to 2.6 GHz) and capturing
the 181 csv data for that particular orientation and so on, Thus
we do the frequency sweeping operation for total 21 angular orien-
tations (7 =235 to 29.5°; step = 0.3°), Thus at first we collect
(181 = 21({Data type 1)) matrix data covering for all orientations.

211, Simulation model for generating RADAR front end data
Three point scatterers were designed by the use of MATLAB
Simulink model as shown in Fig. 3.The left and right point scatter-

ers are rotating with an angular step of 0.3° about a central axis
and the middle point scatterer is stationary.

The reflected energy (as per RADAR range equation) from each
of the point scatterers are merged in a single frame (of size
3 = 1] with their independent phase and magnitude values, The
rear side point scatterer is placed 17 m behind the middle point
scatterer and at a 0.9 m cross range distance w.r.t the right side
point scatterer. This rear side point scattarer is encircled in the
above Fig, 3. The cross range distance between left and middle
paint is 0.5 m. Similarly the middle and right points are separated
in cross range by 0.5 m.

To receive data matrix through simulation model, four point
scatterers (including the rear one also) are considered here. The re-
turn signal vector is received from point A as shown in Fig. 3. This
signal vector is a frame of size 4 = 1 where each element is a com-
plex number carrying the independent phase and magnitude infor-
mation being reflected from each point scattarer according to
RADAR range equation. After making reshape of this column frame
at the RADAR receiver, it gets the dimension of a row vector of size
1 = 4. This is achieved for a particular orientation of the scattarer-
assembly. As the point scattarer assembly is rotated starting from
23.5° to 29.5° with a step of (0.3%, so there will be generated 21 row
vectors each of size 1 = 4. 50, for a single radio frequency, a data
matrix will be generated having the dimension of 21 =« 4.

In practical operation, the frequency (relative frequency) is
swept from 1.7 GHz to 2.6 GHz in the step of 5 MHz at a particular
angular orientation of the point scatterers and the data for each
frequency is collected through the MATLAB workspace, Then for
next angular orientation of the point scatterer’s assembly, the fre-
quency is swept from 1.7 GHz to 2.6 GHz with a similar step size
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Fig. 3. The complete simulation for RADAR front end data generation; the rear stationary point scatterer is encircled.
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Fig. 4. [a) Image captured by processing the ISAR experimental data using conventional approach (b) gray scale image (] co-occurrence matrix generated from gray scale

image (d} surface plet after PCT on co-occurrence matrix.

and again the data is collected. The number of angular orientations
considered here is 21 because the point scatter assembly has
started rotation from 23.5° and ends at 29.5° with an angular step
of 0.3°. The numbers of frequencies (i.e. RF) are taken as 181 be-
cause the RF sweep range is 1.7 GHz to 2.6 GHz with a step size
of 5 MHz.

Finally 181 number of 21 « 4 data matrix will be generated
through simulation model and consequently the resulting data
matrix will be of dimension (21 = (181 = 4]} i.e. 21 = 724, This
data matrix in the proposed approach is considered as simulated
data type 3,

For the data type 2 the point scatterers are reduced to three
only, In this case the rear point scattarer has been removed so
we received a matrix of (21 = (181 = 3)) ie, 21 = 543,

Dara type 1 consists a single point scattarer and after processing
the module, received a data matrix (21 = (181 = 1]} i.e.21 = 181.

2.1.2. Principal component transform on co-occurrence

The preprocessed data are all in complex (real and imaginary)
nature while captured by RADAR. Co-occurrence matrix has been
evaluated separately for both the real and imaginary parts of the
data. Here the co-occurrence matrix C (Eq. (1)) evaluated is a sym-
metric matrix as the number of counts for a pair [x,. ¥} is the same

as for the pair (x;, ¥;).

Co-occurrence matrix is a two dimensional histogram of the
number of times that pairs of intensity values occur in a given spa-
tial relationship. It forms a summary of the sub patterns that could
be formed by intensity pairs and the frequency with which they
occur, The rows and columns of co-occurrence matrix separate
the samples into various classes based on observed intensities,
The matrix thus tabulates the frequencies of samples belonging
to each class. The importance of adopting this interpretation of
co-occurrence matrices is that it allows the formulation of a pre-
cize statistical measure for the amount of textural structure that
is contained in any particular matrix, If pixel values changed rap-
idly from (i,j) to (i + 1,j) or (j + 1.i}, then the scatter would be high
and if they do not change significantly they would cluster around
the main diagonal. Therefore, if the image is noisy the scatter for
co-occurrence matrix is high and if the image is less noisy then
the scatter for co-occurrence matrix is low.

Our aim for this proposed approach is to distinguish targets
from backeround. To extract target information from co-occur-
rence matrix it is required to recognize the principal target fea-
tures, This is practically impossible to get target information
from the cooccurrence matrix, Hence we need to find out covari-
ance matrix based on the co-occurrence matrix so that it allows
to formulate the principal components for target detection. Covari-
ance matrix is evaluated here which fully describe the variation in
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this distribution. Principal component transform completely de
correlates the target and noise into two different aspects. The high-
est principal components where the entire information remains
are represented as target. The eigenvector with highest eigenvalue
is the first few principal components. By ranking the eigenvectors
we are creating an ordered orthogonal basis according to the target
significance. Since the eigenvector belongs to the same vector
space as the co-occurrence matrix then we can say the original
co-oCccurrence matrix simplifies its representation, by using the
proposed approach, without losing much information.

Here covariance matrix describes the relative likelihood of a
pattern at a particular location belonging to each class, It is then
considered as belonging to the class which indicates the highest
probability. Each principal component represents the greatest pos-
sible variance and each one is uncorrelated with the previously de-
fined principal components, The frst few values are the highest,
Therefore the first few principal components should capture the
most of the sample variation.

The mean position of the pixels in the space is defined by the
expected value of the pixel vector x, and it is of value to have avail-
able means by which the scatter is described.

1A
in=Eix)= P %x;, (11)

where m is the mean pixel vector and x, are the individual pixel
vectors of total number. K and E is the expectation operator. The
covariance matrix is described as 57, = ;L5500 (% — m(x, — m)
To determine the principal component transform from covariance

% w0 M0 X0 M0 0 M0 400

(b)

g o
181] (a) surface plot for the original data (k] co-occurrence marnx from real data (¢} co-occurrence marnx for imaginary daca
[d] surface plot after PCT an co-ocourrence matrix.

matrix it is necessary to evaluate eigenvalues and eigenvectors of
the matrix. At this stage the eigenvalues are used simply to assess
the distribution of data variance over the respective components,
The rapid fall in the size of eigenvalues indicates that the image
data exhibits a high degree of correlation. The eigenvalues are given
by the solution to the characteristic equation; |57, — 4| = 0. Where
| is the identity matrix.

The components of the eigenvectors acts as coefficients in
determining the principal component brightness values for a pixel
as a weighted sum of its brightnesses in the original spectral bands.
The first eigenvector produces the first principal component from
the original data; the second eigenvector gives rise to the second
component and so on. By comparison, the variance in the last com-
ponent is seen to be negligible. It is to be expected that this com-
ponent will appear almost totally as noise of low amplitude. PCT
transforms to a new coordinate system in the vector space in
which the data can be represented without correlation. Thus the
covariance matrix in the new coordinate system is diagonal. If
the vectors describing the pixel point are represented byy in the
new coordinate system, then it is imperative to find the linear
transformation G of the original coordinates, such that
¥, = Gx = Dix the components ¥,. .. ... ¥, represents the variance
of the pixel data in the respective transformed coordinates. It is ar-
ranged such that ¥; = ¥, = ... = ¥, so that the maximum variance
represents ¥, and minimum variance represents y, . The compo-
nents of variance with higher values are indicated as target. For
testing purpose a MATLAB simulation based environment has been
created and after preprocessing, the following types of data were
generated;
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1. Experimental data.

2, Data type 1 (matrix size: 21 = 181)
3, Data type 2 (matrix size: 21 = 543)
4, Data type 3 (matrix size: 21 = 724)

3. Result and discussion

The received matrix size for the experimental data is
21 = 181.Two targets were placed in the cluttered environment.
The pre-processing steps for data capturing has already been dis-
cussed in Section 2.1.The whole environment for this experiment
is in a real time environment so rejection of clutter is difficult.
Fig. 4{a) shows the image of the captured RADAR data after prepro-
cessing by conventional approach. Fig. 4(c) depicts an image lor
probability of co-occurrence matrix which shows that there is a
high correlation among the pixels of the captured image. After
transforming the co-occurrence matrix with principal component
transform the targets are clearly visible and can be distinguished
from background, The surface plot (Fig, 4(d)] reveals two targets,

The capturing and preprocessing for data type 1,2 and 3 in a MAT-
LABE simulated environment are discussed in Section 2.1.1 and illus-
trated in Fig. 3. When there is a single target present in the cluttered
environment, the generated matrix size is 21 = 181, Which is consid-
ered here as data type 1. Fig. 5(a) shows the surface plot for the original
data where the target and background is poorly discernible, The co-
occurrence matrix for real and imaginary data from data type 1 were
shown in Fig. 5(b) and 5(c) respectively. After applying the proposed
approach the surface plot in Fig. 5{d] display the single target.

(b)

(d)

« 543 {a} surface plot for the original data (b) co-occurrence matrix from real data () co-occurrence matrix for imaginary data

The size of the matrix is 21 = 543 for data type 2 and there are
three targets in the cluttered environment. The plot for original
data is given in Fig, 6{a). Fig. 6{b) and &(c) shows the images of
the probability of the co-occurrence matrices. The surface plot
after transforming the co-occurrence data makes the three targets
apparent.

Data type 3 has the matrix size 21 = 724, There are four targets
present in the cluttered environment. Fig. 7(b) and 7(c) shows the
co-occurrence matrix for the real and imaginary data respectively,
After using the proposed method, the surface plot confirm the tar-
gets which were distinguished from the background and clearly
visualized in Fig. 7(d).

4. Conclusion

The proposed method is innovative as this a method which de-
tects targets from cluttered environment which is not threshold
dependent, By dimensionality reduction the proposed method
proves its computational efficiency. Co-occurrence matrix shows
the sub patterns those formed by intensity pairs and the frequency
with which they occur. A transformation on co occurrence matrix
has been done which extracts the principal feature components
which are not dependent on any threshold selection point. These
principal components were regarded as targets which are based
on the strength of the probability of the occurrences. Co-occur-
rence matrix containg information about the correlated data while
the generated covariance of this co occurrence matrix gives the
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information about uncorrelated data among those correlations,
Frincipal component transform is used to transform the correlated
variables into uncorrelated wvariables and which reduces the
dimensionality of the original data set.
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