
New Genetic Operators for Solving TSP:
Application to Microarray Gene Ordering

Shubhra Sankar Ray, Sanghamitra Bandyopadhyay, and Sankar K. Pal

Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108
{shubhra r, sanghami, sankar}@isical.ac.in

http://www.isical.ac.in/∼shubhra r

Abstract. This paper deals with some new operators of genetic algo-
rithms for solving the traveling salesman problem (TSP). These include
a new operator called, ”nearest fragment operator” based on the concept
of nearest neighbor heuristic, and a modified version of order crossover
operator. Superiority of these operators has been established on different
benchmark data sets for symmetric TSP. Finally, the application of TSP
with these operators to gene ordering from microarray data has been
demonstrated.

1 Introduction

The Traveling Salesman Problem (TSP) has been used as one of the most impor-
tant test-beds for new combinatorial optimization methods [1]. Its importance
stems from the fact there is a plethora of fields in which it finds applications
e.g., scheduling, vehicle routing, VLSI layout, microarray gene ordering and
DNA fragment assembly. Over decades, researchers have suggested a multitude
of heuristic algorithms, including genetic algorithms (GAs) [1, 2, 3]for solving
TSP. The classical formulation of TSP is stated as: Given a finite set of cities
and the cost of traveling from city i to city j, if a traveling salesman was to visit
each city exactly once and then return to the home city, which tour would incur
the minimum cost?

Let 1, 2, · · · , n be the labels of the n cities and C = [ci,j] be an n × n cost
matrix where ci,j denotes the cost of traveling from city i to city j. The Traveling
Salesman Problem (TSP) is the problem of finding the shortest closed route
among n cities, having as input the complete distance matrix among all cities.
The total cost A of a TSP tour is given by

A(n) =
n−1∑

i=1

Ci,i+1 + Cn,1 (1)

The objective is to find a permutation of the n cities, which has minimum cost.
The TSP, with some minor modifications, can be used to model the microar-

ray gene ordering (MGO) problem. An optimal gene order provides a sequence
of genes where the genes those are functionally related and similar are nearer
in the ordering [4]. This functional relationship among genes is determined by

S.K. Pal et al. (Eds.): PReMI 2005, LNCS 3776, pp. 605–610, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

606 S.S. Ray, S. Bandyopadhyay, and S.K. Pal

gene expression levels from microarray by performing biological experiments [4].
Similarity between genes can be measured with Euclidean distance, Pearson cor-
relation, absolute correlation, Spearman rank correlation, etc.

Two new genetic operators are proposed in this article for solving TSP. Con-
sequently, the application of these operators are demonstrated for solving mi-
croarray gene ordering (MGO) problem efficiently.

2 Relevance of TSP in Microarray Gene Ordering

An optimal gene order, a minimum sum of distances between pairs of adjacent
genes in a linear ordering 1, 2, · · · , n, can be formulated as [5]

F (n) =
n−1∑

i=1

Ci,i+1, (2)

where n is the number of genes and Ci,i+1 is the distance between two genes i
and i + 1. In this study, the Euclidean distance is used to specify the distance
Ci,i+1.

Let X = x1, x2, · · · , xk and Y = y1, y2, · · · , yk be the expression levels of the
two genes in terms of log-transformed microarray gene expression data obtained
over a series of k experiments. The Euclidean distance between X and Y is

Cx,y =
√

{x1 − y1}2 + {x2 − y2}2 + · · · + {xk − yk}2. (3)

One can thus construct a matrix of inter-gene distances, which serves as
a knowledge-base for mining gene order using GA. Using this matrix one can
calculate the total distance between adjacent genes and find that permutation of
genes for which the total distance is minimized. This is analogous to the traveling
salesman problem.

3 GA with New Operators for TSP

In this section, two new operators of GAs for solving TSP are described. These
are nearest fragment (NF) and modified order crossover (MOC). The genetic al-
gorithm designed using these operators is referred to as FRAG GA. The struc-
ture of the proposed FRAG GA is provided in Fig. 1. Here path representa-
tion [1], linear normalized selection and elitism operators are utilized [2]. For
TSP, simple inversion mutation (SIM) [1] is employed.

3.1 Nearest Fragment (NF) Heuristic

The nearest-neighbor (NN) heuristic for creating initial population, have the
advantage that they only contain a few severe mistakes, while there are long
segments connecting nodes with short edges. Therefore such tours can serve
as good starting tours. In NN the main disadvantage is that, several cities are

New Genetic Operators for Solving TSP 607

begin FRAG_GA

Create initial population with Nearest-Neighbor Heuristic

while generation_count < dok

/* k = max. number of generations. */

begin

Apply NF heuristic
Linear normalized selection
MOC
Mutation
Elitism
Increment generation_count

end

Output the best individual found

end FRAG_GA

Fig. 1. The Pseudo-code for FRAG GA

not considered during the course of the algorithm and have to be inserted at
high costs in the end. This leads to severe mistakes in path construction. To
overcome the disadvantages of the NN heuristics, we propose a new heuristic
operator, called the Nearest Fragment (NF) operator, which is used in every
generation (iteration) of GA with a predefined probability for every chromosome
in the population as a subsequent tour improvement method. In this process,
each string (chromosome in GA) is randomly sliced in frag fragments. The value
of frag is chosen in terms of the total number of cities (n) for a particular TSP
instance. For tour construction the first fragment is chosen randomly. From the
last city of that fragment, the nearest city that is either a start or an end point
of a not yet visited tour fragment is determined from the cost matrix. The
fragment containing the nearest city is connected to the selected fragment, with
or without inversion depending on whether the nearest city is the last city of a
fragment or not respectively. The process is repeated until all fragments have
been reconnected.

3.2 Modified Order Crossover (MOC)

Order crossover [6] has been observed to be one of the best in terms of quality
and speed, and yet is simple to implement for solving TSP using GA [1, 2, 3].
In order crossover the length of a substring is chosen randomly. Thus on an
average, the length is equal to n/2. This can lead to a marked increase in the
computational time, which can be reduced if the length of the substring for
performing crossover can be fixed to a small value. However, no study has been
reported in the literature for determining an appropriate value of the length of a
substring for performing order crossover. Such an attempt is made in this article
where it is found that a substring length ′y′ for MOC provides good results
for TSP if y = max{2, α}, where n/9 ≤ α ≤ n/7 (n is the total number of
cities). Unlike order crossover, where the substring length is randomly chosen,
in MOC it is predefined at y. For example, for a 10 city problem the value of α

608 S.S. Ray, S. Bandyopadhyay, and S.K. Pal

is predefined at 1.25, therefore y = 2. The rest of the process in MOC is same
as order crossover.

4 Experimental Results

FRAG GA is implemented in Matlab 5.2 on Pentium-4 (1.7 GHz). The ex-
periment has two parts. In the first part we have compared FRAG GA with
SWAP GATSP [3], and OX SIM (standard GA with order crossover and simple
inversion mutation) [1] for solving benchmark TSP instances like Grtschels24,
kroA100, d198, ts225, pcb442 and rat783 [7]. In the second part for biological
microarray gene ordering, Cell Cycle cdc15, Cell Cycle and Yeast Complexes
datasets are chosen [8]. The three data sets consists of about 782, 803 and 979
genes respectively, which are cell cycle regulated in Saccharomyces cerevisiae,
with different number of experiments (24, 59 and 79 respectively) [4]. Each
dataset is classified into five groups termed G1, S, S/G2, G2/M, and M/G1
by Spellman et. al. [4]. Throughout the experiments the population size is taken
to be 10 for smaller problems (<100 cities/genes), while for larger problems
(≥100 cities/genes) this is set equal to 20. Crossover probability is fixed at 0.85
and mutation probability is fixed at 0.015 across the generations.

For the nearest fragment (NF) operator, each string (chromosome in GA) is
randomly sliced in frag fragments, where frag ∼= n/8. Probability of NF operator
was set to be 0.4 for n greater than 100 and 0.5, otherwise. The value of substring
length for the modified order crossover operator (MOC) is kept in the range n/7
to n/9. All these values were obtained after extensive experiments, which are
omitted here for the lack of space.

Table 1 summarizes the best results and average results obtained by running
the FRAG GA, SWAP GATSP and OX SIM on the aforesaid TSP instances.

Table 1. Cost values using FRAG GA, SWAP GATSP and OX SIM for different TSP
instances

Best Results Average Results
Problem Optimal FRAG GA SWAP OX SIM FRAG GA SWAP OX SIM

GATSP GATSP
Grtschels 1272 1272 1272 1272 1272 1272 1322

24 (130) (500) (8,000) (1000) (2000) (15000)
KroA 21282 21282 21504 22,400 21,350 21,900 22670
100 (800) (5000) (25,000) (2000) (5000) (30000)
d198 15780 15834 15992 16,720 15964 16,132 18200

(3000) (7000) (25,000) (3500) (10000) (40000)
Ts 126643 126730 127012 135800 126890 128532 138283
225 (3000) (7000) (25,000) (3500) (10000) (40000)
Pcb 50778 51104 52620 53402 51930 53,820 59740
442 (8000) (15000) (40,000) (10000) (20000) (65000)
Rat 8806 9007 9732 10810 9442 10110 11520
783 (15000) (30000) (70,000) (20000) (40000) (100000)

New Genetic Operators for Solving TSP 609

Fig. 2. Variation of cost of the best string with number of iteration for kroa100.tsp

For each problem the iteration in which the result is obtained is mentioned in
columns 3-8 within parentheses. In SWAP GATSP and OX SIM the number of
populations is taken to be 10 for 24 and 29 cities, 24 for 48 and 51 cities, 30 for
70 and 76 cities, and 40 for number of cities greater than or equal to 100 [3]. As
can be seen from Table 1 FRAG GA is superior in terms of quality of solution
when compared with other existing GAs [1, 3].

Fig. 2 shows a comparison of FRAG GA, SWAP GATSP and OX SIM when
the fitness value of the fittest string is plotted with iteration. The three programs
were run for 5000 iterations for kroa100.tsp with population 20. At any iteration,
the FRAG GA has the lowest tour cost. It took 304 seconds, 490 seconds and 304
seconds by FRAG GA, SWAP GATSP and OX SIM respectively for executing
5000 iterations. Moreover, only FRAG GA is seen to converge at around 800 iter-
ations at the optimal cost value of 21,282 km. On the other hand, the cost is 21912
km for SWAP GATSP and 25103 km for OX SIM even after 5000 iterations.

The performance of FRAG GA on microarray datasets is evaluated with a
biological score (not used as fitness function of GA), defined by [5]

S(n)=
∑n−1

i=1 Ci,,i+1 where Ci,,i+1 = 1, if gene i and i + 1 are in the same
group

= 0, if gene i and i+1 are not in the same
group.

Using this, a solution of gene ordering has a higher score when more genes
within the same group are aligned next to each other. Table 2 compares the
performance of our FRAG GA with other GA based methods in terms of S
value. It is clear that FRAG GA and NNGA [9] are comparable and they both

Table 2. Comparison of FRAG GA with other algorithms in terms of best score

Algorithms Cell cycle cdc15 Cell cycle Yeast complexes
FRAG GA 537 635 384

NNGA 539 634 384
FCGA 521 627 —-

610 S.S. Ray, S. Bandyopadhyay, and S.K. Pal

dominate FCGA [5]. Note that FRAG GA is a conventional GA, while NNGA
(hybrid GA) uses exhaustive local search methods [10], which provides the key
contribution to optimality (not the GA itself). The main reason behind the good
results obtained by FRAG GA is that, biological solutions of microarray gene
ordering lie in more than one sub optimal point (in terms of gene expression
distance) rather than one optimal point.

5 Conclusion

A new ”nearest fragment operator” (NF) and ”modified version of order crossover
operator” (MOC) of GAs are described along with their implementation for
solving both symmetric TSP and microarray gene ordering problem. Appropriate
number of fragments and appropriate substring length in terms of the number
of cities are determined for NF and MOC respectively, and then applied on
TSP and microarray data. It appears that NF operator is able to augment the
search space quickly and thus obtains much better results compared to other
heuristics. Moreover, MOC requires shorter computation time; thereby balancing
the overhead corresponding to the NF operator.

Acknowledgement

This work is supported by the grant no. 22(0346)/02/EMR− II of the Council
of Scientific and Industrial Research (CSIR), New Delhi.

References

1. Larranaga, P., Kuijpers, C., Murga, R., Inza, I., Dizdarevic, S.: Genetic algorithms
for the traveling salesman problem: A review of representations and operators.
Artificial Intell. Rev. 13 (1999) 129–170

2. Goldberg, D.E.: Genetic Algorithm in Search, Optimization and Machine Learning.
Machine Learning, Addison-Wesley, New York (1989)

3. Ray, S.S., Bandyopadhyay, S., Pal, S.K.: New operators of genetic algorithms for
traveling salesman problem. Volume 2., Cambridge, UK, ICPR-04 (2004) 497–500

4. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B.,
Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-
regulated genes of the yeast saccharomyces cerevisia by microarray hybridization.
Molecular Biology Cell 9 (1998) 3273–3297

5. Tsai, H.K., Yang, J.M., Kao, C.Y.: Applying Genetic Algorithms To Finding The
Optimal Gene Order In Displaying The Microarray Data. GECCO (2002) 610–617

6. Davis, L.: Applying adapting algorithms to epistatic domains. Proc. Int. Joint
Conf. Artificial Intelligence (Quebec, canada, 1985)

7. TSPLIB: (http://www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95/)
8. (http://www.psrg.lcs.mit.edu/clustering/ismb01/optimal.html)
9. Lee, S.K., Kim, Y.H., Moon, B.R.: Finding the Optimal Gene Order in Displaying

Microarray Data. GECCO (2003) 2215–2226
10. Lin, S., Kernighan, B.W.: An effective heuristic for the traveling salesman problem.

Operation Research 21 (1973) 498–516

	Introduction
	Relevance of TSP in Microarray Gene Ordering
	GA with New Operators for TSP
	Nearest Fragment (NF) Heuristic
	Modified Order Crossover (MOC)

	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

